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Preface to the revised edition

This revised edition updates the original text (written to support Stata 7} to reflect
Stata 8, which was released in January 2003. Most of the changes are minor and
include new graphies, including the appearance of the graplics and the syntax used to
create them, and updated datasets.

New sections describe Stata's ability to graph nonparametric and semiparametric
estimates of hazard functions. Stata now calculates estimated hazards as weighted
kernel-density estimates of the times at which failures occur, where weights are the
increments of the estimated cumulative hazard function. These new capabilitics are
described in terms of nonparametric estimation in Chapter 8 and in terms of Cox re-
gression (Chapter 9).

Another added section in Chapter 9 discusses Stata's ability to apply shared frailty
to the Cox model. This section complements the discussion of parametrie shared and
unshared frailty models in Chapter 8. Because the frailty is best understood by begin-
ning with a parametric maodel, this new section is relatively brief and focuses only on
practical issues of estimation and interpretation.

Mario A. Cleves
William W. Gould
Roberto G. Gutierrez

College Station, Texas
August 2003






Preface

We have written this book for professional researchers outside the field of mathematics,
people who do not spend their time wondering about the intricacies of generalizing a
result from discrete space to ®; but who, nonetheless, understand statistics. Our readers
may sometimes be sloppy when they say that a probability density is a probability, but
when pressed, they know there is a difference and remnember that a probability density
can indeed even be greater than one. However, our readers are never sloppy when it
comes to their science. Qur readers use statistics as a tool, just as they use mathematies,
and just as they sometimes use computer software.

This is a book about survival analysis for the professional data analyst, whether a
health scientist, an economist, a political scientist, or any of a wide range of scientists
who have found that survival analysis is applicable to their problems. This is a book
for rescarchers who want to understand what they are doing and to understand the
underpinnings and assumptions of the tools they use; in other words, this is a book for
all researchers.

This book grew out of software, but nonetheless, it is not a manual. That gene-
sis, however, gives this book an applied cutlook that is sometimes missing from other
warks. We, the authors of this book, are also the authors of Stata's survival analysis
commands, which have had something 1mere than modest success. Writing application
software places a discipline on authors not uulike that of building of scientific machines
by engineers. Problems that might be swept under the rug as mere details cannot be
ignored, in the construction of software. and the authors are often reminded that the
devil is in the details. It is thosc details that cause users such grief, such confusion, and
sometimes, such pleasure.

In addition to having written the software, we have all been involved in supporting
it, which is to say, interacting with users (real professionals). We have seen the software
used in ways that we would never have imagined, and we have seen the problems that
arise in such uses. Those problems are often not simiply programming issues but involve
statistical issues that have given us pause. To the statisticians in the audience, we
mention that there is nothing like embedding yourself in the problems of real researchers
to teach you that problems you thought unimportant are of great importance, and vice
versa, There is nothing like “straighforwardly generalizing” some procedure to teach
you that there are subtle issues worth lots of thought.

In this book, we illustrate the concepts of using Stata. Readers should expect a
certain bias on our part, but the concepts go heyond our implementation of them. We



xviii Preface

will often discuss substantive issues right in the midst of issues of computer use, and we
do that because, in real life, that is where they arise.

This book also grew out of a course we taught several times over the web, and the
many researchers who took that course will find in this book the companion text they
lamented not having for that course.

We do not wish to promise more than we can deliver, but the reader of this book
should come away not just with an understanding of the formulas, but an intuition of
how the various survival analysis estimators work and exactly what information they
exploit.

We would like to thank all the people who over the years have contributed to our
understanding of survival analysis and the improvement of Stata's survival capabilities
be it through programs, comments, or suggestions. We are particularly grateful to

David Clayton of the Cambridge Institute for Medical Research

Joanne M. Garrett of the University of North Carolina

Michael Hills retired from the London School of Hygiene and Tropical Medicine
David Hosmer, Jr. of the University of Massachusetts, Amherst

Stephen P. Jenkins of the University of Essex

Stanley Lemeshow of Ohio State University

Adrian Mander of the MRC Biostatistics Unit

William H. Rogers of The Health Institute at New England Medical Center
Patrick Royston of the MRC Clinical Trials Unit

Peter Sasieni of Cancer Research UK

Jeroen Weesie of Utrecht University

By no means is this list complete; we would like to express our thanks as well to all
those who should have been listed.

Mario A. Cleves
William W, Gould
Roberto G. Gutierrez

College Station, Texas
May 2002
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Notation and Typography

This book is an introduction to the analysis of survival data using Stata, and we are
going to assume that you are already familiar, more or less, with Stata.

For instance, if you had some raw data on outcomes after surgery, and we tell you
to (1) enter it into Stata, (2) sort the data on patient’s age, (3) save the data, (4) list
the age and outcomes for the 10 youngest and 10 oldest patients in the data, (5) tell us
the overall fraction of observed deaths, and (6) tell us the median time to death among
those who died, you eould do that. To wit,

. infile ...

. sort age

. save mydata

. list age outcome in 1/10

. list age outecome in -10/1

. summarize died

. summarize time if died, detail

This text was written using Stata 8, and in order to ensure that vou can fully
replicate what we have done, you need an up-to-date Stata version 8 or later. Type

. update gquery
from a web-aware Stata and follow the instructions to ensure that you are up to date.

The developments in this text are largely applied, and it is our intention that you
read this text while sitting at a computer so that you can try for yourself the sequences of
commands contained in the text to replicate our results. In this way, you may generalize
these sequences to suit your own data analysis needs.

We use the typewriter font command to refer to Stata commands, syntax, and vari-
ables. When a “dot” prompt is displayed followed by a corumand (such as in the above
sequence), it means you can type verbatim what is displayed after the dot {in context)
to replicate the results in the book.

With the exception of some very small expository datasets we use, all the data we
use in this text are freely available for you to download {via a web-aware Stata) from
the Stata Press website, http://www.stata-press.com. In fact, when we introduce new
datasets, we merely load them into Stata the same way that you would. For example,

. use http://www._stata-press.com/data/cgg/hip, clear /# hip-fracture data */

Feel free to try this for yourself. The cgg part of the pathname, in case you are curious,
is comprised of the last initial of each of the three authors.



XX Notation and Typography

This text serves as a complement to the material in the Stata manuals, not as a
substitute, and thus we often make reference to the material in the Stata manuals using
the [R], [P], etc. notation. For example, [R] xi refers to the Stata Base Reference Manual
entry for xi, and [P] syntax refers to the entry for syntax in the Stata Programrming
Reference Manual.

Survival analysis, as with most substantive fields, is a field full of jargon: left trun-
cation, right censoring, hazard rates, cumulative hazard, survivor function, ete. Jargon
arises so that researchers do not have to explain the same concepts over and over again.
Those of you who practice survival analysis know that researchers tend to be a little
sloppy in their use of language, saying truncation when they mean censoring or hazard
when they mean cumulative hazard, and if we are going to communicate by the written
ward, we have to agree on what these terms mean. Moreover, these words form a wall
around the field that is nearly impenetrable if you are not already a member of the
cognoscenti,

If you are new to survival analysis, let us reassure you: Survival analysis is statistics.
Master the jargon and think carefully, and you can do this.

AL b e



1 The problem of survival analysis

Survival analysis is concerned with analyzing the time to the occurrence of an event.
For instance, we have a dataset in which the times are 1, 5, 9, 20, and 22. Perhaps those

measurenents are made in seconds, perhaps in days, but that does not matter. Perhaps

the event is the time until a generator’s bearings seize, the time until a cancer patient

dies, or the time until a person finds employment, but that does not matter either.

For now, we will just abstract the underlying data-generating process and say that
we have some times until an event occurs, and that those times are 1, 5, 9, 20, and 22.
In addition, perhaps we have some covariates {additional variables) that we wish to use
to “explain” these times. So, pretend that we have the following (completely made up)
dataset:

time
1
5
9
20
32 1

L= R

Now, what is to keep us from simply analyzing these data using ordinary least-
squares [OLS) linear regression? Why not sitply fit the model

time; = By + bz + ¢y, €; ~ N(0,a%)
for j =1.....,5, or, alternatively,
In{time;) = Go + iz, + €, E;‘NN(U‘UQ)
That is easy enough to do in Stata by typing

. regress time x

or

. generate lntime = ln{time)
. regress lntime x

These days, researchers would seldom analyze survival times in this manner, but
why not? Before you answer too dismissively, we warn you that we, the authors, can
think of problems for which this would be a perfectly reasonable model to use.



2 Chapter 1. The problem of survival analysis

1.1 Parametric modeling

The problem with using OLS to analyze survival data lies with the assumed distribution
of the residuals, ¢;. In linear regression, the residuals are assumed to be distributed
normally, which is to say, time conditional on z; is assumed to follow a normal distri-
bution:

timej ~ N(,@(} +,61Ij362)1 J — 1!' ":5

The simple fact is that the assumed normality of time to an event is unreasonable
for many events. It is unreasonable, for instance, if we are thinking about an event
that has an instantaneous risk of occurring that is constant over time. In that case, the
distribution of time would follow an exponential distribution. It is also unreasonable if
we are analyzing survival times following a particularly serious surgical procedure. In
that case, the distribution might have two modes: many patients die shortly after the
surgery, but if they survive, the disease might be expected to return. One other problem
is that a time to failure is always positive, while theoretically, the normal distribution
is supported on the entire real line. Realistically, however, this fact alone is not enough
to render the normal distribution useless in this context, since ¢ may be chosen (or
estimated) to make the probability of a negative failure time virtually zero.

At its core, survival analysis concerns nothing more than making a substitution for
the normality assumption characterized by OLS with something more appropriate for
the problem at hand.

Perhaps, if you were already familiar with survival analysis, when we asked “why not
linear regression?”, you offered the excuse of right censoring—that in real data we often
do not observe subjects long enough for all of them to fail. In our data, however, there
was no censoring, and really, censoring is just a nuisance. We can fix linear regression
easily enough to deal with right censoring. It goes under the name censored normal
regression, and Stata’s enreg command can fit such models; see {R] tobit. The real
problem with linear regression in survival applications is with the assumed normality.

Not heing already familiar with survival analysis, you might be tempted to use
linear regression in the face of non-normality. Linear regression is known, after all, to
be remarkably robust to deviations from normality, so why not just use it anyway? The
problem is that the distributions for time to an event might be quite dissimilar from the
normal—they are almost certainly nonsymmetric, they might be bimodal, and linear
regression is not robust to these violations.

Substituting a more reasonable distributional assumption for €; leads to parametric
survival analysis.



1.2 Semiparametric modeling 3

1.2 Semiparametric modeling

That results of analyses are being determined by the assumptions and not the data is
always a source of concern, and this leads to a search for methods that do not require
assumnptions about the distribution of failure times. That, at first blush, seems hopeless.
With survival data, the key insight into removing the distributional assumption is that,
becanse events occur at given times, these events may be ordered and the analysis may
be performed using the ordering of the survival times exclusively. Consider our dataset:

time
1
5
9
20
22 1

O W ok A W

Examine the failure that occurred at time 1. Let’s ask, “What is the probability of
failure after exposure to the risk of failure for 1 unit of time?” At this point, observation
1 had failed, and the others had not. This reduces the problem to a problem of binary-
outcome analysis,

time X vutcome
1 3 i

5 2 o

9 4 0

20 9 0
22 10 G

and it would be perfectly reasenable for us to analyze failure at time = 1 using, say,
logistic regression

= Pr(failure after exposure for 1 unit of time)
= Pr(cutcome; = 1)
1
1+ exp(—~5y — x;8:)

for § = 1,....5. This is easy enough to do:
. logistic outcome X

Do not make too much oul of our choice of logistic regression—choose the analysis
method you like. Use probit. Make a table. The point is that whatever particnlar
technique you choose, you could do all your survival analysis using this analyze-the-
first-failure method. It would be a mightily inefficient use of your data, but it would
have the advantage that you would be making no assumptions about the distribution
of failure times. Of course, you would have to give up on the idea of being able to make
predictions conditional on z, but perhaps being able to predict whether fajlure occurs
at time = 1 would be sufficient.

There is nothing magical about the first death time; we could instead choose to
analyze the second death time, which, it turns out in these data, is time = 5. We could
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ask about the probability of failure, given exposure of 5 units of time, in which case we
would exclude the firat observation (which failed too early) and fit our logistic regression
model using the second and subsequent observations:

. drop outcome
. generate outcome = cond(time==E,1,0) it time>=5
. logistic outcome x if time>=b

In fact, we could use this same procedure on each of the death times, separately.

Which analysis should we use? Well, there is slightly less information in the second
analysis than in the first (because we have one less observation), and in the third than
in the first two (for the same reason), and so on, so we should choose the first. It is,
however, unfortunate, that we have to choose at all. Could we somehow combine all of
these analyses and constrain the appropriate regression cocfficients (say the coeflicient
on ) to be the same? The answer is yes, we could, and after some math, that leads
to semiparametric survival analysis and, in particular, to Cox {(1972) regression if a
conditional logistic mode is fit for each analysis. Conditional logistic models differ from
ordinary logistic models for this example in that for the former we condition on the fact
that we know that outcome==1 for one and only one observation within each separate
analysis.

However, for now we don’t want to get lost in all the mathematical detail. What
is important is that we could have done each of the analyses using whatever binary
analysis method seemed appropriate. By doing so, we could combine them all if we are
sufficiently clever in doing the math, and since each of the separatc analyses made no
assumption about the distribution of failure times, the combined analysis also makes
no such assumption.

That last statement is rather slippery, so it does not hurt to verify its truth. We
have been considering the data,
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but now consider two variations on the data:
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time

1

500

1000

10000
100000 1
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These two alternatives have dramatically different distributions for time yet have the
same temporal ordering and the same values of x. Think about performing the individ-
ual analyses on each of these datasets, and you will realize that the results you get will
be exactly the same. Time plays no role other than ordering the observations.

The methods described above go under the name semiparametric analysis because,
as far as time is concerned, they are nonparametric, but since we are still parameterizing
the effect of z, there exists a parametric component to the analysis.

1.3 Nonparametric analysis

Semiparametric models are parametric in the sense that the effect of the covariates is
still assumed to take a certain form. In the previous section, by performing a separate
analysis at each failure time and concerning ourselves only with the order in which the
failures occurred, we made no assumption about the distribution of time to failure. We
did, however, make an assumption about how each subject’s observed z value deter-
mined the probability that that subject would fail; fur example, a probability determined
by the logistic function.

An entirely nonparametric approach would be to do away with this assumption also
and follow the philosophy of “letting the dataset speak for itself”. There exists a vast
literature on performing nonparametric regression using methods such as lowess ar local
polynomial regression; however, such methods do not adequately deal with censoring
and other issues unique to survival data.

When no covariates exist, or when the covariates are qualitative in nature (gender,
for instance), we can use nonparametric methods such as Kaplan and Meier (1958} or the
method of Nelson (1972} and Aalen (1978) to estimate the probability of survival past
a certain point in time, or to compare the survival experiences for each gender. These
methods take into account censoring and other characteristics of survival data. There
also exist methods such as the two-sample log-rank test, which can compare the survival
experience across gender by using ouly the temporal ordering of the failure times. To
wit, nonparametric methods make assumptions about neither (a) the distribution of the
failure times nor (b) how covariates serve to change or shift the survival experience.

1.4 Linking the three approaches

Going back to our original data, consider the individual analyses we performed in order
to obtain the semiparametric (combined) results. The individual analyses were
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Pr(failure after exposure for (exactly) 1 unit of time}
Pr(failure after exposure for (exactly) 5 units of time)
Pr(failure after exposure for (exactly} 9 units of time)
Pr(failure after exposure for (exactly} 20 units of time)
Pr(failure after exposure for (exactly) 22 units of time)

We could omit any of the individual analyses above, and doing so would only affect the
efficiency of our estimators. It is beiter, though, to include them all, so why not add
the following to this list:

Pr{failure after exposure for {exactly) 1.1 units of time)
Pr{failure after exposure for {exactly) 1.2 units of tine)

That is, why not add individual analyses for all other times between the chserved failure
times? That would be a good idea becaunse the more analyses we can combine, the more
efficient our final results will be, which is to say that the standard errors of our estimated
regression parameters will be smaller. The only reason we do not do this is that we
do not know how to say anything about these intervening times—we do not know how
to perform these analyses—unless we make an assumption about the distribution of
failure time. If we made that assumption, we could perform the intervening analyses
(the infinite number of them), and then we could combine them all to get super-efficient
estimates. We could perform the individual analyses themselves a little differently, too,
by taking into account the distributional assumptions, but that would only make our
final analysis even more efficient.

That is the link between semiparametric and parametric analysis. Semiparametric
analysis is nothing more than a combination of separate binary-outcome analyses, one
per f{ailure time, while parametric analysis is a combination of several analyses at all
possible failure times. In parametric analysis, if no failures occur over a particular
interval of time, that is informative. In semiparametric analysis, such periods are not
informative. On the one hand, semiparametric analysis iz advantageous in that it does
not. concern itself with the intervening analyses, yet parametric analysis will be more
efficient if the proper distributional assumptions are made concerning those times when
no failures arc observed.

When no covariates are present, we hope that semiparametric methoeds such as Cox
regression will produce estimates of relevant quantities {such as the probability of sur-
vival past a certain time) that are identical to the nonparametric estimates, and in fact,
they do. When the covariates are qualitative in nature, parametric and semiparametric
methods should yield more efficient tests and comparisons of the groups determined by
the covariates than nonparametric methods, and these tests should agree. Should the
tests disagree, this would serve as a signal that some of the assumptions made by the
parametric or semiparametric models are incorrect.



2 Describing the distribution of failure
times

The key to mastering survival analysis lies in grasping the jargon, and in this chapter
and the next, we describe the statistical terms unique to the analysis of survival data.

2.1 The survivor and hazard functions

These days, survival analysis is cast in a language all its own. Let T be a non-negative
random variable denoting the time to a failure event. Rather than referring to T7s
probability density function f{t)—or, if you prefer, its cumulative distribution function
F(t) = Pr(T < t)—survival analysts instead talk about T's survivor function §(t} or
its hazard function A(t). There is good reason for this: it really is more eonvenient to
think in terms of S(t) and h(t) rather than F(t} or f{t), although all forms describe
exactly the same probability distribution for T. Translating between these four forms
is quite simple.

