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Modelling Survival Data

» To model and analyze survival data and deal with censorings in a
convenient way one often specifies the model through the
mortality rate (the intensity of death, the hazard rate):

A(t) = risk of dying among people at risk at time ¢

» The intensity is closely related to the survival probability

P(T > 1) = S(t) = exp(— /t/\(s)ds))
0

» in other words

—logS(t) / A(s

So
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Torben Martinussen Survival analysis, Poisson regression and Cox regression |



Parametric Models

» To give precise and clear answers. Kaplan-Meier curves and
log-rank tests are not always sufficient.

» By making simplifying reasonable assumptions something more
can be said through parametric models.

» The simplest possible survival model simply claims that the
intensity is constant over time

A =X A(E) =Xt
When the rate is constant the survival time is exponentially

distributed.

» One may validate the model by considering the non-parametric
estimator of the cumulative intensity (Nelson-Aalen)

~

At)

» Should be approximately linear if the model is correct
» When this appears reasonable from the plot, we proceed to

estimate ) and its standard error. 47 mmorsoomims s
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Estimation

» The maximum likelihood method gives that

~ D
A==
T
where
D = +of occurrences
T = +#total time at risk, exposure time

i.e. the occurrence-exposure ratio.

» It is better to construct a confidence interval on log-scale and
transform it back to the orginal scale. It turns out that

se(In(})) = \}D

» Transforming this back to the original scale we get

1.96

—=)

96
=) Aexp(+ /D .

1
vD
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The Exponential Survival Distribution

v

Based on our estimate of A we now have a guess on the survival
function R A
S(t) = exp(—t))

and the expected survival time

1

~

A

For the group as a whole we can analyse the data using Poisson
regression. We start the analysis of constant intenisities by
considering how to compare constant intensities for K groups.

Below, we shall see how the constant intensity model can be
used more generally to describe mortality with piecewise
constant rates.

The simple constant rate model is appealing in that it is sufficient

to keep track of the number of deaths and the total risk time.
So
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Comparison of constant intensities

» Given K samples from different populations one may now wish to
compare the intensities ()1, ..., Ax). We estimate for each group
separately

~ Dk
Ak = —
k Tk
by occurrence-exposure rates and
» If groups all had the same mortality a combined estimate would

be
R = Zk Dy
>k Tk
the combined occurrence-exposure rate.
» Atestfor Hy: A\ = ... = Ag is given by

23" Di(In(3) — In(R))
k

Which is approximately x? with K — 1 degrees of freedom (get

back to this). & mamorsoumm o
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Melanoma data

» Consider the Nelson-Aalen plot for the groups by sex:

Nelson-Aalen cumulative hazard estimates

o
=]
o
= J
o
o
&
o
o
= |
=]

1] 2000 4000 6000

analysis time
‘ sex =1 sex = 2 ‘

> We have: Ay = 0.069years~' and Ar = 0.036 years™", and
hence an estimated relative risk of Ay /Ag = 1.94.

» Testof Hy : Ay = Ar gives p = 0.01.

So
@ UNIVERSITY OF SOUTHERN DENVAR
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Example in Stata

Using software, Poisson-regression; Estimates log ()).

xi: poisson dead i.sex, exposure(days)

i.sex _Isex_1-2 (naturally coded; _Isex_l omitted)
dead | Coef.  std. Err. z P>lz| [95% Conf. Intervall
_Isex_2 |  .6616329  .2649472 2.50  0.013 1423459 1.18092
_cons | -9.237167  .1889822  -48.88  0.000 ~9.607565 -8.866768
days | (exposure)

xi: poisson dead i.sex, exposure(days) irr

dead | IRR  Std. Err. z P>lz| [95% Conf. Intervall
_Isex_2 |  1.937954  .5134557 2.50  0.013 1.152975 3.25737
days | (exposure)

display exp(0.66163-9.237167) %365
.06886277

display exp(-9.237167) %365
.03553385
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Piecewise constant hazard rates

» The simple constant hazard rate model may be extended by
allowing piecewise constant but different hazard rates. This may
provide a sensible summary of many phenomena.

w

)\(t) = Xk for te [Ck_1,Ck]
» We only need to keep track of the total number deaths and the
exposure time in each time interval.
» Estimates and standard errors are given as before, e.g.,

» Such that

3 Dy no of occur. in [Ck—1, Ck|
k== =
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Example: Smoking and mortality

» Cohort study of smoking and mortality:

Age-group | Dead | Person-yrs | Smoker
35-44 32 52407 1
35-44 2 18790 0
45-54 104 43248 1
45-54 12 10673 0
54-64 206 28612 1
54-64 28 5712 0
65-74 186 12663 1
65-74 28 2585 0
75-84 102 5317 1
75-84 31 1462 0

» Disregard for a moment the grouping given by age and consider
only influence of smoking.