The survivor function, also called the survivorship function or the survival function,
is nothing more than the reverse cumulative distribution function of T

S(t) = 1 — F(t) = Pr(T > t)

The survivor function reports the probability of surviving beyond time ¢. Said differ-
ently, it is the probability that therc is no failure event prior to ¢. The funetion is equal
to one at ¢ = 0 and decreases toward zero as t goes to infinity. {The survivor function
is a monotone, nonincreasing function of time.)

The density function f(#) can be obtained as easily from S(¢) as it can from F(t),

dF(t) _ d

iy =20 = S0 -5} = -5

The hazard function A{t}—also known as the conditional failure rate, the intensity
function, the age-specific failure rate, the inverse of the Mills' ratio, and the force of
mortality—is the instantaneous rate of failure, with the emphasis on the word rate,
meaning that it has units 1/¢. It is the (limiting) probability that the failure event
ocecurs in a given interval, conditional upon the subject having survived to the beginning
of that interval, divided by the width of the interval:
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L Prt+ A>T >HT > ()
h(t) = lim At ()

(2.1)

The hazard rate {or function) can vary from zero {meaning no risk at all) to infinity
(meaning the certainty of failure at that instant). Over time, the hazard rate can
increase, decrease, remain constant, or even take on more serpentine shapes. There is
a one-to-one relationship between the probability of survival past a certain time and
the amount of risk that has been accumulated up to that time, and the hazard rate
measures the rate at which risk is accumulated. The hazard function is at the heart of
modern survival analysis, and it is well worth the effort to become familiar with this
function.

It is, of course, the underlying process {disease, manufacturing a product, etc.) that
determines the shape of the hazard function:

1. When the risk of something is zero, its hazard is zero.

2. We have all heard of risks that do not vary over time. That does not mean that,
as I view my future prospects, my chances of having succumbed to the risk do not
increase with time. Indeed, it is certain that I will succumb eventually (provided
that the eonstant risk or hazard is nonzero), but my chances of succumbing at
this instant or that are all the same.

3. If the risk is rising with tine, 3o is the hazard. In such a case, the future is indeed
bleak.

4. If the risk is falling with time, so is the hazard. In this case, the fiture looks
better (if only we can make it through the present).

o

The human mortality pattern related to aging generates a falling hazard for a
while after birth, then a long, flat plateau, and thereafter constantly rising and
eventually reaching, one supposes, values near infinity at about 100 years. This is
often called the “bathtub hazard” by biometricians.

6. The risk of post-operative wound infection falls as time from surgery increases, so
the hazard function decreases with time.

Given one of the four functions that describe the probability distribution of failure
times, the other three are completely determined. In particular, one may derive from a
hazard function the probability density function, the cumulative distribution function,
and the survivor function. To show this, it is first convenient to define yet another
function, the cumulative hazard function,

H{t) = fot h(uydu

o e = s
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and thus

i t
H(t) = /U %du - -fo 33—) {%S(u)} du = — In{S(t)) (2.2)

(u

Note that the cumulative hazard function has an interpretation all its own—it measures
the total amount of risk that has been accumulated up to time ¢, and from (2.2) we can
see the relationship between accumulated risk and the probability of survival,

We can now conveniently write
S() = exp{-H(1)}
Ft) = 1—exp{-H(t)}
flt) = h{t)exp{-H()}

As an example, consider the Weibull hazard function, often used by engineers,
h(t) = pt?™

where p is a shape parameter estimated from the data. Given this form of the hazard, we
can determine the survivor, cumulative distribution, and probability density functions
to be

5(t)y = exp(~t")
F{t) = 1—exp(—t?) (2.3)
ftty = ptP" exp(—t?)

(Continued on next page)
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Gompartz Weibull
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Figure 2.1: Examples of hazard functions obtained from various parametric survival
models

In real datascts, we often do not observe subjects from the onset of risk. That is,
rather than observing subjects from ¢ = 0 until failure, we observe them fromt = ¢
until failure with £g > 0. When the failure event is death or some other absorbing event
after which continued observation is impossible or pointless, we will instead want to
deal with the conditional variants of S(), F(), H{), f(), and k(). The important feature
here is that those who failed (died) during the period 0 to £ will never be observed in
our datasets. The conditional forms of the above functions are

BT > t) = hif)
HET > to) = H(D) — Hito)
FUT > to) = ﬂf)s_ag(ﬂ
£ >0 = S
SHT > to) = SS(E?)

Conditioning on T > tg s commeon, and thus in what follows we suppress the notation

Y AT T
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so that S(t|tg) is understood to mean S(¢|T > to), for instance. Note that h(f) is
unaffected by the conditioning; it is an instantaneous rate and so is not a function of
the past.

The conditional functions may also be used to describe the second and subsequent
faiture times for events when failing more than once is possible. For example, the
survivor function deseribing the probability of a second heart attack would naturally
have to condition on the second heart attack taking place afier the first, and so one
could use S{t|ts), where t; was the time of the first heart attack.

Some hazard functions for often-used distributions are depicted in Figure 2.1, Al-
though determining a hazard from a density or distribution function is easy using (2.1),
this is really turning the problem on its head. You want to think in terms of hazard
functions.

2.2 The quantile function

In addition to f{), F{), 8(), h(), and H()—all different ways of summarizing the same
information—a sixth way, Q(}, is not often mentioned but is of use for those wha wish
to create artificial survival-time datasets. This is a book about analyzing data, not
manufacturing artificial data, but sometimes the best way to understand & particular
distribution is to look at the datasets it would imply.

The quantile function Q{u) is defined {for continuous distributions} to be the inverse
of the eumulative distribution function; that is,

Q(u) = F\(u)

so that @(u) = t only if F{{) = u. Among other things, the quantile function can be
used to calculate percentiles of the time to failure distribution. The 40th percentile, for
example, is given by Q(0.40).

Our interest, however, is in using Q) to produce an artificial dataset. What would a
survival dataset look like that was, say, produced by a Weibull distribution with p = 3¢
Finding the quantile function associated with the Weibull lets us answer that question
because the Probability Integral Transform states that if I is a uniformly distributed
random variable of the unit interval, then Q{U) is a random variable with cumulative
distribution F().

Stata has a uniform random-number generator, and so, with the addition of a little
math by which we derive Q() corresponding to F(), we can create artificial datasets.
For the Weibull, from (2.3) we obtain Q(u) = {—In{l — u}}'/?, and so, if we want 5
random deviates from a Weihull distribution with shape parameter p = 3, we can type

. sat obs 5
obs was O, now 5

. Bet sead 12345
. gan t = (~la(l-wniform(}))"(1/3)
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. list &

t

.T177ES2
1.04948
.5151563
. 93785638
.7218165

[ N ST I

We can also generate survival times that are conditionat {or given) to be greater
than some value #; that is, those that would represent times to failure for subjects
who come into observation at some time tg > 0. The conditional distribution function
Ft|te) = Po(T < #|T > to) = 1 — 8{t|to), and thus the conditional quantile function
Qlujta) = F~1{t|ta). For the case of the Weibull,

Qlulto) = {th —In(1 — w)}'/*

and so we can use the following tc generate 5 ohservations from a Weibull distribution
with p = 3, given to be greater than, say, fg = 2. The generated observations would
thus represent observed failure times for subjects whose times-to-failure follow 1 Weibull
distribution, yet these subjects are only observed past tine tg5 = 2. If failure should
occur before this time, the subjects remain unobserved.

. gen t2 = (2°3 - ln{1-uniform{)})~(1/3}
. list 2

t2

2.06692
2.101786
2.044083
2.090031
2.037246

o ) kY

Notice that these failure times do not extend much past time ¢ = 2. The Weibull
hazard function is an increasing function when p > 0, and one may gather from this
small experiment that the lazard has already become quite large by time { = 2. Thus,
those who are lucky enough to survive to the beginning of our study do not survive
mich longer. In other words, subjecis begin accunulating risk at time zero even though
they are net initially observed until time ¢ = 2, and by that time they have already
accumulated much risk and will continue to accumulate risk at an ever-increasing rate.

An alternate way to generate Weibull survival times conditional to be greater than 2
would be to generate several unconditional Weibull survival times and then drop those
that are less than or equal to 2. Although a direct application of the rules of conditional
probability, this approach is wasteful since you would be generating many survival times,
only te end up dropping most of them. Also, the number of observations greater than 2
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_ that you end up with is not gnaranteed to be any certain number but is instead subject
to chance.

As mentioned previously, the conditional survivor function not only describes in-
dependent individuals with late entry into a study but may also be used to describe
repeated failures for a single individual, where each failure time is known to be greater
than the previous one. We can simulate this process by conditioning each failure as
being greater than the previous one. Using our Weibull with p = 3, we start at g = 0
and generate the first failure time, and then generate four subsequent failures, each
conditional on being greater than the previous one:

. gen u = uniform()

. gen t3 = (-la(i-uv))} " (1/3) in 1

(4 migeing values generated)

. replace t3 = ((t3[_n-1}3"3 - In(1-u})~(1/3) in 2/1
{4 real changes made)

. list t3

t3

1.0756681
1.417904

1.43258
1.4594E7
1.696588

o G B

Now we can gather that the probability of survival past time t = 2 is really low, since if
this hypothetical subject were allowed to fail repeatedly, he would have already failed
at least 5 times by time ¢ = 2. Of course, we would probably want to simulate varicus
such individuals rather than only consider the single one depicted above, but already we
can see that survival past £ = 2 is highly unlikely. Iu fact, ${2} = exp(—23) ~ 0.03%.

Simulation is an excellent tool, not only for software developers who use it to test
model estimation programs. but also to illustrate and to observe in practice how theo-
retical functions such as the hazard and the survivor functions realize themselves into
observed failure times. Simulation serves to illustrate how these functions may be in-

‘ terpreted in more than cne way, as seen above and as revisited later,

2.3 Interpreting the hazard and cumulative hazard

: As previously mentioned, learning to think in terms of the hazard and the cumulative
'i hazard functions, rather than the traditional density and cumulative density functions,
{ has several advantages. Hazard functions give a more natural way to interpret the
: process that generates failures, and regression medels for survival data are more easily
grasped by obscrving how covariates affect the hazard.
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2.3.1 Interpreting the cumulative hazard

The cumulative hazard function, H(t), has much more to offer than merely an interme-
diate calculation to derive a survivor function from a hazard function. Hazards are rates,
and in that they are not unlike the RPMs—revolutions per minute-—of an automobile
engine, because RPMs are also rates.

Cumulative hazards are the integral from zero to t of the hazard rates. Since an
integral is really just a sum, a cumulative hazard is not unlike the total number of
revolutions an automobile’s engine makes over a given period of time. We could form
the cumulative-revolution function by integrating RPM over time. If we let a car engine
run at a constant 2,000 RPMs over a period of two minutes, then the cumulative RPMs at
time two minutes would be 4,000, meaning the engine would have revolved 4,000 times
over that period. Similarly, if a person faced a constant hazard rate of 2,000/minute (a
hig risk) for a period of 2 minutes, he would face a total hazard of 4,000. Going back to
the car engine, if we raced the engine at 3,000 RPM for one minute and then let it idle
at 1,000 for another, the total number of revolutions (cumulative RPMs) would still be
4,000. Going back to our fictional risk taker, if he faced a hazard of 3,000/minute for
one minute and then a hazard of 1,000/minute for another, his total risk would still be
4,000.

Now let's stick with our fictional friend. Whatever the profile of risk, if over a 2-
minute period the cumulative hazard is the same, then the probability of the event
{presumably, death) occurring during that 2-minute period is the same.

Let’s understand the units of this measurement of risk. In this, cumulative hazards
are more casily understood than the hazard rates themselves. Remember that S(t) =
exp{—H(t)}, so our fictional friend has a probability of surviving the two-minute interval
of exp(—4000), which is to say, our friend is going to die. One may similarly calculate
the probability of survival given other values for the cumulative hazard.

Probabilities, however, are not the best way to think about cumulative hazards.
An alternate interpretation of the curmmlative hazard is that it records the number of
times we would expect (in the mathematical sense) to observe failures over a given time
period, if only the failure event were repeatable. Taking our fictional friend again, the
cumulative hazard of 4,000 over the two-minute period means that we would expect him
to die 4,000 times if, as in a video game, each time he died we could instantly resurrect
him and let him continue on his risky path.

This is called the count-data interpretation of the cumulative hazard and learning
to think this way has its advantages.

b Example

To see the count-data interpretation in action using Stata, let’s consider an example
using, as previously, the Weibull distribution with shape parameter p = 3, which has
a cumulative hazard H(#) = t3. For the time interval (0,4), since H{4) = 64, we can
interpret this to mean that, if failure were a repeatable process, we would expect 64
failures over this time period.
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This fact may be verified via simulation. We proceed, as we did in section 2.2,
by generating times to failure in a repeated failure setting. where each failure time is
conditional on being greater than the previous one. This time, however, we will repeat
the process 1,000 times, and for each replication we observe the random quantity V,
the number of failure times that are less than ¢t = 4. That is, for each replication we
count the number of failures that occur in the interval (0,4), and record this count. In
Stata, this may be done via the simulate command; see [R] simulate.

. et sead 12345

; . program genfail

. 1. drop _all
; 2 set cbs 200
: 3. gen u = uniform(}
4, gen t = (-1n{1-u))"(1/3) in 1
5 replace t = ((t[_n-11)"3 - 1n(1-u))"(1/3} in 2/1
|53 count if t<4
7. end
. simulate "genfail" nfail=t{N), repa(1000}
command : genfail
statistic: nfail = r{l}
. summarize
Variable l Obs Msan Std. Dev. Min Max
nfail ‘ 1000 63.788 T.792932 as 95

This simulation thus helps to verify that F(N} = H(4) = 64, and in fact, if we
replicated this experiment infinitely often, the mean of our simulated N values would
equal 64 exactly.

4

O Technical Note

In the above simulation, the line set obs 200 sets the size of the data to 200 ob-
servations for each replication of the counting failures experiment. Theoretically, any
number of failures is possible in the interval (0,4), yet the probability of observing more
than 200 failures is small enough as to make this an acceptable limit.

a

There is no contradiction between the probability-of-survival interpretation and the
repeated-failure count interpretation, but be careful. Consider a cumulative hazard
equal to one. One interpretation is that we expect to observe one failure over the
interval. The other interpretation is that the probability for which we observe no failures
over the interval is exp(—1} = 0.368, and thus the probability for which we observe the
failure event is 1 — 0.368 = 0.632. Are you surprised that the chances are not 50/507

More correctly, we should have said that the chance that we will observe one of more
failures per subject is (1.632, except that if this failure event is absorbing (i.e., death-like
in that it can occur only once), we will never observe the second and subsequent failures
because the first failure will prohibit that. Therefore, 0.632 is also the probability that
we will observe a single failure. If, on the other hand, this failure event is not absorbing,
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then 0.368 is the probability that we will observe no failures, and 0.632 is the probability
that we will observe one or more failures and moreover, we can decompose that into the
probability of one failure, the probability of two failures, etc., and in doing so we can
compose a probability mass function for a random variable that has an expected value
of one.

2.3.2 Interpreting the hazard rate

Hazard rates are rates, which is to say, they have units 1/t. You can interpret hazard
rates just as you interpret cumulative hazards if you multiply them by {. In that case,
you are saying, “The hazard rate is such that, were that rate io continue for 1 time
unit, we would expect that ...."

For instance, if the hazard rate is 2/day, then the hazard rate is such that, were
that rate to continue for an entire day, you would expect 2 failures, or, if you prefer,
the chances of observing a failure would be 1 — exp(—2) = 0.8647.

There is a subtle distinction here. If the cumulative hazard over a period is 2 if the
integrated instantaneous hazard rate over the period is 2—then over that period you
would expect 2 failures, regardless of the time profile of the hazard rates themselves.
Dwiring thas period, the hazard rate might be constant, increasing, decreasing, or any
combination of these. If, on the other hand, the hazard rate is 2/day at some instant,
then failures are happening at the rate of 2/day at that instant. However, you would
only expect 2 failures over a period of a day if that hazard rate stayed constant over
tliat period or varied in such a way as to integrate to 2 over that day.

Hazard rates—were they to stay constant—have a third interpretation. Hazard
rates have units 1/¢; hence, the reciprocal of the hazard has units ¢, and represents how
long you would expect to have to wait for a failure if the hazard rate stayed at that
level. If the hazard rate is 2/day, then were the hazard rate to remain at that level, we
would expect to wait half a day for a failure. In fact, a constant hazard rate is what
characterizes the classic Poisson counting process, where it can be shown that if the
expected time between fallure is half a day with constant hazard, then the number of
failures that occur in any given day (if failures were repeatable) is a Poisson random
variable with expected value {and variance) equal to 2.

2.4 Means and medians

Given a random failure time T with probability density function f(¢), the mean time
to failure, pp, is defined to be

pr= [ T

Equivalently, one can show that jip = fooo S(t)dt, which often simplifies the calculation.
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The median failure time, jer, is defined as the B0th percentile of the failure time
distribution; that is, that value such that half of all failure times are less than fir and
half are greater than gr. Thus, for continuous distributions, fir is the value such that
Fifir) = S{gr) = 0.5 and can be obtained directly from the quantile function

pr = Q(0.5)

since {u) may be used to obtain any percentile, the 50th just being a special case. For
the Weibull distribution with shape parameter p,

pr = /w tf(t)dt = /mptp exp(—i¥}df
0 0
= T(+1/p)

where I'() is the gamma function, and the median zr = Q(0.5) = {In(2)}'/7.

The mean and median formulas above are often used in parametric regression to
obtain predictions of failure times for survivor functions that are specified given the
values of certain predictors and estimated regression coefficients, through direct appli-
cation of the above formulas. In semiparametric or nonparametric schemes, predicting
the mean and median is possible through some adaptation of these formulas, taking
inte account that for these models, the estimated survivor function is not continnous
but rather a step function where the steps occur at each observed failure time. In any
casc, predictions of the mean and of the median failure time are useful in that they
give a sense of the typical time to failure for a particnlar distribution. Remember that
survival-time distributions can have long, right tails, and in these cases, some care is
required when interpreting the mean failure time. For instance, with a constant hazard
of 0.01 per day, the mean time to failure is 100 days, and yet the median is only 69
days. The difference is caused by those few who survive much longer than 100 days.