Smoker Deaths Person-yrs (exposure) X-1000 se(A)- 1000

1 630 142247 4.43 0.18

0 101 39222 2.58 0.26
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Example: Smoking and mortality

» X-1000 = (1000 - 731) /181469 = 4.03.
» Stata

iri 630 101 142247 39222

| Exposed Unexposed | Total

Cases | 630 101 | 731
Person-time | 142247 39222 | 181469
Incidence Rate .0044289 .0025751 .0040282

[95% Conf. Intervall

.0012441 .0024636
1.392063 2.143639 (exact)

Inc. rate diff. | .0018538
Inc. rate ratio | 1.71991

‘@ UNIVERSITY OF SOUTHERN DENMARK
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Example: Smoking and mortality

Using software

xi: poisson dead i.smoke, exposure(followup)

i.smoke _Ismoke_0-1 (naturally coded; _Ismoke_0 omitted)
dead | Coef.  Std. Err. z P>|z| [95% Conf. Interval]
_Ismoke_1 | .5422721 .1071834 5.06 0.000 .3321964 .7523478
_cons | -5.961873 .0995037 -59.92 0.000 -6.156896 -5.766849
followup | (exposure)

display exp(0.5422721-5.961873)
.00442891
. display exp(-5.961873)
.00257508
» Compare with iri-output!
. display exp(0.5422721)
1.7199102
xi: poisson dead i.smoke, exposure(followup) irr

dead | IRR  Std. Err. z P>lz| [95% Conf. Interval]
_Ismoke_1 | 1.71991  .1843459 5.06  0.000 1.394027 2.121976
followup | (exposure)

Relative risk: exp (0.5423) = 1.72.

Effect of smoking?
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Poisson Model

» The basis for the Poisson model is the incidence rate ( intensity)
denoted A, which is the expected amount of events per time unit.

» How the intensity depends on various covariates can be
analysed by Poisson regression.

» The log-linear regression model for Poisson counts models the
incidence rate

log(\) = Bo + B1Xi1 + ... + BpXp

for covariates Xj1, ..., Xjp (explanatory variables), and with Gy the
baseline level.

> [4,..., Bp are the regression-coefficients, that represent the
effects of the covariates.

» (3 is the effect of X;; when we have corrected for the other
covariates (when these are fixed).

So
@ UNIVERSITY OF SOUTHERN DENVAR
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Poisson Models and Mortality

» Poisson models may be used to study mortality while recognizing
the time aspect.

» If we believe that the death rate is constant in age groups (20-30,
30-40,...,say, which is approximately true) then the total number
of deaths in the various age groups are poisson with expected
number of deaths in age group j:

A Tj

where T; is the total exposure time for age group j.

So
@ UNIVERSITY OF SOUTHERN DENVAR
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Poisson Models

» Cohort study of smoking and mortality. Easy to correct for
age-differences. Interpret below output!

P .i: poisson dead i.smoke i.age, exposure (followup)

i.smoke _Ismoke_0-1 (naturally coded; _Ismoke_0 omitted)
i.age _Tage_40-80 (naturally coded; _Iage_40 omitted)
dead | Coef.  Std. Err. z P>|z| [95% Conf. Interval]
_Ismoke_1 |  .3546374  .1073739 3.30  0.001 .1441884 5650864
_Tage_50 |  1.484002  .1951034 7.61  0.000 1.101606 1.866397
_Tage_60 |  2.627454  .1837271 14.30  0.000 2.267356 2.987553
_Tage_70 |  3.350485  .1847992 18.13  0.000 2.988285 3.712685
_Tage_80 |  3.700092  .1922195 19.25  0.000 3.323349 4.076836
_cons | -7.919407  .1917625 -41.30  0.000 -8.295255  -7.543559
followup | (exposure)

» We start by considering the fit of the model.

» Wish to calculate the expected number of deaths of non-smoking
80 years under the model.

S
Ot
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Poisson Models

» To get estimate of log (\):

lincom _cons + _Iage_80

(1) [dead]_Tage_80 + [dead]_cons = 0
dead | Coef. std. Err. z P>|z| [95% Conf. Interval]
(1) | -4.219315 .1249846 -33.76 0.000 -4.46428 -3.974349

» To get estimate of expected number of deaths and 95%-ci:

. display exp( -4.219315)%1462

21.504144
. display exp(-4.46428) 1462
16.83198
. display exp(-3.974349)+1462
27.473218

» Note that group of non-smoking 80 year olds die quite a bit more
than expected by the model. 31 is outside the confidence interval
for the count (under the model) [16.8,27.5].