Survival regression models are often fit in the In({time) metric; that is, one forms
the model by hypothesizing a distribution for the natural logarithmn of time to failure.
Defining the random variable Y = In(T) with probability distribution fy-(y), one can
obtain predictions of the mean and median of ¥ using the above techniques, and then
transform the results back into the time metric by exponentiating the obtained values.
Iu general, the exponentiated mean of ¥ is not equal to gp and thus would represent
yet another flavor for a prediction of the typical survival time. In the case of medians,
however, the transformation is invariant. Taking the median of the distribution of ¥
and exponentiating will produce fir. When obtaining a “predicted” time to failure from
statistical software, be sure you know what you are getting, or be prepared to specify
what you want and see if it is available,
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3 Hazard models

We began our discussion in Chapter 1 by Wfiting models of the form t; = o+ B1x; + €5
or In(t;} = By + Bix; + €;, where ¢; is suitably distributed. These days, people seldom
write models in this form. Instead, they write

hy(t) = g(¢, Bo + x,8,)

which is to say, the hazard-—the intensity with which the event occurs—for person j
is some function g() of By + x;8,, where we now allow for the presence of multiple
predictors via the row vector x;, in which case @, is a column vector of regression
coefficients. For instance, we might write

h;(t) = (Bo + x;8.)t

or something more complicated.

Regardless, this change from t; = 8y + Si7; + €; to h{t) = g{t, fo + x;8,) is just
a change in notation and has no substantive implications. Remember, there is a one-
to-one mapping from distributions to hazard funections. The distributional assumption
we make for €; is now wrapped up in the hazard function that we choose. If we choose
g{) appropriately, the likelihood function we obtain is exactly the same, and therefore
the resulting estimates are the same. We can even write linear regression using this
uotation; we just need to work out what the hazard function 1s for linear regression.
Remember that, in general, the hazard function h(t) = f(¢)/5(t).

So. why should we write our models in this form? The answer is that this notation
can alsc incorporate the semiparametric models that we discussed. The idea here is to
write the model as

h;{t) = somefunction(ho(t), 3o + x;8,)

where hg(t) is called the baseline hazard. That is, the hazard subject j faces is
somefunction() of the hazard everyone faces, modified by x;. A particularly popular
way to parameterize these models is

hji(t) = ho(t) exp(fo + x;8.)

Tlese are called proportional hazards models. It is proportional in that the hazard
subject j faces is multiplicatively proportional to the baseline hazard, and the function
exp{) was chosen simply to avoid the problem of k;() ever turning negative. Actually,
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even if we choose some function different from exp(), it is still called the proportional
hazards model.

There is nothing magical about proportional hazards models and, for some problems,
the proportional hazards assumption may be inappropriate. One could just as easily
write an additive-hazards model; for instance,

hi(t) = ho(t) + exp(fo +x;8;)

3.1 Parametric models

Any parametric survival model can be written in the hazard notation (although not
necessarily the proportional hazards notation), and doing that is just an exercise in
translating from one notation to another. All parametric models have a corresponding
hazard function.

It turns out that a number of popular survival parametric models, which are nat-
urally written in the form In(¢;) = 8s + x;8, + €;, have corresponding h{) functions
that naturally decompose into the hy(t) exp(fs -+ x;3,) notation. The exponential and
Weibull models are two examples. When that occurs, the moedel is said to have both a
(log)-time metric and a proportional hazards metric formulation.

Familiarity, plus the fact that some In(t) models have a proporticnal hazards inter-
pretation, has caused many researchers te focus on this model exclusively:

hj(t) = ho(t) exp(fo + x;8,)

The proportional hazards parametric model is just a matter of picking a functional
form for hg(t). The exp() part is just how researchers have chosen to parameterize in
all proportional hazards models the shift caused by subjects having different covariate
(x) values.

We can literally pick any positive function for hg(£) that we wish, although, if we pick
a strange one, we will probably have to write our own maximum likelihood estimator.
Certain functions for hg(t) are popular, and those are preprograrmined in Stata; for
instance, if we choose

hg(t] = cC

for some constant ¢, then we fit what is called the exponential regression model. It is
called exponential regression because, were we to translate the model back to the time
metric, we would find that £, the time to failure, follows the exponential waiting-time
distribution. That is, if we worked out t’s distribution f(t)-—which we could easily do
because it is always true that f(t) = h(t) exp{—H(t)}—we would discover that f(t) is
the exponential density.
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In any case, parameter estimates for these models are obtained by maximum likeli-
hood. The likelihcod of the data {with no censored observations, which we will discuss
later) is

LBt ts,.-. ) = f(1|B,x1) f(t2]8,%3) . ..

for @ = (50, B, ). In the loose sense of the term, L{) can be taken to be the “probability”
of observing a failure time for the first subject, #;, given the value of x;, times the
probability of observing a failure time t; for the second subject given x3, etc. The
basic idea behind maximum likelihood estimation is that, given a set of observations
{ti,t2,...,1,), the best estimate of 3 is the one that maximizes the probability, or
likelihood, of observing those particular data. Maximum likelihood estimates also have
very nice statistical properties that make inference and testing analogous to what you
would see in simple OLS regression; see Casella and Berger (2002) or some other graduate
text on mathematical statistics for a thorough discussion of likelihood theory.

And so, despite cur modern way of thinking in terms of hazard functions, the likeli-
hood above is still in terms of the density function of £. Mathematically, we could have
just as well have thought about this in terms of densities from the outset. We can write
this more modernly as

L(Bity, ta,...) = S(t1]B, %) h{t1]8, %) S(t2| B, x2 ) h(t2| B, x2) . ...

bocause f{t) = S(t)h{t). However we write it, we maximize this likelihood to estimate

A.

3.2 Semiparametric models

Semiparametric models, as mentioned in Section 1.2, amount to nothing more than
combining individual binary-outcome analyses at cach of the failure times. We want to
show you exactly how that works and how it fits into the proportional hazards way of
thinking.

We will start with the same proporticnal hazards model that we started with in the
parametric case:

h{t) = ho(t) exp(ds + x;8,)

This time, however, rather than specifving a function for kg(t), we will leave it
unspecified, and it will turn out, it will cancel from cur calculations when we perform
the binary-outcome analyses at the individual failure times. This is calied the Cox
proportional hazards model, discussed in much more detail later in the text.

The likelihood function is calculated over the separate binary-outcome analyses that
we perform:

L(B3|data) = L({analysis 1}L(analysis 2) ... (3.1)
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We perform one analysis per failure time, and each analysis returns the probability of
failing for those who did in fact fail at that time. For instance, in our small dataset,

subject time x
1 1 3
2 B 2
3 g 4
4 20 9
5 22 10

we woilld perform five analyses:
1. Analysis at time 1: The probability that subject 1 is the one that fails in a dataset
containing all five subjects.

2. Analysis at time 5: The probability that subject 2 is the one that fails in a dataset
containing subject 2 and subjects 3, 4, and 5.

3. Analysis at time 9: The probability that subject 3 is the one that fails in a dataset
containing subject 3 and subjects 4 and 5.

4. Analysis at time 20: The probability that subject 4 is the one that fails in a
dataset containing subject 4 and subject 5.

[+511

. Analysis at time 22: The probability that subject 5 is the one that fails in a
dataset containing subject 5.

Well, at least the last analysis is easy; the probability is cne. The next to the last
analysis is the next easiest.

Al time 20 in our data, only subjects 4 and 5 survived up to that point, and subject
4 failed at that point. Per our model, the hazard of failure at time ¢ is

h;(t}) = ho(t}exp(Bo + x;8,)
and so the hazard at time 20, the only time we care about for this analysis, is
h;{20) = ho(20) exp(Bo + x;8,)
The only subjects we care about are 4 and 5, who have scalar x values of 9 and 10,
respectively:
h{subject 4 at time 20) = hq4(20) = ho(20) exp(Fo + 95:)
h{subject 5 at time 20) = hs{20) = ho(20) exp(Fy + 105;)

Given that we abserve one failure at this time, the probability that the failure is subject
4 is given by

T
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. . h4(20)
Pr(4 fails|a fail = ——_ .
r(4 fails)a failure) ha(20) + R (20) (3.2)
_ ho(20) exp{Jy + 98;)
ho(20) exp( B + 309;) + ha{20) exp(5y + 1053,)
exp(95z)
exp(90,} + exp(103;)
So, tell us a value of 3;, and we will tell you a probability. If A, = -1, then the

probability is 0.731059, and we can tell you that, even though we make no assumptions
about the shape of the baseline hazard ho(t).

Where does the value of 8, come from? We find the value of 3, that maximizes the
overall likelihood (3.1}. We do analyses just as the one shown for each of the failure
times and then find the value of 3, that maximizes L{3,|data). Note that the intercept,
Bo, drops out of the above calculations. This is a property of the semiparametrie
proportional hazards (Cox) mode), which we cover in more detail in Chapter 9. For
now, we merely take satisfaction in the fact that we have one less parameter to estimate.

The story we told you earlier about performing separate analyscs was quite literally
correct, although the jargon usually used to describe this is different. Rather than
calling the ingredients separate analyses, they are called the “risk groups based on
ordered survival times”, and we obtain our estimates by “pooling over the risk groups
based on ordered survival times”.

2 Technical Note

Arriving at (3.2} required a bit of hand waving, and so here we fil! in the details
for the interested reader. We are intercsted in the probability that subject 4 fails at
time ¢ = 20, given that (a) subjects 4 and 5 survive to just before t = 20 and (b) either
subject 4 or subject 5 will fail at ¢ = 20. Let A be some arbitrarily small number,
and let Ty and Ty denote the failure times of subjects 4 and 5, respectively. Then the
probability that only subject 4 fails within A after time 20, given that both subjects
survive to time 20 and that one of the subjects fails within A after time 20, is

Pr{Ty <20+ A,T5 > 20+ A|Ty > 20, T > 20,
one failure in (20,20 + A)}

which equals

Pr(20 < T3y < 20+ A, Ts > 20 + ATy > 20,Ts > 20)
Pr{one failure in (20,20 + A)|Ty > 20,75 > 20}

(3.3)
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Define &; to be the event 20 < T; < 20 + A, F; to be the event T; > 20+ A, and G; to
be the event 7; > 20. Then, (3.3) becomes

Pr(f4, Fs1Gs,Gs)
Pr(£y, F5|G4,Gs) + Pr(€s, Fu|Ga, Gs)
Pr{£4|G4)Pr{Fs1Gs)
Pr(£4|Gs)Pr(F5|Gs) + Pr(&s|Gs)Pr{Fa|G4)
{Pr(&€4|Ga}/ A}Pr(F5|G5)
{Pr(€41G4)/ AYPr(FslGs) + {Pr(€s1Gs)/ A}Pr(FalGa)

Since lima_o{Pr(&|G:)/A} = hi(20) by definition and lima_.¢ Pr{F;|Gi) = 1, taking
the limit as A goes to zero of (3.4) yields (3.2).

(3.4)

d

3.3 Analysis time (time at risk)

We have considered hazard models of the form

hy(t) = glt, Bo +x;8,)

and, in the particular case of the proportional hazards model, we write

hy(t) = ho(t) exp(Bo +x;8,) (3.5)

Either way, we are assigning explanatory power to time. That is absurd. If we are
analyzing a health outcome, it may be that the accumulation of toxins in someone’s
system makes the subject more likely to die—that is correlated with time --but time is
not the cause. Or, if we are studying employment, it may be that the more information
an unemployed person has about the job marketi—information he collects on the days
he tooks for employment—the more likely he is finally to accept a job offer. It then
appears as if duration of unemployment is a function of time, but time is not the cause.
To assume that the ticking of the clock somehow, by itself, changes the hazard is absurd
unless we are physicists analyzing the true nature of time.

If we fully understand the process and had sufficient data, there would be no role
for time in our model, and as a matter of fact, our current models can deal with that.
In the proportional hazards case, we would simply define h¢(t) as a constant {call it ¢)
so that

hj'(t) = CBXp(ﬁO + xjgz) =c" exp(xjraz)

for some other constant ¢*. This model is known as the exponential model, and it is
the only proportional hazards model that leaves nothing unsaid.




3.3 Analysis time (time at risk) 25

> Example

Consider the case where our baseline hazard function is the Weibuli hazard with
shape parameter p = 3; that is, 2o(t) = 3¢2. The proportional hazards model (3.5) then
becomes

3t* exp(fo + x;8,)
exp{fo + In(3) + x;8, + 2In(t)}

h;(t)

If we define the time-varying covariate z(t) = In(t), then this model may be reformulated
as an exponential (constant baseline hazard} model with covariates x and z(t), resulting
in equivalent estimates of 3, and an intercept term that is shifted by In(3).

Including a time-varying covariate among the explanatory variables is more easily
said than done—in Stata, you must split observations into pieces, something we will
discuss in Section 13.1.1. In any case, it is not our intention to recommend this as a
way to fit Weibull models. The point is that Weibull models assign a role to time, a
fact demonstrated by reformulating the model in terms of the exponential model—the
model that leaves nothing unsaid—and that in the reformulation, time itself appears as

an explanatory variable.
q

In the fully defined hazard model, we would just write h;(t,x;) = h;{x;}. The shift
in the hazard would be fully explained by our x variables.

With the exception of the exponential models, every other modcl assigns a role to
time, and that includes the semiparametric models. In semiparametric models, we get
around ever having to define hy(t) becanse the individual analyses are performed on
subjects at the same value of ¢, and therefore the same value of hg(¢). The important
part is that we compare subjects when their values of ¢ are the same, meaning that
subjects with equal ¢ values (and x values) must share the same risk of the event.

When we assign a role to time, we are doing that to proxy other effects that we do
not fully understand, cannot measure, are too expensive to measure, or are unknown.
We need to consider how we are going to measure t so that it properly fulfills its role
as a proxy. There are two aspects to the definition of t:

1. Ensuring that whenever two subjects have equal £ values, the risk they face would
ke the same if they also shared the same x values.

2. Deciding which particular value of ¢ should be labeled ¢t = 0, denoting the onset
of risk.

Property (1) is important to all models. Property (2) only matters when we are fitting
parametric models.

So, when do two subjects have the same risk? You have to think carefully about
your problem. Here are three situations:
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1. Say that you are analyzing the association between lung cancer and smoking. It
would be unreasonable to define ¢ as age. You would be stating that two persons
with equal characteristics would have the same risk of cancer when their ages are
equal, even if one had been smoking for 20 years and the other for one month.

2. Continuing with the analysis of the association between lung cancer and smoking,
it might be reasonable to assume that two smokers face the same risk when they
have been smoking for the same amount of time. That would be reasonable if all
smokers smoked with the same frequency. If there are large variations, and we
had some “smokers” who smoked one cigarette per day and others who smoked
60 per day, time since onset of smoking might not be a good proxy for what we
want to measure (assuming we did not account for the discrepancy with our x
variables). If all our subjects were smokers, we might think about measuring time
as cigarette-days, so that a person who smokes 1 cigarette per day for 20 days is
at time ¢ = 20 just as a person at day 1 who smokes 20 cigarettes per day.

3. You are studying the time to death for a certain type of cancer patient. When do
two identical patients face the same risk? At the same time since the onset of can-
cer, you decide. Fine, but when is the onset of the cancer? At detection? Are two
patients really the same when, at ¢ = 0, one reports to the clinic with metastatic
cancer invading other organs and the other with a small, barely detectable tumor?
Or is the onset of risk when the first cancer cell differentiates, and, in that case,
liow would you know when that was?

Defining ¢ is worth the thought, and it is usually easiest to think in terms of the
onset of risk—to find the time at which risk began and before which the event could
not happen for the reason under analysis. If that onset of risk is well defined in the
data, then defining t = 0 is easy enough and you will probably let ¢ increment in lock
step with calendar time, although you may want to think about time-intensity measures
such as cigarette-days.

If there is no well-defined onset of risk, think about when two subjects with the same
x valnes would face the same risk and define t so that they have the same value of ¢
at those times. That will not uniquely label one of the times £ = 0, but that may not
matter.

Pretend that, for some problem, you have defined ¢t in such a way that identical
subjects facing the same risk do have equal ¢ values. We could define t' =t—5, and
this new time would work just as well in terms of matching subjects. So, is the onset
of risk with £ = 0 or ¢ = 0?7 That is a substantive question to which you will have to
turn to your science for an answer.

If you engage in semiparametric modeling, however, how you answer that question
does not matter because semiparametric results are determined only by the matching
and ordering of failure times. Time is used only to order the data, and no special
significance is attached to £ =0,
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In many parametric survival models, however, special significance is attached to
t = 0. For these hazard functions, you can fit a parametric model, write down the
results, add 5 to every t value, re-estimate the parameters, and get different results.
The results will not be merely apparently different—somehow undeing the +5 addition
vou just made. The results will be substantively different in that predictions made using
the model will differ.

Although in most parametric models the value chosen for £ = 0 matters, the units in
which ¢ is measured (minutes, hours, days, years, etc.) do not matter. More correctly,
for no popularly used hazard function ho(t) do the units of ¢ matter. Since you can
choose any nonnegative function for hg(t), vou could choose cne in which the units do
matter, but that would be a poor choice.

From now on, we are going to refer to ¢ as analvsis time to emphasize that ¢t is as
defined above and is not just some time or date variable you happen to have laying
around in your data:

t = somefunction{various time or date variables in your data)

For instance,

= date.of failure — date_of_birth
B 365.25

defines ¢ as years of age and birth as corresponding to the onset of risk.
t = date_of _failure — date_of_diagnosis
defines ¥ as days since diagnosis and diagnosis as corresponding to the onset of risk.
t = hour_of failure — hour_of_start
defines t as hours from start and start as corresponding to the onset of risk,
t = cigs_per_day x {(date_of _failure — date_started smoking)

defines t as cigarette-days since the start of smoking and defines the start of smoking
as corresponding to the onset of risk. Just remember, this choice of analysis time is not
arbitrary.

Analysis time ¢ does not have ta be time. For instance, we have a machine that
produces bolts of cloth, and we then examine those bolts for defects. It might be
reasonable to measure “time” as the linear distance from the beginning of the bolt so
that, if we were to find a defect at 4 meters into the bolt, the bolt “failed” at t = 4
meters.






-

4 Censoring and truncation

4.1 Censoring

In real data-analysis situations, we often do not know when failures occurred, at least
not for every observation in the dataset. Rather than knowing that faillures occurred at
analysis times 1, 5, 9, 20, and 22, we might know that failures occurred at 1, 5, 9, and
20, and that, in the last case, failure had not yet occurred by analysis time 22, when we
stopped our experiment:

time failed x
1 1 3
5 1 2
9 1 4
20 1 o
22 0 10

This is called censoring, or more precisely, right censoring. This happens so commeoenly
that some researchers will write their datasets

time canzorad X
1 0 3
5 0 2
9 0 4
20 0 9
22 1 16

but Stata has a marked preference for the first form. failed==1 means the observa-
tion was observed to fail at that time, and failed==0 means the observation was not
observed to fail, the implication being that the observation was right censored.

Censoring is defined as when the failure event occurs and the subject is not under
ohservation. Think of censoring as being caused by a censor standing between you and
reality, preventing you from seeing the exact time of the event that you know occurs,

Before we get too deeply into this, let us define some popularly used jargon. We are
following subjects over time, and that data collection effort is typically called a study.
During the study period, subjects are enrolled and data are collected for a while, called
the subject’s follow-up period, or if you prefer, the period during which the subject was
under observation. Data collection stops on a subject because the subject fails,
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<- follow-up period ->
<- under observation -> subjact fails while
subject [ under obaervation
i > time
ocnset of risk failure study ends
=0 t=9 t=14
the study ends,
«— follow-up period -——->
€-—=—— under cbsarvation ——>| psubjact does not fail
subject 0 while under cbservaticn
| (0 marks did not fail}
I > time
cnget of risk study ends

t=0 t=14

or the subject Jeaves the study for other reasons:

«— follow-up pericd -3
<— under observation —>| subject leaves
aubject 0 the study
(0 marks did pot fail)
| ] > time
cnset of risk censored study ends

t=0 t=10 t=14

In the above diagrams, we drew the beginning of “under observation” to coincide
with the ouset of risk; however, the subject may come at risk for the failure event before
enrollment, at the instant of enrollment, or afterwards. From a statistical perspective,
we are interested in the period when the subject is at risk.

In the discussions that follow, we are going to assume that failure is a culminating or
absorbing event such as death. The event can only occur once, and once it does oceur,
the subject can no longer be observed. Censaring can also be extended to repeatable

failures.

4.1.1 Right censoring

<— under cbaervation —*>|<— not cbserved ->
aubject 0—3X subject fails subseguently
I > time
oneet of risk censorad

t=0) t=10
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When most investigators say censoring, they mean right censoring. In this type of
censoring, the subject participates in the study for a time and, thereafter, is no longer
observed. This can occur, for example,

1. when one runs a study for a pre-specified length of time, and by the end of that
time, the failure event has not yet occurred for some subjects (this is common in
studies with limited resources or with time constraints),

2. when a subject in the study withdraws prematurely (in trials of a new drug ther-
apy, a patient might experience intolerable side effects, and thus cease participa-
tion}, or

3. when a subject is lost to follow-up, meaning that he or she disappears for unknown
reasons {in a longitudinal study, for example, a subject moves (say, because of
marriage} and cannot be located).

The analytic tools we use assume that, if censoring cccurs, it oceurs randomly and is
unrelated to the reason for failure. It will not do at all if, just prior to failure, subjects
are highly likely to disappear from our view.

In parametric models, right censoring is dealt with quite easily. First, start by
thinking of a dataset with no censering in which all failure times are measured exactly.
The likelihood function is (for a sample of size n, failure times t1,...,%,)

1t

L {6[(t1)x1)7 R (tﬂvxﬂ)} = HS(ta"xij ﬁ)h(tt|xn;@) (41)

=1
since the probability density function of ¢;, f{i;) = S{t;}h(t,).

Equation (4.1) actually becomes simpler in the presence of censoring because, for
those failure times that are censored, the density of ¢;, S(&;|2;, B)h(%;|zi, B), is replaced
by only the survivor function S{#jlx;,3)- In other words, all that is known about
a censored observation is that failure cccurs after time #;, yet exactly when remains
unknown (recall that by definition S(t) = Pr(T > t)). Our software has to be up to
making this substitution, but that is all.

Right censoring is also easily dealt with in semiparametric models. Think of the
individual binary-outcome analyses that we perform. If subject 7 is censored at ¢;, then
that subject enters all the individual failure-time studies up to and including ¢; {the
subject did not fail at that time) and after that is simply ignored. The only difference
between a subject that fails and one that does not is that the latter never appears in an
individual study while being marked as having failed. Again, our software has to know
not to perform certain individual analyses, but that is all.
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4.1.2 Interval censoring

<— under cbaervation ——>| we do not observe exactly
subject O0—2X when failure occcurred, only
that it cccurred betwaen
analyeis times 10 and 13

1 1 > time
onset of risk censoring censoring
beging ends
t=0 t=10 t=13

With interval censoring, rather than knowing the exact time of failure or that failure
occurred past a certain point, all we know is that the failure event occurred between
two known time points—perhaps a short interval or a long one.

Interval censoring can result when subjects are evaluated or inspected at fixed time
points throughout their follow-up period. In a clinical study, patients may be required
to visit the clinic once per month aver a perioed of several years. Assume that a patient
visits a clinic at month 6 and then at month 7. At the 6-mnonth evaluation, the patient
was negative for the event of interest, and at month 7, she was positive. That is, the
failure event occurred at some point between the 6th and Tth evaluations. Because
we do not know exactly when the failure event occurred, this observation is interval
censored.

Stata does not directly handle this kind of censoring, but a strong argument can be
made that it should. This kind of censoring is easy to handle in parametric and difficult
in semiparametric models.

Let’s start with parametric models. For interval-censored observations, we know
that subject ¢ failed between times to; and ¢;;. The probability that the failure occurred
sometime before 1; is 1 — S{t1;), and the probability that a failure occurred before fo;
is 1 — S(tg;). Thus,

Pr(failure between tog and tli[x,;,,@) = S(tu”X,;,ﬁ) - S(th'b(",ﬁ)

and this would be subject i's contribution to the likelihood given by (4.1).

If we have a dataset in which the first subject failed at ¢;, the second subject was
right censored at tz, and the third suhject was only known to fail between to3 and #3,
then the likelihood would be

L{BI(t, X}y (ny X)) = S(tulxs, Bhltalx1, B)S (talx2, B) x
{S(tos}xa, B) — S{talxs, B)} x -+

In semiparametric analysis, the problem is more difficult. Remember, we approach
semiparametric analyses by performing separate binary-outcome analyses for each of
the failure times and then combining those studies into one. Tuterval censoring is only
a problem if it brings into dispute the ordering of the observations.
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Pretend that we are uncertain about the failure time of subject 3, knowing only that
he failed in the interval (10,14}. If no subject has an observed or censored failure time in
that interval, then really our uncertainty about subject 3 makes no difference. Whether
death occurs at time 10, 14, or any time in between would still place subject 3 in the
same temporal ordering, and so that binary analysis would be unaffected. All the other
binary analyses would, of course, be unaffected, so combining the analyses must yield
the same overall result.

This fact is a real lifesaver. Very few of us have datasets that record the exact time of
failure-- -the failure occurred at 12:51:02.395852 on 12Feb2000. Say that you have data
that records the time of failure in days. You can still order the events—and therefore
the analyses—except for the failures that happen on the same day. If subjects 3 and
4 both failed on day 20, you do not know whether they failed in the order 3 and then
4 or 4 and then 3, and so you do not know in which order to perform yvour individual
binary-outcome analyses. That, however, turns out not to be a difficult problem to
solve, and as we discuss in Chapter 9, the software is capable of handling this.

You are equally saved if you record your data in terms of, say, integer number of
months. In this case, you do not have the detail of information that you would have
were the times recorded in, say, days, but that only means that you will get less-
efficient estimates should more precise time measurements prove effective in breaking
the {apparent) tied failure times cansed by less precise measurements of time to failure.
The bottom line is that you can still perform the analysis using standard tools.

The difficulty arises when exact tirmes are uncertain and only partially overlap. For
example, subject 3 is known to fail within the interval (10,14), and subject 4 is known
to fail in (12,16):

| ————————] subject 4
subject 3

> time

00—
-
o—t
-
e
-
IS
-
e
-
gl
-
oyl Y
-
oy

The best way to handle this is still a subject of research, but one solution would be to
assumne that the distribution of failure time is uniform (flat) within each interval and to
break the combined interval into three sections. Between {10,12}, subject 3 fails first;
between {12,14), the two subjects are “tied”, and we can handle that appropriately in
Stata; and between (14,16), subject 3 fails first again. Assuming uniformly distributed
survival times within each interval, the probability that we observe a tie (both subjects
fail in (12,14)} is 1/4, and thus we can weight the analysis that treats these as tied
values by 1/4, and the analysis that has subject 3 failing first by 3/4.

Of course, this system of weighting relied on the failure time having a uniform
distribution within the interval—meaning the hazard must be falling in the interval. As
such, these weights may prove to be invalid for certain types of data, in which case we
would need to adjust cur weighting scheme.
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4.1.3 Left censoring

{study begins)

subject X the subject 1s never under observation.
It is only known that the pubject failed
between 0 and 5.
1 > time
onset of risk cansoring
ends
t=0 t=b

Mathematically, left censoring is no different from interval censoring. The event occurred
at some time when the subject was not under observation, in this case prior to the
subject being under observation, but that makes no mathematical difference. The event
happened in an interval of time and the solution is the same,

How left censoring arises in reality is probably different from interval censoring. Left
censoring means the failure event occurs prior to the subject entering the study. For
example, in a study of time to employment, an individual who is employed when first
interviewed is considered as being left censored because the transition from unemploy-
ment to employment (the failure event) happened prior to the beginning of the follow-up
period.

4.2 Truncation

Truncation is often confused with censoring because it also gives rise to incomplete
observations over time. Truncation, in most statistical applications, refers to complete
ignorance about the event of interest and about the covariates over a portion of the
distribution.

In survival-data applications, it is difficult to be so ignorant when the event is ab-
sorbing, such as death. The very fact that we observe you today means that you did not
die yesterday. Therefore, for such absorbing events, truncation is defined as a period
over which the subject was not observed but is, a posteriori, known not to have failed.
The statistical difficul{y that truncation causes is that, had the subject failed, he or she
would never have been cbserved.

If multiple failures for the same subject are possible, then truncation is defined as
a period during which you do now know how many (or even if} events occurred during
the period.

However, for the purposes of this discussion, we will restrict ourselves to absorbing
failure events such as death.
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4.2.1 Left truncation {(delayed entry)

<— under cbservation ->
subject — NOT — X
OBSERVED
1 > time
onset of enrolled failura
risk
t=0 t=3 t=10

In left truncation, the period of ignorance extends from on or hefore the omset of risk
to some time after the onset of risk. For a while, the subject was not observed, but
then the subject came under cbservation. Left truncation usually arises becanse we
encounter a subject who came at risk scme time ago.

Can we include this subject in our study? The answer is yes, but we must account
for the fact that, had the subject failed earlier, we never would have encountered this
subject. The subject’s subsequent survival can be analyzed, but we do not want to make
too much out of the fact that the subject survived up until the point we encountered
him. Consider an 89-year-old smoker who just arrives to enroll in our study. Does he
supply whopping evidence that smoking lengthens life? No, because, had he died, he
would have never enrotled in our study; the only way this 89-vear-old made it to our
study was conditioned upon him having survived all 89 prior years.

In parametric models, left truncation is easily dealt with. The contribution to the
overall likelihoad of subject i {when failure time is measured exactly and without trun-
cation} is

Li(B|ti, x;} = S(t:]xq, BYh(t:]xs, B)

If subject ¢, who is ultimately observed to fail at time #;, arrived late to our study (say,
at time tp;), then we simply need to add one more condition to subject ¢’s contribution
to the likelihood; namely, that he had already survived up until time #;;, which has
probability S{te;|x;, 3),

LiBlts, xi) = {S(tilxi, 8) /S (boslx:, B) ph(ti]xi, B) {4.2)

because S(t;{x;,3)/5(tos(x:,3) is the probability of surviving to t;, given survival up
to tp;.

In fact, (4.2) even applies to cases where there is no left truncation and the subject
enrolled at time to; = 0, since S(0{x;, 8) = 1.

Left truncation is easily handled in semiparametric models, toc. In that case, one
simply must omit the subject from all individual binary-outcome analyses during the
truncation period because the subject could not possibly have failed during that period
and still manage to be around when the period ended. In other words, we cannot treat
the subject as being at risk of failure during the truncation pericd since the only reason
we observe him at all is because he survived the period.



36 Chapter 4. Censoring and truncation

4.2.2 Interval truncation (gaps)

<- under -> <~ under —>
<—pbservation—> <—obearvatiocn—>
subject NOT
OBSERVED
> time
onset of risk disappears reappears failure
t=0 t=3 t=7 t=14

Interval truncation is just a variation on left truncation. In this case, think of a subject
who disappears for a while but then reports back to the study, causing a gap in our
follow-up. The statistical issue, of course, is that had the subject died, he or she never
could have reported back. Throughout this text, and throughout the Stata documen-
tation, we treat the terms “gaps” and “interval intruncation” as synonyms.

For parametric models, assume that subject i is observed up until time t; goes
nnobserved until time ts;, and then is observed up until time #3;, at which point the
suhject dies. Then the probability of observing those parts that we did ohserve is

S(tis|xi, B){Sta:lxi, B)/ S (tailxi, BYh(tuiix;, @)

and thus this is subject ©’s contribution to the overall likelihood, denoted by L;.

In semiparametric models, this problem is handled the same way as left truncation.
One sinply omits the subject from all individual binary-outcorme analyses during the
truncation period because the subject could not possibly have failed at those times.

4.2.3 Right truncation

In point of fact, right truncation is indistinguishable from right censoring, which was
previously discussed. There is a point bevond which the subjeect is not observed, and
since time may extend all the way to infinity, failure is certain to oceur eventually.




5 Recording survival data

5.1 The desired format

Given the possibility of censoring and truncation, the simple way we have shown for
the recording of survival data, using a single observation per subject and recording just
time of failure.

time
1
5
9
20
22 1

2w R WM

is simply not adequate. Instead, we want to record (and think about) survival data as
follows: '

t1 cutcome
i
5
9
20
22

-

O o L B =
oo o oo
o e s

[T R I S

1

In this forinat, we muke explicit the beginning and ending times of each record, using
variables €0 and t1—recording the analysis times during which the subject was under
observation-—and we record the outcome at the end of the span in variable outcome,
where outcome==1 denotes a failure and outcome==0 denotes nonfailure {censoring).
You can call the variables what you wish, but these three variables concisely describe
the infornation.

This method will allow us to record observations that are right censored,

id to t1 outcome 4

1 0 1 1 3

2 0 5 1 2

3 0 9 1 4

4 4] 20 1 8

5 0 22 0 10 <- id B did not fall yet

that have left truncation,
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id 0 tl ocutcome x

1 0 1 1 3

2 s} S 1 2

3 ] S 1 q <- 3d 3 entered late, at t=3
4 0 20 1 9

5 0 22 [ 10

or that have interval truncation,

id to t1 out.come x

i ¢ 1 1 3

2 ¥ b i 2

3 3 ] 1 4

4 o] 9 0 9 <- id 4 waa uncbserved

4 11 20 1 g <- between times 9% and 11
B 0 22 0 10

Do you see in this last example how the subject with id==4 was not observed between
times 9 and 117 The first record for the subject records the span { to 9, and the second
records the span 11 to 20. Because there is no record for the span 9 to 11, the subject
was unobserved (or perhaps just not at risk).

Each record in the data records a time span during which the subject was under
observation, and it includes an outcome variable recording whether a failure was ob-
served at the end of the span. Subjects may have multiple recards, as does subject 4
in the example above, and so subjects can have delayed entry, multiple gaps, and truly
complicated histories. For example, look at subject § below:

id 0 ti cutcome x

1 0 1 1 3

2 0 5 1 2

3 3 9 1 4

4 0 9 o g

4 i1 20 1 g

5 2 4 0 10 <- subj. enrolled late, disappearad

5 3 B Q 10  <- then reappeared for a while

E 10 15 ¢ 10 <~ then reappeared for a while again

5 17 21 Q 10 <~ finally reappearad and was censored

Stata can understand data presented in this manner. Every one of its statistical
commands will do the statistically appropriate thing with these data, which is really
not as amazing as it looks. If you examine the developments of the previous chapter,
vou will find that they follow a pattern:

For parametric analysis, for each time span,

1. The likelihood contribution is S(¢; |z, 3}/ S(ta|z:, B) for the observational period.

2. The likelihood contribution is multiplied by h{)|z;, 3} if the period ends in a
failure event.
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For semiparametric analysis,

1. Individual studies are performed at all t1s for which cutcome is equal to 1.

2. Each observation enters the individual study at time t if for that subject
t0 <t < 1l

Moreover, these individual time-span observations record the independent pieces of
information of your data, meaning that records can be omitted from analysis without
bias, even if that means including only pieces of a subjeect’s history in an analysis. There
is, of course, a loss of efficiency, but there is no bias. Let us explain.

First, understand that there is no difference in recording

id 0 t1 outcome x

2 0 B 1 2 (subject cbserved between 0 and 5)
ar

id to tl cutcome x

2 o 2 0 2 {subject observed betwesn ¢ and 2

2 2 5 1 2 {subject observed batween 2 and 5)
or

id 0 tl outcoms x

2 o 2 [ 2 (subject cbserved between 0 and 2)

2 2 4 v} 2 {subject observed between 2 and 4)

2 4 B i 2 (subject observed between 4 and 5)

All three of these variations record the same information: subject 2 was under continuous
chservation between analysis times 0 and § and, at ¢t = 5, exhibited a failure. Why would
you want to split this information into pieces? Perhaps times 0, 2, and 4 were the times
the subject reported to the diagnostic center—or filled in a survey—and at those times
vou gathered information about characteristics that change with time:

id o tl cutcome X exercise
2 Q 2 0 2 0]
2 2 4 0 2 1
2 4 5 1 2 v]

You could, if you wished, restrict your analysis to the subsample exercise==0. That
would make it appear as if this subject had a gap between times 2 and 4. In truth,
the subject was really not outside of observation, but he or she would still be interval
truncated for the purposes of this analysis. Or, you could restrict your analysis to the
subsample exercise==1, in which case this subject would appear to enter late into the
samnple and be right censored.

You could even include exercise among the explanatory variables in your model,
stating that the hazard shifted according to the current value of this variable.
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Finally, this format allows recording multiple-failure data. In the following example,
the subject fails at times 4 and 7, and even afier the second failure, we ohserve the
subject a little while longer:

id th ti cutcome X exerciss
14 0 2 4} 2 0
i4 2 4 1 2 i
14 4 5 0 2 1
14 B 7 1 2 0
14 7 9 0 2 0

In our theoretical discussions, we seldom mentioned failure events that could reoccur,
but it is an easy enough generalization. Assuming the failure events are of the same
kind, such as first Leart attack and so on, the main issne is how you want to treat
second and subsequent failure events. Is the hazard of failure at times 4 and 7 equal
to h(4) and h(7), respectively, meaning the clock keeps ticking; or is it h(4) and h(3),
meaning the clock gots reset; or is it hi(4) and he(3), meaning they are on different
clocks altogether?