S
@ UNIVERSITY OF SOUTHERN DENMARK
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Likelihood ratio test

» A general strategy for testing is based on the likelihood
principle.

» A likelihood is a number that reflects how well the model fits the
data

» Different models may be compared by comparing their
corresponding likelihoods.

» The models needs to be nested in the sense that one model
contains the other as a special case.

» The likelihood ratio test is
—2In(Q) = —2(/2 — /1)

which is approximately x? with DF degrees. DF is the number of
parameters that can be omitted in the simpler model.

So
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Poisson Models

» Check for interaction

quietly xi:

estimates store modell

quietly xi:

estimates store model2
lrtest modell model2

poisson dead smoke i.age,

exposure (followup)

poisson dead i.smoke i.age i.smokexi.age,

exposure (followup)

Likelihood-ratio test LR chi2(4) 12.13
(Assumption: modell nested in model2) Prob > chi2 0.0164
xi: poisson dead i.smoke i.age i.smokexi.age, exposure(followup)
dead | Coef. std. Err. z P>|z| [95% Conf. Intervall
_Ismoke_1 | 1.746873 .7288689 2.40 0.017 .3183163 3.17543
_Tage_50 | 2.357367 .7637625 3.09 0.002 .8604198 3.854314
_Tage_60 | 3.829813 .731925 5.23 0.000 2.395266 5.264359
_Tage_70 | 4.622656 .731925 6.32 0.000 3.18811 6.057203
_Tage_80 | 5.294359 .7295601 7.26 0.000 3.864448 6.724271
_IsmoXage~50 | -.9866227 .7900624 -1.25 0.212 -2.535117 .5618712
_IsmoXage~60 | -1.362458 .7561868 -1.80 0.072 -2.844557 .1196405
_IsmoXage~70 | -1.44229 .7565319 -1.91 0.057 -2.925065 .0404855
_IsmoXage~80 | -1.846991 .7571736 -2.44 0.015 -3.331024 -.3629584
_cons | -9.147933 .7071067 -12.94 0.000 -10.53384 -7.762029
followup | (exposure)

Torben Martinussen
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Poisson Models

» Estimates:

*Non-smokers (If 7.40106 is added to all then we get fig.
* so that rate for smoker in first age band is set to 0).

lincom _cons

lincom _cons+_Iage_50
lincom _cons+_Iage_60
lincom _cons+_Tage_70
lincom _cons+_Iage_80

«Smokers
lincom _cons+ _Ismoke_l

lincom _cons+ _Ismoke_l+_Iage_50+ _IsmoXage_1_50

lincom _cons+_Ismoke_l+_Iage_60+ _IsmoXage_1_60
lincom _cons+_Ismoke_l+_Iage_70+ _IsmoXage_1_70
lincom _cons+_Ismoke_l+_Iage_80+ _IsmoXage_l_80

in handouts

dead | Coef.  Std. Err. z P>lz| [95% Conf. Intervall
(1) | -9.147933  .7071067 -12.94  0.000 -10.53384  -7.762029
(1) | -6.790566  .2886751 -23.52  0.000 -7.356359  -6.224773
(1) | -5.31812  .1889822 -28.14  0.000 -5.688518  -4.947722
(1) | -4.525276  .1889822 -23.95  0.000 -4.895675  -4.154878
(1) | -3.853573  .1796053 -21.46  0.000 -4.205593  -3.501554
(1) | -7.40106  .1767767 -41.87  0.000 -7.747536  -7.054584
(1) | -6.030315 .0980581 -61.50  0.000 -6.222506  -5.838125
(1) | -4.933705  .0696733 -70.81  0.000 -5.070262  -4.797148
(1) | -4.220693  .0733236 -57.56  0.000 ~4.364404  -4.076981
(1) | -3.953692  .0990148 -39.93  0.000 -4.147757  -3.759626

Torben Martinussen
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Example Continued

A graph showing the log incidence rates and the interaction, reveal
what is going on:

So the difference between smokers and non-smokers decrease with

age (hence the interaction). The difference is particular large for 40
So

year olds. R
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Cox-Regression

» Cox-Regression is the regression technique for survival analysis ;

» Regression techniques are very useful for dealing with many
covariates;

» Can be used to learn about treatment effect while correcting for
other covariates.

Hazard function
Ai(t)dt = P(T; € [t, t+ di] | alive at time {)

Cox model:
)\,‘(t) = /\o(t) exp(ﬁ1 X+ ...+ ﬁp)(ip)y

where \o(t) is baseline hazard for a subject with covariates 0.
Note: Ao(f) is not further specified!

So
@ UNIVERSITY OF SOUTHERN DENVAR
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The Cox model

» The regression coefficients 3y, ..., 3, represent the effects of the
covariates.

» (3 is the effect of X;1 when we have corrected for the other
covariates.

» (31 may be interpreted in terms of the relative risk when the
covariate Xj is increased 1:

Ao(t) exp(B1(Xin + 1) + ... + BoXp)
Xo(t) exp(B1Xit + ... + BpXpp)

» If 51 > 0 the risk of dying increases as Xj; increases, and if
B1 < 0 the risk of dying decreases as Xj; increases.

» The quantity

= exp (61)

1 Xt + ...+ BoXip
is called the prognostic index for the ith subject.

So
@ UNIVERSITY OF SOUTHERN DENMARK
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Two-Sample Cox Model

» Consider a simple 2-sample situation where we wish to study
effect of sex.

» Defining a covariate for the ith patient

1 Male
Xi= { 0 Female

» The hazard can be written as
Ai(t) = Ao(t) exp(8X;)

giving the contributions Ao(t) exp(5) when X; = 1 and A\o(t) when
X;=0.

» Note again that \o(t) is unspecified meaning that which
distribution is unspecified?

So
@ UNIVERSITY OF SOUTHERN DENVAR
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Two-Sample Cox Model

The Cox model is fitted to the data as follows

stset days, failure(status==1)
xi: stcox i.sex

i.sex _Isex_1-2 (naturally coded; _Isex_l omitted)
Cox regression -- no ties
No. of subjects = 205 Number of obs = 205
No. of failures = 57
Time at risk = 441324
LR chi2 (1) = 6.15
Log likelihood =  -280.12397 Prob > chi2 = 0.0131
_t | Haz. Ratio std. Err. z P>|z| [95% Conf. Interval]
_Isex_2 |  1.939011  .5140979 2.50  0.013 1.153182 3.260339

~ AN\ 2
> The Wald test is given as (5/SE(5)) which is 2.
» How should the value of 1.93 be interpreted?

S
Ot
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Example: Melanoma data

Consider the Cox-model for the melanoma with the explanatory
variables sex and log(thickness) (lthick):

Ai(t) = do(t) exp (B - sex; + B2 - 1tj)
We get:

. xi: stcox i.sex lthick
i.sex _Isex_1-2 (naturally coded; _Isex_l omitted)

failure _d: status == 1
analysis time _t: days

No. of subjects = 205 Number of obs = 205
No. of failures = 57
Time at risk = 441324
LR chi2(2) = 33.45
Log likelihood = -266.4747 Prob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>|z]| [95% Conf. Interval]
_Isex_2 | 1.580893 .4247382 1.70 0.088 .9337066 2.676669
lthick | 2.183408 .3435457 4.96 0.000 1.603997 2.972119
What does the relative risks of 1.58 and 2.18 mean? ‘™
L
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Survival predictions based on Cox-model

» Let X° denote the covariates for a given subject.
» The survival function assuming the Cox-model is given by

P(T° > t) = exp(— /tA(s, X0) ds) = exp(—No(t)e”?),
0

where PI(3) = 31 X20 + - - + 3, XJ is called the prognostic index.

» The survival function may thus be estimated by insertion of 3 and
No(1).

So
@ UNIVERSITY OF SOUTHERN DENVAR
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Example: Melanoma data

» Only sex in model, and compare with Kaplan-Meier estimate.

. stcoxkm, by (sex)

070 080 090 1.00

Survival Probability

0.80

0.50

4000 6000

analysis time

—+—— Observed sex =1
—+—— Predicted sex="1

—+—— Observed: sex=2
——+—— Predicted: sex=2

Torben Martinussen
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Example: Melanoma data

» Several variables in the model (what is the value of Ithick?):

. stcox sex ulc lthick, basesurv(s)
. stcurve, survival atl(sex=1 ulc=1) at2(sex=2 ulc=1)/+
%/ at3(sex=1 ulc=2) atd(sex=2 ulc=2)

Cox proportional hazards regression

o o
@
o
=
E
A"
w4
uy
0 4000 6000
analysis time
sex=1ule=1 sex=2 ulc=1
sex=1ulc=2 sex=2 ulc=2

S
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Example: Melanoma data

» Several variables in the model:

stcurve, survival atl(sex=1 ulc=2 lthick=4) at2(sex=2 ulc=2 lthick=4)/x
> x/ at3(sex=1 ulc=2 lthick=6) atd(sex=2 ulc=2 lthick=6)

Cox proportional hazards regression

4000 6000
analysis time

sex=1ulc=2 Ithick=4
sex=1ulc=2 thick=6

sex=2 ulc=2 Ithick=4
sex=2 ulc=2 Ithick=6

S
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