O Technical Note

In contexts other than survival analysis, the “size” of a dataset is usually taken to
be the number of pliysical observations or data records, where (all other things equal)
datasets of larger sizes result in more efficient estimates of model parameters, since the
larger datasets contain tnore information. However, as we demonstrate above, with
survival data, measuring the “size” of a dataset in this manner is misleading, since we
could use any arbitrarily large number of physical observations to express exactly the
same information by splitting records as frequently as needed to obtain any number of
physical observations.

With survival data, measuring the amount of information contained in your data
{relative to other datasets) is thus not as simple as counting the physical observations—
the notion of “sample size” is different. One way 1o measure sample size would be to
count (at a particular time) the number of subjects who are at risk of failure. In a
seimiparametric analysis, such a measure of sample size would correspond to the sample
size for the binary-outcome analysis performed at that time. Regardless of how the
survival data are recorded, the sample size [or the binary analysis is the same, provided
that the information contained in the survival data remains the same. As time passes,
the number of subjects at risk of failure will change. Thus, if we choose to measure
sample size as the number at risk, then the sample size will change with time. For this
reason, the application of methods for determining required sample sizes (in order to
achieve certain power at a certain level) can be quite difficult.

With survival data, another (time-invariant) measure of the sample size is to take
the total time at risk for all subjects in the study.
]|
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5.2 Other formats

Unless you have the dubious pleasure of having entered the data yourself, the data
probably do not come in the ever-so-desirable duration format. Instead of seeing

id t0 tl outcomns x exercise
2 0 2 0 2 0
2 2 4 0 2 1
2 4 |3 1 2 ¢}
you have something that looks like
id t event X eXerciee
2 ol enrolled 2 0
2 2 checkup 1
2 4 chackup 0
2 5 failed
or like
id r tl aventl exl t2 event2 ex2 t3 aventd ex3
1 2 0 enreolled 0 2  checkup 1 4 checkup i

This is called snapshot or transaction data. The first example is called “long-form
snapshot data”, and the second, “wide-form snapshot data”. Each observation records
a time and the measurements taken at that time. As long as we are being realistic
about this, the data probably do not record analysis time, but instead calendar time,
so in the long form, the data might appear as

id date avent X exerciss
2 20jan2000 enrolled 2 0
2 22jan2000 chackup 1
2 243jan2000 chackup 0
2 25jan2000 failed

and would appear similarly in the wide form. The event variable is seldom called that.
Instead, it is often called a record type, especially when the data are in the long form,
and the variable is often coded numerically. Record type 1 means an enrollment, 2 a
checkup, and 9 a failure, for instance.

id date rectype x exercise
2 20jan2000 1 2 0
2 22jan2000 2 1
2 24jan2000 2 0
2 25jan2000 9

Anyway, the problem that you must address—and you must address it long before
you get to use your first survival analysis command—is to convert these data into the
duration format.

For now, ignore the date versus analysis time issne—that the “time” variable in
the data might not correspond to analysis time. Let’s focus on what must happen
to convert these data into duration data. Later, after conversion, we can worry about
defining a reasonable analysis-time variable. Also, for now we consider only the problem
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of long-form snapshot data because, if we can solve that problem, we can solve the other,
since converting wide-form data into long-form data is easy in Stata using the reshape
command; see R} reshape.

Let’s consider the following set of transactions:

id date rectype x exercise
2 20jan2000¢ 1 2 0
2 22jan2000 2 1
2 243an2000 2 0
2 261an2000 9

What we are going to do is form a record from each pair of these records that contains
a beginning date, an ending date, and the appropriate values. In choosing these ap-
propriate values, we need to realize that suapshot datasets really contain two kinds of
variables:

1. Enduring or characteristic variables.

These variahles state characteristics that are valid for longer than an instant, or
which you are at least willing to treat as valid for longer than an instant. A
subject’s gender, their age rounded to years, and blood pressure at the time of
hospitalization are examples. In the examples above, we will assume that x and
exercise are enduring variables.

. Instantaneous or event variables.

These variables state events that occurred at an instant in time, such as having
a heart attack, going bankrupt, finding a job, or other failure-type events. In the
example above, rectype is an instantaneous variable because it records, among
other things, whether the subject failed. In some other dataset, rectype might
not record that (it might just record whether the record was a result of a visit or
a telephone interview}, and some other variable might record whether the subject
failed at that instant. In that case, both of those variables would be instantaneous
variables. The interview process does not continue after the date, nor does the
act of failing.

Qur goal is to take pairs of records, such as the first two in our snapshot dataset,

id date rectype X exarcise
2 201an2000 1 2 0
2 22jan2000 2 1

and form one time-span record from them:

id dated datel rectypa x exercise
2 20jan2000  22jan2000 ? 7 7

The question is, what is the value of each variable over this time span? For the enduring
variables, we will obtain their values from the first observation of the pair:

id date datel rectyps x axercies
2 20jan2000  22jan2000 ? 2 0
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For the instantaneous variables, we will obtain the value from the second observation
of the palr:

id
2

dated
20jan2000

datel
22jan2000

rectype
2

exercise
0

The reason for this is as follows. In duration data, we want a span of time and the
values of the variables over that particular span of time, and we want events that
occurred at the end of the period. So, we are going to ignore the values of the transient
variables in the first-of-pair observation and get those values from the second-of-pair
observation. The net result of this will be to discard the values of the instantaneous
variables recorded in the firsi obscrvation of the snapshot dataset. Tt is dangerous to
diseard any data because you never know when you are going to need the data. In order
to get that back, when we look at our snapshot data,

id date rectyps x exercise
2 20jan2000 1 2 0
2 22jan2000 2 1
2 24jan2000 2 o]
2 26jan2000 9
we will pretend that we see

id date rectype x exercise
2 . . . <- new
2 20jan2G00 1 2 0
2 221an2000 2 H
2 24jan2000 2 ]
2 25jan2000 9

and convert those records. The result, then, of carrying out this procedure is

id datel datel rectype X exasrcise
2 . 20j2n2000 1 .

2 203an2000  22jan2000 2 2 0
2 22jan2000  24jan2002 2 1
2 24jan2002  25jan2000 9 0

Thus, the interpretation of a single record is

1. A record spans the time period date0 to datel.

2. The valucs of the enduring variables (in this case x and exercise) are the values
they had on date0.

3. The values of the instantaneous variables (in this case rectype) are the values
they had on datel.

At this point, you may be concerned about the missing values for x. Would it not
be better if the enduring variables had their values carried down from one observation
to the next? We agree, but let’s not try fo solve all the problems at one time. We could
solve this problem later by typing
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. Bart id datel
. by id: replace x = x[_n-1] 1if x»>=.

The hard part is transforming

id date rectype x axerciee

2 20§an2000 1 2 4]

2 22jan2000 2 S

2 243jan2000 2 0

2 26jan2000 9

into

id datel datel rectype X exercisa
2 . 20jan2000 1 . .
2 20jan2000  22jan2000 2 2 0
2 22jan2000  24jan2002 2 . 1
2 24jan2002  25jan2000 9 0

but we do not have to do this manunally, Stata has one command, snapspan, which will
do that for us. Its syntax is

snapspan idvar time_var instantaneous_vars, generate(new_begin.date)

and so, to convert this dataset, all we need to type is

. snapspan id date rectype, gen{date0)
. rename date datel

That just leaves the problem of defining analysis time ¢ in terms of the date and
time variables already in our data. That also turns out to be no problem at all, but we
have to get a little ahead of ourselves.

Once we have the data in duration form,

id dated datel rectype x axercise
2 . 203an2000 1 . .
2 20jan2000  223an2000 2 2 0
2 22jan2000  243an2002 2 . 1
2 24jan2002  25jan2000 9 o]

we use a command called stset to tell Stata about the data, and in that process, we
can tell stset how to form the analysis-time variable for us. Basically, given the above,
we might type

. stset datel, id(id) timeO{date() origin(time datel) failure(rectype==9)

and why we would do that is covered in the next chapter.
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5.3 Example

Let's consider the following dataset that is in wide form:

. use http://wuv.stata-press.com/data/cgg/widel
. describe
Contains data from http://uwv.stata-press,com/data/cgg/widel. dta

obs: 3
vars: 14 2B Jan 2002 14:42
size: 180 (99.9% of memory free)
storage display value
variable name type format label variable label
id float %9.0g Subject id
sex float %5.0g Sex (1=female)
datel float Yd 1st interview
eventl fleat ¥%9.0g
xl float %9.0g
date?2 float %d 2nd interview
event? float %9.0g
%2 float %9.0g
dated float %d 3rd interview
evant3 float %8.0g
%3 float %9.0g
dated float ¥d 4th interview
events float ¥9.0g
x4 float %9.0g
Sorted by:
. list
1. id | sex datel | seventl | =1 date2 | event2 x2
1 0 | 20jan2000 1 5 | 223an2000 g 3
date3 eventd x3 dated eventd x4
2. id sex datel | eventl x1 date2 | avent2 | x2
2 1 14feb2000 1 8 18feb2000 2 5
date3d event3d x3 datad aventd x4
22feb2000 2 &
3. id sex datel eventl xl date? event2 x2
3 ¢] 11nov1939 1 2 14nov1999 2 2
dated svent3d x3 dated eventd x4
18nov1998 2 3 22n0v1999 9 3

In order to convert the data inte the desired duration format, we must first reshape
the data and then issue a snapspan command:
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. rashape long date event x, i(id)
{note: j =123 4)
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Data wida > long
Number of oba. 3 - 12
Number of wariables 14 > -]
j varjable (4 valuaes) > ]
xij variables:
date! date2 ... dated = date
eventl event2 ... eventd b event
x1x2 ...x4 -> x
. drop if missing(date)
{3 cbservations deleted)
. snapspan id date event, gen(date() replace
. list, noobs sepby{id)
id -3 58X date event dated
i . 203jan2000 1 .
1 1 0 22jan2000 9 20jan2000
2 . 14feb2000 1 .
2 b 1 18feb2000 2 14£eb2000
2 2 1 22fab2000 2 18£eb2000
3 . 11now1999 1 .
3 b 0 14n0v1999 2 11novw1989
a 2 0 18new1999 2 14novidsy
3 3 0  22nov1989 9 18nov1999

We admit that we left out the drop if missing(date} on our first try, and when we
did, we got

. snapspan id date event, gen{date0} raplace

3 observations have date==,
either fix them or drop them
by typing drop if date==.
r(459);

end of do-file

r(459);

So, we followed the instructions and dropped the observations with missing date.
snapspan refuses to work with records for which it does not know the date. In our

original wide dataset, we had missing dates when we had no information.

Note that

we also specify the replace option to snapspan, which just permits Stata to change
the data in memory without requiring that the data be saved first {after reshape and
drop in this case.)
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We left off in the last chapter having agreed that we would record our survival data i
duration foriat:

id datal datel event % exerciee

1 20jan2000 21jan2000 3 1

2 15decl$99 20dec1$99 8 2 o

3 043an2000 13jan2000 4 4 1

4 31jan2000 08feb2000 3 9 1

4  10£eb2000 19feb2000 9 9 0

5 12jan2000 14jan2000 3 10 0

5  16jan2000 18jan2000 3 10 1

5 20jan2000 25jan2000 3 10 1 5

5§  27jan2000 01feb2000 s 10 0
n
h

Each record above documents a span of time for a subject. We have made our exam-
ple realistic in that. rather than recording analysis time measured from the instant of
the ouset of risk, our data records calendar dates. Qur dataset contains two types 0}'
variables, instantaneous and enduring, and we just know which are which. qﬁ‘.

In this example, event is an instantaneous variable. It records the event that ha.p-
pened at the end of the time span, which is to say, datel. In this case, our even*:.
variable is coded so that event==9 means failure, and the other codes mean somethmg
else.

The remaining two variables, x and exercise, are enduring variables, meaning that
they hold their given values over the time span indicated, or at least we are willing to
treat them that way.

The first step is to stset the data. stset’s simplest syntax is
. steet time

but that is for those with a simple dataset like

time z
1 3
5 2 5
g 4 g
20 9 i
22 10

In this dataset, every observation records a failure time, and that is it; every observation
is assuined to fall and time is already defined as ar assumed to be analysis time. stset [:l
second simplest syntax is %
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, stset time, failure(failed)

and that is for datasets like

time faile
1
5
9
20
22

d

[= 2 L Y
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Chapter 6. Using stset

Every observation records a failure or censoring time, and the variable failed tells us

which.

An example of stset’s more complete syntax is

. stset datel, id{id) time0(dated) origin{time date0) failure(event==9}

and that is for those of us who have more complicated survival datasets such as

i datel
203jan2000
15dec19499
043jan2000
31jan2000
10£feb2000
12jan2000
16jan2000
20jan2000
27jan2000
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datal
21jan2000
20dec1989
13jan2000
08feb2000
19feb2000
14jan2000
18§an2000
26§an2000
01feb2000
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6.1 A short lesson on dates
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Much of stset’s convenience stems from its interaction with dates stored in Stata’s date
format. Dates are recorded as integers representing the number of days from January 1,
1960. That is, 0 means January 1, 1960, 1 means January 2, 1960, -1 means December

31, 1959, and so on

What makes dates display in the nice form 01jan1960, 2imay1872, ete., is that we
put a date format on this nuineric variable. So, in fact, if we have a dataset that looks

like

dated
14629
14593
14613
14640
14650
14621
14626
14529
14636
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datel
14630
14598
14622
14648
14659
14623
14627
14634
14641
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we type

. format datel %d
. format datel %d

and we get. the nicely formatted dates from above. The convenient thing about storing
dates in this way is that we can subtract them to obtain the number of days between
dates, For instance, if we were curious as to how many days there were between datel
and date0, we could type

. gen span = datel - dateQ

and the result would be

id datel datel event x exercise span
1 20jan2000 21jan2000 g 3 1 1
2 15decli999 20dec1999 g 2 0 5
3 04jan2000 13jan2000 4 4 1 9
4 31jan2000 08feb2000 3 g i 8
4  10feb2000 19feb2000 2 9 € 9
5 12jan2000 143an2000 3 10 G 2
5  16jan2000 18jan2000 3 10 1 2
&  203an2000 25jan2000 3 10 1 5
&  271an2000 01feb2000 9 10 0 )

Dates are just integers, and so all the ordinary mathematical operators work on them.

Converting dates recorded in your raw data into Stata date variables is a little
tricky. The procedure is (1) read the data into string variables, {2) convert the strings
inte Stata date variables using the date(} function, and (3} format the variable with
the %d format.

1. The first step, reading the dates into a string variable, can itself be difficult, If
the date recorded in the original is all run together—such as 1/21/98, 1/21/1998,
21/1/98, 21/1/1998, 21-1-1998, 21janl1998, 21January1998, etc.—then it is easy
cnough. Wlhatever method you use to read your data—infile, infix, etc.
Stata likes to keep things together.

Problems arise when the original date is recorded with blanks, such as 21 jan 1998,
January 21, 1998, etc. Fortunately, most datasets on computers seldom come in
this format but, when they do, Stata wants to break the pieces into separate
variables unless the whole thing is in quotes.

In this case, it is best to just read the date into separate variables, making a day,
month, and year variable {in whatever order and in whatever format). You can
then assemble these components into a single string variable and then convert this
variable into an integer with a date format. As an example, pretend you have just
read your data and are now left with string variable month, numeric variable day,
and numerical variable year. Assemble them into one string by typing

. gen date = string(day) + " “ + wmonth + " " + string{year}

If month is instead a numeric variable {1, 2, ..., 12), put a string() function
around it {o convert it into a string.
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2. The second step, converting the string variable containing the date into a Stata
date variable, is easy. Type

. gen mydate = date{date, "dmy")

The second argument to date() specifies the order of the day, month, and year
in the string date. The argument dmy means day followed by month followed by
year. Thus, if your string date is instead in the order month, day, year, type mdy.

This works assuming your year variable is a full, four-digit year. If your years are
two-digit years (98 meaning 1998, 02 meaning 2002), type

. gen mydate = date(date, "dmy", 2040)

The last argument gives Stata a rule for converting two-digit years to four-digit
years. Specifying 2040 says that, in making the translation, the largest year to be
produced is 2040. So, year 39 would be interpreted as 2039 and year 40 as 2040,
but year 41 is interpreted as 1941. Specify a reasonable value, given your data,
for this third argument.

3. The third step is just a matter of putting a date format on your new date variable,

Type

. format mydate %d

If Jater you want to see the date in its numeric form, change the format back to a
numeric format.

. format mydate %8.0g

You can then switch back and forth at will.

6.2 The purpose of the stset command

The first purpose of the stset command is to tell Stata about the structure of your
survival data so that you do not have to repeat that information over and over again
every time you issue a survival command. This reduces the likelihood of mistakes.

The second purpose of the stset command is to burn considerable computer time
by performing checks to verify that what you claim as true indeed makes sense. You
would complain about performance if these checks were done every time you issued a
survival analysis command, and because of that, most software packages simply never
check at all. Stata checks when you stset your dataset, and it checks again anytime
you type stset without arguments.

The third purpose of stset is to allow you to describe complicated rules for when
an cbservation is included and excluded, what defines onset of risk and failure, and how
analysis time is defined in terms of the time and date variables that are in your data.
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6.3 The syntax of the stset command

Given everything the stset command can do, the syntax is truly impressive. stset
is a wonderful command once you know it, but it has become a hurdle that may look
insurmountable to new users—one only need to look at [R] st stset to see how daunting
this command can appear.

To break through this, the basic syntax of stset is

gtset time_of failure_var
or

stset time_of failure_or_censoring_var, failure(one_if failure_var)

Everything else is a detail. The time variable specified immediately following stset
specifies when the failure or censoring occurs. The optional one_if failure_var contains
1 if the observation contains a failurc and 0 ctherwise.

Examples

1. All observations record failure times:

failtima
1
5
9
20
22 1

W o b3 Lo

The stset command is
. stset failtime
because failtime is the name of the variable in this dataset that contains the

failure time.

2. Some observations are censored:

lasttima X failed
1 3 1

5 2 1

9 4 1

20 g 1

22 10 0

The stset command is
. 8tset lasttime, failure{failed)

because failed is the name of the variable in this dataset that contains 1 when
variable lasttime records a failure time and () when lasttime records a censoring
time.
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6.3.1 Specifying analysis time

Recall from Section 3.3 our discussion of analysis time. It is 0 at the onset of risk, and
so it is probably shifted from calendar time by a different amount for each subject --
analysis time might be time from diagnosis or time from beginning of unemployment.
The duration might not even be a time measure but instead a time-intensity measure
such as cigarette-days, or in rare instances, analysis time might have nothing whatsoever
te do with time—it might be distance from the end of a bolt of cloth.

In any case, before any analysis can begin, you need to define analysis time:
t = somefunction(time/date variables in your data)

If you are lucky, all the time/date variables in your data are already in terms of analysis
time, but in case they are not, you have two alternatives:

1. Define ¢ yourself and then stset your data in terms of ¢.

2. Specify stset’s origin{) and possibly scale() options so that stset can calcu-
late ¢ based on the time/date variables in your data.

We prefer the latter because stget has lots of error checking built into it.

Frow now on, we are going to write firme to mean time as you have it recorded in
your data and ¢ to mean analysis time. Let time be a variable recorded in the units of
tine for your data. We abtain ¢ from

; time — origin

scale

The default definitions for erigin and scale are 0 and 1, respectively; that is, by default,
litne = ¢.

By specifying stset’s origin{) and scale{) options, you can change the definitions
of origin and scale. For instance, in your data, téime might be calendar date, and you
might want to define origin() as the date of diagnosis, thus making time from diagnosis
analysis time and diagnosis itself as denoting the onset of risk.

Recall that ¢ = 0 is the time of the onset of risk, and that Stata treats this very
sericusly: all of the survival analysis commands ignore data hefore t = 0. They do this
automatically, irrevocably, and without emphasizing the fact. Mostly, this is desirable,
but sometimes a user is surprised. Consider the user for whom calendar time is the
appropriate definition of . Now remember how Stata records dates: ¢ = 0 corresponds
to January 1, 1960. This means that

1. Without specifying origin(), records before January 1, 1960 are ignored, even
if the user is only interested in estimating semiparametric models for which the
exact timing of the onset of risk is otherwise irrelevant. If the user has data going
back before January 1, 1960, origin() should be specified to be some date before
then.
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2. Risk begins aceumulating on January 1, 1960. If the user is fitting a parametric
model, he or she may want to think carefully about this, especially if the earliest
date in the data is much later than this.

Defining ¢ to be the calendar date is indeed a rare occurrence, and we emphasize that
such a definition usually involves an explicit definition of origin(). If t is already
defined to be the analysis time {with a meaningful origin), then origin() need not be
specified.

The scale() option is usually of no analytical significance. Most people use scale()
to put ¢ in more readable units. They define a reasonable origin() so that ¢t = time —
origin provides an analytically sufficient definition but then decide they would rather
have time recorded in months rather than in days, and so define scale(30), meaning
t = (time — origin}/30. scale() can also be used to define time-intensity measures.

Anyway, focusing on the ever-so-important origin() option, here are some valid
exampiles;

e origin(time 20)
This sets origin = 20. It is a rather odd thing to do, since it specifies that fime is
almost analysis time, but it needs 20 subiracted from it; the onset of risk occurred
at time = 20.

¢ origin(time d(15feb1999))
This sets origin = 14290, the integer value for the date February 15, 1999. Match-
ing on calendar date is appropriate for date-formatted data, and for this examnple
the onset of risk oceurred on February 15, 1999, Writing d(15feb1999) is just
Lhow to write date constants in Stata and is preferable to having to figure out that
February 15, 1999 translates to the integer 14290,

s origin{time bdate)

This sets origin = bdate, where bdate is a variable in the dataset, which we
assume records the birthdate of subjects, so analysis time is now age and onset of
risk is now birth.

There is a little something extra to think about here: If the data contain multiple
records for some subjects, which value of bdate should be used for the onset of
risk? Well, vour first reaction is probably that one would hope that bdate was
the same across all the records for the same subject. So would we, but perhaps
bdate is missing in some records. Perhaps bdate is only recorded on the first
record of every subject, or only the last. It would not matter. Stata would find
the nonmissing bdate and use it.

If bdate took on different values in different records within a subject, Stata would
find and use the earliest value of bdate. In this case, that is not so useful, and you
would probably prefer that Stata flag this as an error. In other cases, however, it
is useful; for instance:
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e origin(time diagdate)

This sets origin = diagdate, diagdate being a variable in the dataset. If subjects
have multiple records, Stata will use the earliest (smallest) nonmissing value of
diagdate, meaning that if a subject was diagnosed twice, it would be the first
diagnosis date that mattered.

In any case, analysis time is now time from (earliest) diagnosis, and (earliest)
diagnosis corresponds to the onset of risk.

origin{time min{diagdate,d2date))

You can specify any expression for origin, and the one we just chose is the minimum
value recorded in the two variables diagdate and d2date. Perhaps diagdate is
the actnal date of diagnosis and d2date is the judgment by a professional, for a
few patients, as to when diagnosis would have occurred had the patients shown
up carlier at the health center.

In any case, analysis time is now the earliest time of either the earliest diagnosis
or imputed diagnosis, and (possibly imputed) diagnosis is the onset of risk.

origin(event==3)

This is something new: event is a variable in the data. We are instructing Stata
to thumb through the records for each patient and find the earliest date at which
the variable event took the vulue 3. In doing this, variable event is assumed to
l>e an instantaneous variable, meaning that it occurs at the instant of the end of
the time span, so it is the end-of-span time that is important.

This construct is very useful in multiple-record situations. We have multiple
records on each subject, and we have & variable that records what happened on
various dates. In these situations, it is not uncommon for our failure event to he
one valne of the variable and for our onset-of-risk event to be another value of the
same variable.

In any case, analysis time is now the time from event==3, and the occurrence
of event==3 is the onset of risk. If event==3 never occurs, then the subject is
automatically excluded from the analysis. If event==3 occurs more than once for
a subject, it is the earliest occurrence that matters.

One final note: note that event is the name of a variable. If your event variable
were named code, then you would type origin(code==3). Distinguish this from
the word time in, for instance, origin(time diagdate). There you always type
the word time and follow that by the name of your particular variable. {Actually,
if you omit the word time, Stata will probably still understand you, and if it does
not, Stata will complain.)

origin(event==3 4 7)

This is just a variation on the above. You may specify more than one number
following the double-equals sign, and in fact, you may specify what Stata calls a
“numlist”. See help numlist in Stata for more information on numlists. In this
case, Stata will select the earliest occurrence of any of these three events.
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s origin{event==3 4 7 time mtdate)
This sets onset of risk to be the earliest of (1) the earliest time that variable event
takes on the value 3, 4, or 7, and (2) the earliest time recorded in variable stdate.

s origin{min)
Do not specify this for the purposes of analysis. origin(min) is for playing a
trick on Stata to get the data stset, which is useful for performing some data-
management tasks. We will discuss this later.

6.3.2 Variables defined by stset

After you stset your data, you will find four new variables named _t0, _t, d, and .st
in your dataset.

¢ tO0and .t
These two variables record the time span in analysis time, ¢, units for each record.
Each record starts at t0 and concludes at _t.

s d
This variable records the outcome at the end of the span and contains 1 if the
time span ends in a failure and 0 if it does not.

s S5t
This variable records whether this observation is relevant (is to be used) in the
current analysis. For each observation, the variable contains 1 if the observation
is to be used and 0 if it is to be ignored. For example, if we specify origin(time
d(19feb1898)), then observations dated before February 19, 1999, will have _st
set to 0.

At a technical level, the purpose of stset is to set these variables, and then the other
st commands—the analysis commands—do their caleulations using them and ignoring
your original time/date and event variables. If t0, t, d, and _st are set correctly, it
does not matter which stset command you typed. If you have them set incorrectly,
it does not matter how much you think the stset command should have set them
differently.

L Example

Let’s go ahead and load the duration format dataset considered at the beginning of
this chapter and stset it.



bl

. use http://www.stata-preas.com/data/cgg/stset_exl

. 1ist, ncobs sepby{id)

id datel datel evant b4 exercise
1 20jan2000  21jan20G0 9 3 1
2 15decl1939  20decl1999 -] 2 0
3 04jan2000 13jan2000 4 4 1
4  31jan2000 0Bfeb2000 3 9 1
4 10feb20G0  19feb2000 9 g 4]
5 121an2000 14jan2000 3 10 o
5 16jan2000 18jan2000 3 10 1
5  20jan2000  25jan2000 3 10 1
5 27jan2000 01feb2000 2] 10 ]
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. stset datel, origin(time date0) id{id) failure(avent==9) timeG(datal)

{output omitted)
.+ list id date0 datel _t0 _t _d _st, noobs sepby(id)

id dated datel _to _t d _st
1 20jan2000  21jan2000 0 1 1 1
2 15dec1999  20dec199% b 5 o] 1
3 04jan2000  13jan2000 0 9 0 1
4  31jan2000  O8feb2000 5} 8 0 i
4  10feb2000  18feb2000 10 19 1 1
5 12jan2000  14jan2000 o 2 o] 1
& 163an2000  18jan2000 4 6 0 1
5 20jan2000  25jan2000 8 i3 [+ 1
&  27jan2000  01feb2000 15 20 1 1

We have used options that we have not yet explained just to make stset work. However,
the only thing we want you to focus on right now is £0 and _t and to remember that

we typed

. stset datel, origin{time dated) ...

The variables _t0 and _t record the time span of each record in analysis time units; the

original date® and datet record the same thing in time units.

q
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6.3.3 Specifying what constitutes failure

In your data, either you already have a variable that marks the failures—contains 1 if
failure and 0 otherwise—or you have a variable that contains various codes such that,
when the code is a certain value, it means failure for the purposes of this analysis.

stset’s failure() option specifies the failure event.

1. Simple example: Variable failed contains ones and zeros, where failed==
means failure:

time failed x
1 1 3

b 1 2

9 1 4

20 1 9
22 ol 13

The failure () option for this is

. stset time, failure(failed)

2. Another example: Variable failed contains various codes: { means nonfailure,
and the other codes indicate that failure occurred and the reason:

time failed
1

5

9

20
22

(=N I S
DWW

1

If you want to set this dataset so that all failures regardless of reason are treated
ag failures, then the failure() option would be

. Btset time, failure(fajled)

3. A variation on the previous example: Using the same dataset, you want to set it
so that only failure for reason 9 is treated as a failure, and other values are treated
as nonfailures (censorings). In this case, the failure () option would be

. Etset time, failure{failed==9)

4. A surprising example: Variable failed contains zeros, ones, and missings.

time failed x
1 1 3

5 2

9 . 4
20 8 9
22 ¢ 10

This is the same dataset as used in the above example, except that variable failed
containg missing values in the second and third observations. Ordinarily, you
would expect Stata to ignore observations with missing values, but failure() is
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an exception. By default, if the failure variahle contains missing, it is treated as
as if it contains Q.

If you wanted to treat all failures as failures, regardless of whether the reasons
were known, you would type

. gen fail = cond(failed!=0,1,0)
. stmet time, failure{fail)

5. A more complicated example: You have multiple records per subject and variable
event contains various codes, and event==9 meaning failure {in this analysis):

id dated datel avent % exercise
1 20jan2000 21jan2000 g 3 1
2 15dec1999 20decl989 [ 2 o
3 04jan2000 13jan2000 4 4 1
4  31jan2000 08£eb2000 3 9 1
4 10£feb2000 15fab2000 g 9 ]
5 12jan200Q 14jan2000 a 10 o
& 16jan2000 18jan2000 3 10 1
§ 20jan2000 26jan2000 3 10 1
B 27jan2000 01fab2000 g 10 0

The failure () option for this is

. stmet datel, failure(event==3) ...

6. Another more complicated example: Variable event contains various codes, event
equal to 9, 10, or 11 means failure {in this analysis):

id datel datel avent x exercise
1 20jan2000 21jan2000 2] 3 i
2 15dec199% 20decl999 [ 2 0
3 04jan200¢ 13jan2000 4 4 1
4  31jan2000 08£eb2000 3 9 1
4  10feb2000 19feb2000 11 o 0
5 12jan2000 14jan20600 3 10 0
5 16]an2000 18jan2000 3 10 1
§ 20jan2000 2E5jan2000 3 10 i
5 27jan2000 01feb2000 10 10 0

The failure() option for this is

. stset datel, failure{event==9 10 11) ...

That is, you can specify a numlist following the double-equals sign such as
failure{event==% 10 11), or equivalently, failure(event==9/11).

After stsetting your data, the new variable _d in your dataset marks the failure
event, and it contains 1 if failure and 0 otherwise. Looking back at the example at the
end of Section 6.3.2, note how the values of _d were set. After stsetting your data, you
can always check that _d is as you expect it to be.
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6.3.4 Specifying when subjects exit from the analysis

When does a subject exit from the analysis, and at what point are his or her records
irrelevant?

The default answer to this question is that a subject exits {1) when its data run
out or (2} upon first failure. For some analyses, we may wish subjects to exit earlier or
later.

1. If we are analyzing a cancer treatment and a subject has a heart attack, we may
wish to treat the subject’s data as censored at that point and all subsequent
records as irrelevant to this particular analysis. '

2. If we are analyzing an event for which repeated failure is possible, such as heart
attacks, we may wish the subject to continue in the analysis even after having a
first heart attack.

Consider the data on the following subject:

. use http://www.stata-press.com/data/cgg/id12

. list
id begin end event x
1. 12 20jan2000  21jan2000 3 3
2. 12 21jan2000  26jan2000 8 3
3. 12 26jan2000  30jan2000 4 3
4. 12 30jan2000  31jan2000 g8 3

First, pretend that the failure event under analysis is event==9, which, for this subject,
never seeurs. Then all the data for this subject would be used, and the corresponding
_d values would be

. Btset end, failure(event==9) origin(time begin) id{id) timeC(begin)
{outpat omitted )
. list id begin end _t0 _t _d _st, nockbs

id begin epd _t0 _t _d _st
12 20jan2000  21jan2000 0 1 ] 1
12 21jan2000  25jan2000 i 5 0 i
12 25jan2000  30jan2000 5 10 ¢ 1
12 30jan2000  31jan2000 10 11 ¢ 1

(Continued on next page)
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Now, instead pretend that the failure event is event==8. By default, Stata would
interpret the data as

. staset end, failure{event==8) origin{time begin) id(id) timeO(bagin)
{output omitted )
. 1iat id begin end _t0 _t _d _st, noobs

id begin end _t0 _t .4 _st
12 20jan2000  21jan2000 [ 1 0 1
12 213ap2000  25jan2000 1 6 1 1
12 25jan2000  30jan2000 0
12 30jan2000  313an2000 o

Variable _st is how stset marks whether an observation is being used in the analysis.
In this case, only the first two observations for this subject are relevant because, by
defaunlt, data are ignored following the first failure. If event==8 marks a heart attack,
for instance, Stata would ignore data on subjects after their first heart attack.

The exit() option is how oue takes control of when subjects exit. Examples of

exit () include

s exit(failure)

This is just the name for how Stata works by default. When do subjects exit from
the analysis? They exit when they first fail, even if there are more data following
that failure. Of course, subjects who never fail exit when they run out of data.

exit(event==4)

If you specify the exit () option, you take complete responsibility for specifying
the exit-from-analysis rules, exit({event==4) says that subjects exit when the
variable event takes on value 4, and that is the only reascn except for, of course,
running ont of data.

If you coded failure(event==4) exit{event==4), that would be the same as
coding failure(event==4) exit{(failure), which wauld be the same as omitting
the exit (3 opticn altogether. Subjects would exit upon failure.

If you coded failure({event==8) exit(event==4}, subjects would not exit upon
failure unless it just so happened that their data ended when event was equal
to 8. Multiple failures per subject would be possible because, other than running
out of data, subjects would be removed only when event==4. Understand that
subjects would be dropped from the analysis the first time event==4, even if that
was before the first failure.

exit(event==4 8)
Now subjects exit when event first equals either 4 or 8.

If yvou coded failure(event==8) exit (event==4 8), vou are saying that subjects
exit upon failure and that they may exit before that when event equals 4.
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exit(time lastdate)

This is another example that allows for multiple failures of the same subject. In
this case, each subject exits as of the earliest date recorded in variable lastdate
regardless of the number of failures, if any, and of course exiting when they run
out of data. lastdate, it is assumed, is recorded in units of #ime {not ¢, analysis
time).

exit(time .)

This also allows for multiple failures of the same subject. It is a variation of the
above. It is used to indicate that each subject should exit only when they run out
of data, regardless of the number of failures, if any.

exit(time d(20jan2000))

This iz just a variation on the previous example, and in this case, the exit-from-
analysis date is a fixed date regardless of the number of failures. This would be a
very odd thing to do.

exit(event==4 8 time d{20jan2000))
This example is not so odd. Subjects exit from the analysis at the earliest date of
{1} the earliest date at which event 4 or 8 oceurs and (2} January 20, 2000.

Consider coding
failure{event==8) exit{event==4 8 time{d20jan2000))

You would be saying that subjects exit upon failure, that they exit before that if
and when event 4 occurs, and that anyone still left around is removed from the
analysis as of January 20, 2000, perhaps because that is the last date at which
you have complete data,

You can check that you have specified exit () correctly by examining the variables _d
and _st in your data; _d is 1 at failure and  otherwise, and .st is 1 when an observation
is used and 0 otherwise:

. stset end, failure{event==8) exit(event==4) /*
> */ origin{time begin)} id(id) timeO(begin}

{output omitted }
. list id begin end event x _t0 _t _d _st, noobs

id begin end avent x _t0 _t _a _&t
12 20jan2000 21jan2000 3 3 [s] 1 0 1
12 21jan2000  25jan2000 8 A 1 5 1 1
12 25jan20060  30jan2000 4 3 5 10 0 1
12 30jan2000  31jan2000 8 3 . 0

. stset end, failure(event==8)} exitf{event==4 8) /%
> +/ origin(time begin) 1d{id} timel({begin}

[ontput omitied )
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. liat id begin end event x _td _t _d _st, noobs

id begin end  evant r  _t0 -t -d _BL
12 20]an2000 21 jan2000 0 1 0
12 21jan2000 26jan2000

&£ b 0 W
W W
OO e

12 25jan2000  30jan200C
12 30jan2000  31jan2000

Note that there is nothing stopping us from staetting the data, looking, and then
stsetting again if we do not hike the result. Specifying

fajlure{event==8) exit{event==4 B)

would make more sense in the above example if, in addition to subject 12, we had
another subject for which event 4 preceded event 8.

6.3.5 Specifying when subjects enter the analysis

When do subjects enter the analysis? We want subjects to enter at the onset of risk or,
if they are not under observation at that point, after that, and that is Stata’s default
rule, but Stata has to assume that “under observation” corresponds to the presence of
data.

Stata's default answer is that subjects enter at analysis time t = 0 (as specified by
origin(}), or if their earliest records in the data are after that, they enter then.

Some datasets, however, contain records reporting values before the subject was
really under observation. The records are historical; they were added to the data after
the subject enrolled, and had the subject failed during that early period, the subject
would never have been around to enroll in our study. Consider the following data:

id begin end event x
27 . 11jan2000 2 .
27 11jan2000 15jan2000 10 3
27 15jan2000 2ijan2000 8 3
27 213jan2000 30jan2000 9 3

In this example, pretend that event==2 is the onset of risk but event==10 is enrollment
in our study. Subject 27 enrolled in our study on January 15 but came at risk before
that—on January 11, a fact we determined when the subject enrolled in our study.
Another subject might have the events reversed,

id begin and event x
27 . 11jan2000 i0

27 113jan2000 15jan2000 2 3
27 15j)an2000 21jan2000 8 3
27 213an2000 30jan2000 9 3
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and yet another might have the events coincident {indicated, perhaps, by event==12):

id begin end event x
29 . 11jan2000 12

2% 11jan2000 21jan2000 8 3
29 21jap2000 30jan2000 9 3

Option enter () specifies when subjects enter. This option works the same as
exit{)—it is just that the meaning is the opposite. Some examples are

¢ onter(event==2)
Subjects enter when time event is 2 or t = 0, which ever is later. Specifying
enter (event==2) does not necessarily cause all subjects to enter at the point
event equals 2 if, in the data, event takes on the value 2 prior to t = { for some
subjects. Those subjects would still enter into the analysis at ¢t = 0.

e enter{event== 2 12)
Temporarily defines ¢’ as the earliest £ ({ime in analysis-time units) that event==
or event==172 is observed for each subject. Subjects enter at the later of £ or ¢ = 0.
For example, if ¢’ happens to correspond to a date earlier than that specified in
origin{), then the onset of risk is just taken to be ¢ = 0. The result is no different
than if you typed

. gen ev_2_12 = (event==2} | (event==12)
. stset ..., ... enter(ev_2_12 == 1}

e enter(time intvdate)
intvdate contains the date of interview recorded in time (not analysis time) units.
For each subject, stset finds the earliest time given in intvdate and then enforces
the rule that the subject cannot enter before then.

s onter(event==2 12 time intvdate)
This is a typical compound specifier. For each set of records that share a common
id() variable, stset finds the earliest time at which events 2 or 12 occurred. It
then finds the earliest time of intvdate and takes the later of those two times.
Subjects cannot enter before then.

Specifying enter () affects _st. It does not affect how analysis time is measured --
only origin() and scale() do that. In the example below, event==2 is the onset of
risk, event==10 is enrollment in our study, and event==12 is simultanecus enrollment
and onset of risk. Remember, instantaneous variables such as event are relevant at the
end of the time span, which is end in these data:

(Continued on next page)
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. use http://vww.stata-press.com/data/cgg/1427_29
. list, noobs sepby{id)

id begin end event x
27 . 11jan2000 2 '
27 11jan2000  15jan2000 | Lo
27 15jan2000  21jan2000 8 3
27 21jan2000  30jan2000 9 3
28 . 11jan2000 10 .
28 11jan2000 15jan2000 2 3
28 15jan2000  21jan2000 g 3
28 21jan2000  30jan2000 g 3
29 . 11jan2000 12 .
29  11jan2000  21jan2000 8 3
28  21jan2000  30jan2000 2 3

- stset end, origin{event==2 12) enter(event==10 12} /*
> »/ failure{event==9) time0(begin) id(id)

{output omitted }
- list id begin end event x _t0 _t _d4 _st, noobz sepby{id}

id begin end event x E0 _t ! _st
27 . 11jan2000 2 . 0
27  11jan2000  15jan2000 10 3 . 0
27  153an2000  21jan2000 8 3 4 10 o 1
27  213an2000  30jan2000 8 3 10 18 1 1
28 . 11jan2000 0 . 0
28 11jan2000  15jan2000 2 3 . 0
28 15jan2000  21jan2000 8 3 6 6 0 1
28  21jan2000  30]an2060 s 3 6 15 1 1
29 . 11jan2000 12 . ; . . 0
28 11jan2000  21jan2000 8 3 0 10 0 1
29 21jan2000  30jan2000 8 3 10 19 1
In studying these results, look particularly at subject 28:
id begin end  event x _to -t d -8t
28 . 11jan2000 10 . . . . 0
28 11jan2000 15jan2000 2 3 . . . 0
28 164an2000 21jan2000 8 a 0 6 0 1
28 21jan2000 30jan2000 9 3 6 15 1 1

We specified origin(event==2 12) enter(event==10 12}, so the subject entered our
study on January 11 (when event==10) but did not come at risk until January 15 (when
event==2}. So how is it that this subject’s second record—11jan2000 to 15jan2000—
has _st==0 when the record occurred while under observation? Answer: because analysis
time ¢ was negative prior to January 15 (when event became 2), and subjects canuot
be in the analysis prior to ¢ = 0.
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6.3.6 Specifying the subject-id variable

If there are muliiple records per subject in your data, as there have been in many of
our examples, you must specify a subject-id variable using the id() option to stset.
We have been doing that all along but without explaining.

If you do not specify the id(} option, each record is assumed to reflect a different
subject. If you do specify id(warname}, subjects with equal values of the specified
variable varname are assumed toa be the same subject.

If never hurts to specify an id variable, even in single-record data, because for various
reasons you may want to later create multiple records for each subject.

For multiple-record data, when you specify an id variable, Stata verifies that none
of the records overlap:

. use http://www.stata-prese.com/data/cgg/id101

. 1list, noobs

id bagin end event x

101 20jan2000  213an2000
101 21jan20600  263an2000
101 25jan2000  30jan2000
101 30jan2000  31jan2000

Do 00 L
o L Lo

. stset end, failure(event==9) origin(time begin) id(id) time0(begin}
id: id
failure event: event ==
obs. time interval: ({(begin, end]
exit on or before: {ailure
t for analysis: (time-origin)
erigin: time begin

4 total obs.
overlapping records (end[_n-1]>begin) PROBABLE ERROR

[y

3 obs. remaining, representing
1 subject
0 fallures in single failure-per-subject data
7 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 11

Naotice the PROBABLE ERROR that stset flagged. What did stset do with these two
records? It kept the earlier one and ignored the later one:

. list 14 begin end event x _t0 _t _d _st, noobs

id begin end event X _t0 _t - | _8t
101 20jan2000  21jan2000 a 3 0 1 0 1
101 21jan2000  26jan2000 B8 3 1 [ o i
101 25jan2000  30jan2000 4 3 . 4]
101 30jan2000  31jan2000 =] 3 10 11 0 i
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stset will not complain when, rather than an overlap, there is a gap. Note the gap
between the second and third records:

. use http://www.stata-preas.com/data/cgg/id102

. list, noobs
id begin end event =x
102 20]an2000  21jan2000 3 3
102 21jan2000  25jan2000 8 3
102 27jan2000  30jan2000 4 3
102 30jan2000  31jan20Q0 8 3

.- staet end, failure(event==9) origin(time begin) id{id) timeO(begin)
id: id
failure avent: avent == 9
oba. time interval: (begin, end]
exit on or before: failure
t for analymsis: (time-origin)
origin: time begin

4 total obs.

0 exclusions

4 obs. remaining, representing

1 subject

0 failures in single failure-per-subject data

¢ total analysis time at risk, at risk from t =

earliest observed entry t =
last cbperved exit t = 1

. 1iat id bagin end event x _t0 _t _4 _st, noobs

(==

id begin and avent x _t0 _t _d _8t
102 20jan2000  21jan2000 3 3 1] 1 v 1
102 21jap000  25jan2000 8 3 1 5 o 1
102 27jan2000  30jan2000 4 3 Ki 10 3] 1
102 30jan2000  31jan2000 8 3 10 11 0 1

staset did not even mention the gap, since interval truncation is a valid ingredient of
any statistical analysis we would perform with these data. Stata docs, however, have
the command stdes, which describes datasets that have been stset and, in particular,
will tell you if you have any gaps. stdes is covered in more detail in Section 7.3.

6.3.7 Specifying the begin-of-span variable

Another option we have been using without explanation is time0(). The last stset
command we illustrated was

. 8tset end, failure{event==4) origin(time begin) id(id) timeO(begin)}
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and, in fact, the time0 () option has appeared in most of our examples, timeQ(} is how
you specify the beginning of the span, and if you omit this aption Stata will determine
the beginning of the span for you. For this reason, you must specify timeG() if you
have time gaps in your data and you do not want stset to assume that you do not.

Rather than having the data

id begin end avent x exercise
12 20jan2000 21jan2000 3 3 1
12 21jan2000 25jan2000 8 3 0
12 26jan2000 30jan2000 4 3 1
12 30jan2000 31jan2000 8 3 1

which has no gaps, you might have the same data recorded as

id enrolled date avent X exercise
12 20jan2000 21jan2000 3 3 1
12 253an2000 8 3 0
12 30jan2000 4 3 1
12 313an2000 8 3 1
Or e@ven
id date event ¥ exercise
12 20jan2000 1 .
12 21jan2000 3 3 1
12 25jan2Q00 B 3 v}
12 30jan2000 4 ] 1
12 31jan2000 8 3 1

In this last example, we added an extra record at the top. In any case, all these datasets
report the same thing: this subject enrolled in the study on January 20, 2000, and we
also have cbservations on January 21, January 25, January 30, and January 31.

We much prefer the first way we showed these data,

id begin end event x  exercise
12 20jan2000 21jan2000 3 3 1
12 21jan2000 25jan2000 g 3 ]
i2  25jan2000 30jan2000 4 3 1
12 30jan2000 31jan2000 8 3 1

since it makes it very clear that these are time-span records, and gaps are represented
naturally. The interpretation of these records is

time span enduring variables
id begin end event X exercise
12 20jan2000 21jan2000 3 3 1
12 21jan2000 25jan2000 8 3 0
12 25jan2000 30jan2000 4 3 1
12 30jan2000 31jan2000 8 3 1

end time instantaneous
variable(s)
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The enduring variables are relevant over the entire span, and the instantaneous variables
are relevant only at the instant of the end of the span. Instantaneous variables may
or may not be relevant to any statistical models fit to these data but are relevant
when stsetting the data. In general, event and failure variables are instantaneous, and
variables that record characteristics are enduring.

The second way we showed of recording these data changes nothing: we are just
omitting to mention the begin-of-span variable:

id enrclled date avent X  exercise
12 20jan2000 21jan2000 3 3 i
12 25jan2000 8 3 0
12 30jan2000 4 3 1
12 313jan2000 8 3 1

Consider the second record here. Over what period is exercize==0? Between January
21 and January 25—not January 25 to January 30 (during which it is 1). The time
span for a record is the period from the record before it to this record, except for the
first record, in which case it is from enrolled in this dataset.

We can stset this dataset, and the only issue is setting analysis time appropriately:

s stset date, id(id) origin(time enrolled) ...
if the date enrolled corresponds to the onset of risk

* stset date, id{(id) origin(event==3) ...
if the occurrence of event==3 marks the onset of risk

¢ stset date, id(id) origin{event==8) ..,
if the occurrence of event==8 marks the onset of risk

Note that we may omit the time0() option, and when we do that, stset obtains
the time span by comparing adjacent records and assuming no gaps:

. use http://www.stata-press.con/data/cgg/id12b
. stset date, failure{event==8} origin{time enrolled) id(id)
id: 1id
failure event: event == 8

obs. time interval: (datel_n-1]. datel
exit on or befere: failure

t for apalysis: (time-origin)

origin: time enrclled

4 total obs.

2 obs. bagin on or after (first) failure

2 obs, remaining, representing

1 asubject

1 failure in single failure-per-subject data
5 total analysis time at risk, at risk from t

earliest observed entry t
last cbsarved exit t

LI I ]
h Qo
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. list id enrolled date event x axercise

t0 _t _d _st, noobs

id enrolled date evant x exercise td _Bt
12 20jan2000  21jan2000 3 3 1 o] 1
12 . 25jan2000 8 3 o 1 1
12 30jan2000 4 3 1 O
12 31jan2000 8 3 1 o
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The third way we showed that these data might be recorded is by adding an extra
observaticn at the top:

id date
12 20jan2000
12 213an2000
12 25jan2000
12 30jan2000
12 31jan2000

I this case, event==1 marks cnrollment. The best way to think about these data is

12 -infinity
12 20jan2000
12 21jan2000
12 263202000
12 31jan2000

Ead

gvent

00 e 00 L
o 0 QL -

date avent
20jan2000 1
21ian?2000 3
25jan2000 B
30jan2000 4
31jan2000 8
end tims instantaneous

variable(s)

exerszd

Pl = B

enduring variables

Records, just as before, are paired. Variable date records the end of a time span, and
the beginning of a time span is obtained from the record before. For the first record,
just pretend the beginning of the span is the beginning of time. Note that the enduring
variables are missing over this spau and that all we Lave is an event, which occurs at

the end of cach span. To stset this dataset, you would type

e stset date, 1d(id) origin(event==1) ...
if the date of enrollnient corresponds to the onset of risk

s stszet date, id(id) origin(event==3) ...

if the occurrence of event==3 marks the onset of risk

s stset date, id(id) origin(event==8) ...

if the occurrence of event==8 marks the onset of risk

6.3.8 Convenience options

The previous sections have covered all the important options—options that affect the

definition of failure,
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failure(}: failure (vamame[== numh’st] )}
options that affect the definition of analysis time,

origin(): origin([uamamanum[ist] time ezp | min)
scale(#)

options that affect when the subject is under observation,

scale():

enter(}): enter( [vamame==numl£st] time ezp)
exit(): exit(failure | [mmame==numﬁst] time exp)
and options that provide the details that Stata needs to know,
id():  id(varname)

time0{): time0(varname)

Using stset

That leaves the convenience options: if(), aver(), never(}, before(), and
after(). Each of these options takes any valid Stata expression as an argument and

simply provides a convenient way to select records.

e if()

if() is like the standard Stata syntax if exp except that it is to be preferred in
cases where you do not specify the time0() option. When you have recorded in
your data only the ending times of each span, Stata derives the span by pairing
records and using the ending times. The standard if ezpin Stata’s syntax removes
records from consideration, meaning that if you have

patno mytime =1 x2  event
3 7 20 E 14
3 g 22 & 23
3 11 21 5 29

and you type stset mytime if x1!'=22, ..., it will appear to Stata as if the
dataset is missing the middle record, and thus Stata will incorrectly determine
that the last record spans the period 7 to 11.

If you type stset mytime, if(x1!=22) ..., Stata will correctly determine that
the third record spans the period 9 to 11 because Stata will leave the middle
record in while it determines the beginning and ending times, and only then will
it remove the record from consideration.

The problem that i£() solves only arises when you do not specify the timeG()
option because, with time¢(), Stata knows exactly when each record begins and
ends.

ever ()

The subject is eligible for inclusion in the analysis only if the stated expression is
ever true, whether in the past—even hefore t = 0—or in the future—even after
the failure event or exit ().
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e never()
The subject is eligible for inclusion in the analysis only if the stated expression i
never true, whether in the past—even before t = 0—ar in the future—even after
the failure event or exit ().

¢ bafore()
Only the subject’s records that occur before the first time the expression is true
are eligible for inclusion in the analysis. The expression is assumed to be relevant
at the end of time spans (based on instantaneous variables).

e after(}
Only the subject’s records that occur after the first time the expression is true are
eligible for inclusion in the analysis. The expression is assumed to be relevant at
the end of time spans (based on instantaneous variables).

Be careful using before () and after() with time variables rather than event vari-
ables. There is no danger in using something like before(event==7) or
after(event==8). However, consider something such as

before(end==d(28jan2000))

with the following data:

id begin end evant X  exercise
12 20jan2000 21jan2000 3 3 1
12 213an2000 26jan2000 8 3 ¢
12 25jan2000 303an2000 4 3 1
12 30jan200C 31jan2000 8 3 1

In this dataset, the variable end never takes on the value 28jan2000. Specifying
before(end>=d(28jan2000)) does not solve the problem, either. That would select
the first two observations but omit the span January 25 to January 28,

Coding things like before(event==4) on the other hand, is perfectly safe.
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After vou have stset your data, there are five things you shounld do before starting your

formal analysis:

1. Look at stset’s output.

2. List at least a little of your data, examining t0, _t, .d, and _st to be sure that
they appear as you want them.

3. Type stdes. The “des” part means describe, and stdes provides a brief descrip-
ticn of your data so, if there are problems, perhaps you will spot them.

4. Type stvary if you have multiple-record (meaning multiple records per subject)
data. It reports whether variables within subjects vary over time and on their

pattern of missing values.

5. I vou discover problems in Step 4, use stfill and streset to fix them.

7.1 Look at stset’s output

In most of the examples in Chapter 6, we omitted the output from stset for the sake
of brevity. For instance, in one of our exampies, we showed

. use http://www.stata-press.com/data/cgg/i1d27_29

. list, noobs sepby(id)

id begin end event x
27 . 11jan2000 ? .
27 11jan2000  15jan2000 10 3
27 15jan2000  21jan2000 8 3
27  21jan2000  30jan2000 9 3
28 . 11jan2000 10 .
28 11jan2000  15jan2000 2 3
28 153an2C000  21jan2000 8 3
28  21jan2000  301an2000 8 3
29 . 11jan2000 12 .
25 11jan2000 21jan2000 8 3
26 21jan2000  30jan2000 ¢ 3
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. stzat end, origin(event==2 12) enter(event==10 12} /*

>
{output omitted)

Let us now examine what

*/ failure(event==9) time0(begin) id(id)

stset actually displayed:

. steet end, origin(svent==2 12) anter(svent==10 12) /*

>
id:
failure event:
obs. time interval:

enter on or after:
exit on or befors:
t for analyais:

#/ failure(event==9) timeO{begin) 1d(id)

id

event == 9
{bagin, end]
avent==10 12
failura
(time-origin)

origin: event==2 12

total obs.

entry time missing (begin>=.}
obs, end on or before enter{)
obs. end on or before origin()

PROBABLE ERROR

Ll S

obs. remaining, representing
subjects
fajlures in single fallure-per-subject data
total analysis time at risk, at risk from t
earliest cbserved entry t
last observed exit t

0w LM

0
o]
19

Notice the PROBABLE ERROR message? In our example, it was in fact not an error, but
we did not want to explain that at the time. Now we will explain and note that most
probable errors are in fact errors, and the source of probable errors is worth exploring,

There are two parts to stset’s output. The first simply repeats in a more readable
format what you specified in the stset command, and fills in any defaults:

id:

failure event:

obs. time interval:
enter on ar after:
exit on or before:
t for analysis:
crigin:

id

avent == 9
(begin, end]
evant==10 12
failure
{time—crigin)
event==2 12

This output is fairly self-explanatory. One subtle item of interest is (begin, end],
where Stata is reporting from where it obtained the time span for each record. For this,
Stata uses the interval notation ( 1, which mathematically means an interval for which
the left endpoint is excluded and the right endpoint is included. The interval starts
just after begin and continues up to and including end, where begin and end are two
variables in our data.

The notation has statistical meaning. Say that subject 1 fails at time f = 5 and
subject 2 is right censored at the same time. When Stata’s semiparametric analyses
cormmands perform the individual binary-outeome analyses for each failure time, would
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Stata include or exclude subject 2 from the analysis for ¢t = 57 The answer is that Stata
would include subject 2 because the duration is interpreted as being up to and including
the time listed.

The second part of stset’s output summarizes the results of applying the above
definitions to this particular dataset:

11 total obs.
3 entry time missing (begin>=.} PROBABLE ERROR
1 cobs. end on cr befors enter()
1 obe. end on or before origin(}
6 obs. remaining, representing
3 subjects
3 failures in single failure-per-subjact data
48 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 19

This second part splits into two pieces, separated by the solid horizoutal line. The first
piece containus sorme odd things you should know about, and the second piece reports
the characteristics of the dataset that was just set.

Among the odd things you should know about, some may be flagged as probable
errors. This is Stata’s way of telling you that it thinks something is wrong and that you
want to be sure that you understand why this occurred so that you can safely assert
that Stata is wrong. The messages not flagged as probable errors are facts that Stata
considers common enongh. If pressed, you should be able to explain why each of those
arose, too, but you can start out by assuming that there is a good reason and wait for
the data to prove you wrong.

For probable errors, start with a presumption of guilt on your part; for the rest,
start with the presumption of innocence.

In fact, what is being reported in the first piece of the output is a complete accounting
for the records in your data. For this example, Stata reports that

1. We started with 11 records in the dataset.

2. We decided that 6 were relevant for this analysis given what you specified.

3. The 5 remaining records that we excluded break down this way:

a. Three were omitted because the variable begin contained missing values, and
Stata finds this odd.

b. Omne was omitted because “obs. end on or before enter()”, meaning the
time span of the record was before the subject could enter into the analysis
given the rule enter(event==10 12}, which yon specified.
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c. One was omitted because “obs. end on or before origin()”, meaning
the time span of the record was before ¢t = ¢ given the rule
origin(event==2 12), which vou specified.

In our example, it was indeed the case that begin contained missing values, but that
was okay because we never tried to use the enduring variables from that open-ended
time span, and in fact, all the enduring variables contained missing. As a result, we
noted the PROBABLE ERROR message and investigated to find that there was indeed no
error.

The warnings that stset might issue include (in order from the least serious to the
most serious)

obs. end on or before enter()
obs. end on or before erigin{}

ontry time miesing PROBABLE ERROR
entry on or after exit {(stime>t) PROBABLE ERROR

multiple records at same instant (t{_n-1]==t) PROBABLE ERROR
overlappiog records {(tl_n-1]>entry time) PROBABLE ERROR

ignered because patid missing
weights invalid PROBABLE ERROR
event time missing PROBABLE ERROR

7.2 List some of your data

As previously stated, stset does not change any existing data. All it does is define
the new variables _t0, _t, _d, and _st, which incorporate the information contained in
the data with what the user specifies in stset. As such, it is important to check these
variables on at least a small part of your data to make sure that the results were as you
intended.

e _t0 and _t record the time spans in analysis tirne units.
¢ _d records the outcome (failure or censoring) at the end of each time span.

# _st records whether the observation is relevant to the current analysis.

These are the variables that matter in the sense that all of the other survival analysis
commands (the st family) work with these variables rather than with your original
variables.

This last fact means that if you change your data, you need to stset it again so
that these variables can change along with the data. In fact, stset is smart enough to
remember which syntax and options you had previously used, and thus all you would
have to do is type stset without any arguments.




7.3 Use stdes 77

In many cases, you will have trimmed and cleaned your data to the point where all
observations should be relevant to the analysis. Since _st is an indicator variable that
marks inclusion into subsequent analyses, verify that .st==1 in all ohservations. Either
type “assert _st==1", or type “summarize _st" and verify the mean of _st is one.

If you expect records to be excluded, on the other hand, look at a few of the records
for which _st==0 to verify that the right observations were excluded.

@ Technical Note

In survival models, the “response” is the triple {tg, t, d), where tg marks the beginning
of a time span, { marks the end, and d indicates failure or censoring. As such, when
we stset our data, all we are doing is generating the “response” variables hased on
the information in our data, and generating an indicator variable {_st) that determines
whether our response makes sense given what we know about our data. Thus, by using
stset, we guarantee that no matter what model we chaosc to fit, we are using the same

Tesponse.
]

7.3 Use stdes

stdes presents a brief description of the dataset you have just set. Continuing our
example from the previous section,

. stdes

failure _d: event == 9
analysis time _t: (end-origin}
crigin: event==2 12
enter on or after: event==10 iZ

id: id

}—-—-—————v per subject —|
Category total mean min median max
no. of subjects 3
no. of records 6 2
(first) entry time 1.333333 1] 0 4
(final) exit time 17 . 66687 15 19 19
subjects with gap 4]
time on gap if gap 0 . . . .
time at risk 49 16.33333 15 15 19
failures 3 1 1 1 i

Of particular interest is the line beginning “subjects with gap”. Recall that stset
will flag overlaps but will not even mention gaps, since gaps are not errors. stdes, on
the other hand, will detect gaps and will even provide summary statistics on the lengths
of the gaps.

The remainder of the output can be thought of as that from a specialized summarize
comimand for survival data.
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Notice the first part of the output from stdes, the part that reads

. stdes
failure _d: event == G
analysis time _t: (end-origim}
origin: event==2 12
enter on or after: event==10 12
id: id

That portion of the output is not really being produced by stdes but by the st system
itself. It will appear in the output of every st command—the idea being to remind you
how you have stset your data.

You may get tired of sceing that reminder and, if so, type
. stset, noshow
Later, if you want to get it back again, type

. stset, Bhow

7.4 Use stvary

Here is the result of running stvary on our current analysis:

. stvary

failure _d:
analysis time _t:

event ==
(end-origin)

origin: event==2 12
enter on or after: event==10 12
id: id
subjects for whom the variable is
never always sometimes
variable | constant varying missing missing  missing
X | 3 0 3 0 o

With a larger dataset with more covariates, we might see somcthing like

. stvary

failure _d:
analysis time _t:

event == 9
{end-origin)

origin: event==2 12
enter on or after: event==10 12
id: id
subjects for whom the variable is
never always sometimes
variable | constant varying missing  missing  missing
8ax EOC 0 20 0 480
bp 80 400 100 20 g0
x 497 3 85 0 435
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You want to become practiced at reading this output because it will uncover problems
in your data.

Let us start with the variable sex. Within subject, it never varies—the varying
column is 0. That is good--no one changes their sex in the middle of the study. Also
good is that there is not one subject in the data for which the variable is “always
missing”. For 480 subjects, however, the value of sex is sometimes missing, and only
for 20 is it recorded in every observation. This is a problem that we will want to fix. In
the 480 “sometimes missing” subjects, we are seeing something like

id 56X
&2 .
42 1
42

For 480 subjects, the variable sex is at least filled in once and is at least missing once.
This would be easy enough to fix,
. Bort id end

. quietly by id: replace sex
. guietly by id: replace sex

sex[_n-1] if missing(sex)
sex[.N]

but for now we will focus instead on just making a list of the problems. In Section 7.5,
we will see that there is actually an easier way to fix these types of problems.

Variable bp {bload pressure) is shown to be constant for 80 subjects and varying for
400. Varying means that it takes on different, nonmissing values at different times. For
20 subjects, according to stvary, the variable is always missing.

Seme examples of how stvary categorizes constant, varying, and always missing are

id bp id bp

b6 . <- always missing 6o . <- constant
bE . &0 180

56 . 60

57 180 <- constant 61 180 <- varying
57 180 €1 150

57 180 61l 200

58 180 <- constant 62 180 <- varying
58 . €2 190

58 180 62 180

5% 180 <- constant 63 180 <- varying
5% . €3 .

5% . €3 190

Does bp have problems? It does if we want to use it as an explanatory variable in our
models because any observations for which bp is missing would be dropped from the
analysis. Perhaps that is necessary given that we are uncertain as to the value of bp
when it is missing. On the other hand, we may be willing to fill in bp values from the
last time they were kuown so that
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which is easy enough to do for cases where bp is not always missing,

. sort id end
. quietly by id: replace bp = bpl[_n-11 if missing(bp)

and in fact, we show an automatic way to do this in Section 7.5.

Returning to the stvary output, variable x in our data also looks problematic, since
it is constant for 497 subjects and varies for only 3. This looks suspicious.

1. Should x really be constant for everyone and thus the 3 subjects for which it varies
represent coding errors?

2. We recall from above that stvary has a strange concept of constant—if we observe
the variable just once and all the other values are nissing, then stvary categorizes
that result as constant. Ergo, is it possible that all 497 “constant” subjects in
our data have x observed just once? Some 435 could be like that, because 435 are
“sometimes missing”. We should look, and if we find that to be true, we wonder

about the reasonablencss of filling in subsequent valuoes.

7.5 Perhaps use stfill

stfill is an alternative to doing things like

and

. 80Tt id end
» quietly by id: replace sex = sex(.n-1} if missing(sex}
. quietly by id: replace sex = sex[_N]

. gort id emnd
. quietly by id: replace bp = bp[_n-1] if missing(bp)
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The basic syntax of stfill is
stfill varfist, {baseline|forward}

The baseline option wili fill in all the records with the value first observed for each
subject, even if the current value is nonmissing. This has the effect of making the
variables in varlist constant within each subject. The forward option, alternatively,
will filt in missing values by carrying forward prior values of variables.

For example, if you type
. stfill sex bp, forward

stfill will fix the variables sex and bp from our previous example. Almost. stfill
will not backfill, which is to say, fill in earlier times with values from later times, and
Stata’s reason for refusing to is that backfilling is harder to justify.

There is another issue regarding the use of st£i11, and this issue applies to other st
data-management commands. When you stset the data, the result may be that only
a subset of the available records is marked as valid for future analysis. For example,
suppose you have the following recorded in your dataset,

id datel datel event
71 01jan2000 04jan2000
71 04jan2000 07jani905
71 07jan2000 13jan2000
7t 13jan2000 18jan2000
71 18feb2000 24feb2000
71 24jan2000 28jan2000
71 28jan2000 31jan2000

W WA

and you stset the data with
. stset datel, id{id) failure{event==9} origin{event==3)

which, for this subject, results in

id datel datel event _t0 _t _d _at
71 013an2000 04jan2000 2 . 0
71 04jan2000 07jan1999 3 . o
71 07jan2000 13jan2000 6 0 6 0 i
71 133an2000 18jan2000 3] 6 11 0 1
71 18feb2000 24feb2000 9 i1 17 1 1
71 243an2000 28jan2000 3 . o
71 28jan2000 31jan2000 3 0

Thus, we have 7 records for this subject, but for our analysis we are only using the
middle three.

We call this whole collection of data on the patient a history. We refer to the records
before the onset of risk as the past history, the records heing used as the current history,
and the records after failure or censoring as the future history.

Now, if we are going to fill values forward, it would be a shame not to use the
information we have in the past, If we arc going to go to the effort of cleaning up data,
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it would be a shame not to clean all of it, including the future. However, all of the st
commands—including the st data-management commands—restrict themselves to the
current history. They pretend the other data do not exist,

There exists a trick, however, to make Stata recognize the other records for purposes
of data management. If you type

. stresst, past

Stata will temporarily set the dataset so that it includes the past and the current history,
and when you later type

. Btreset
Stata will make things just as they werc, with only the current history sct. If you type
. straset, future

Stata will temporarily set the dataset so that it includes the current and the future
histary, and of course, typing streset by itself will restore things to be as they were.
If you type

. streset, past future
Stata will temporarily set the dataset to include the full history.

What do these commands really do? They concoct an absurd definition of analysis
time and failure so that the observations temporarily appear as if they are in the anal-
ysis. The analysis time and failure definitions Stata concocts are not appropriate for
analvsis, but that does not matter because Stata knows when it is using these artifi-
cial definitions and will not let you do anything inappropriate in teris of using the st
analysis commands.

So, returning to our example, the best way to fix sex and bp is

. atfill sex, baselins
. streset, past future
. 8tfill bp, forward

. Etreset

Note that we stfill sex, baseline before including the past history, just to make
sure that the value used coincides with the onset of risk.

7.6 Example: Hip fracture data

Let us pretend that a study was performed tc quantify the benefit of a new inflatable
device to protect elderly persons from hip fractures resulting from falls. The device is
worn around the hips at all times. It is hypothesized that the device will reduce the
incidence of hip fractures in this population. Forty-eight (48) women over the age of
60, without previous histories of hip trauma, were recruited for this study. Of these
48 women, 28 were randomly pgiven the device and instructed on how to wear it. The
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remaining 20 women were not provided with the device and were used as study controls.
All 48 women were followed closely, and blood calcium levels were drawn approxitnately
every 5 months. The time to hip fracture or censoring was recorded in months. It was
decided at study onset that, if at any time during the follow-up period, a woman was
hospitalized for any reason, she would not be considered at risk of falling and fracturing
her hip. This creates gaps in the data.

The dataset below is real, so feel free to use it. The data, however, are fictional.

. use http://www.stata-press.com/data/cgg/hip
(hip fracturs study)

. describe
Contains data from http://www.stata-press.com/data/cgg/hip.dta
obs: 106 hip fracture study
vars: 7 30 Jan 2002 11:58
asize: 1,484 (99.8Y% of memory fres)
storage display valua
variable name type  format label variable label
id byte Y4.0g patient id
timel byte %5.0g begin of span
timel byte 45.0g end of span
fracture byte %8.0g fracture evant
protect byte %8.0g wears device
age byte %4.0g age at enrollment
calcium float ¥%8.0g blood calcium level
Sorted by:
. summarize
Yariable Obs Mean Std. Dev. Min Max
id 106 28.21658 13.0959% 1 43
time 106 4,792453 5.631065 0 15
timel 106 11.5283 8.481024 1 39
fracture 106 .2824528 LABTOED2 0 1
prutect 48 5833333 . 4882238 0 1
age 48 7D.8B75 5.689205 62 82
caleinm 108 10.10848 1.407355 7.25 12.32

. sort id timed
. by id: list timeQ-calcium

=» ig =1

time0 timel fracture protect age calcium

1. 0 1 1 [ 78 9.386
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-» id =2
time) timei: fracture protect age calcium
1. 0 1 1 0 B0 7.8
{output omitted )
-> id = 17
time0 timel fracture protect age calcium
1. 0 8 o o 66 11.48
2. 8 15 1 10.79
-> id = 1§
time0 timel fracture protect age caleium
1. 5] 5 0 0 64 11.68
2. 15 17 1 11.59
{cttput omitted )
-» id = 47
time0  timel fracture protect age calcium
1. 0 5 0 i 63 12.18
2. 5 15 0 11.64
3. 15 35 0 11.79
-> id = 48
time0 timel fracture protect age calcium
1. 0 5 Y 1 67 11.21
2. 5 15 g 11,43
3. 15 3% 0 11.29

In our data, timne i3 already recorded in analysis time units, which just means we
will not have to bother with the origin{) option wher we type stset.

Our data do, however, have multiple observations per subject to accommodate the
time-varying covariate calcium, and we will assume that the value of this variable is

fixed over the interval spanned by each record.

Our age variable age records the age of each participant at the time of enrcllment
in the study. Glancing at our data, you will notice that age appears to be coded only
in the first record for each subject., All the records are like that. If we later copy this




7.6 Example: Hip fracture data 85

value of age down (l.e., propagate age values from past to future observations}, we will
be treating age as fixed.

In any case, the stset command for this dataset is

. Btset timel, id(id) timeC(timeO) failure{fracture)
id: 44
failure event: fracture != 0 & fractura < .

obs. tima interval: {(time0, timall
exit on or before: failure

106 +total obs.
% exclusions

1068 obs. remaining, representing
48 gubjactse
31 failures in single failure-per-subjaect data
7i4 total analysis time at risk, at risk frem t = ]
earliest observed entry t [
last observed exit t as

I

Let us now go through the data verification process described in this chapter. We
begin by locking at the above output, then examine _t0, _t, .d, and _st, confirin that
stdes does not reveal any surprises, confirm that stvary makes a similarly unsurprising
report, and finally use st£ill to fix any problems uncovered by stvary.

First, we look at .10, _t, _d, and _st in the beginning, middle, and end of the data.

. lizt id time0 timel frac _t0 _t _d _st if id<=3

id timeld timel fracture _t0 _t _d _at

1. 1 0 1 1 0 1 1 1
2. 2 0 1 1 0 1 1 1
3. 3 0 2 1 0 2 1 1

. list id timeD timel frac _t@ _t _d _st if 15<=id & id<=18, saphy(id)

id timed timel fracture _to _t _d _at
23. 16 0 5 0 0 =] 0 1
2. 16 5 12 1 b 12 1 1
35, 17 0 B a ¢} 8 0 1
28. 17 8 15 1 B 15 1 1
27. 18 0 B o o] 5 0 1

28, 18 16 17 1 i5 17 1 1
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. list id timed timel frac _t0 _t _d _st if id>=47, sepby(id)

id timed timel fracturae _t0 _t _d _8t
101. 47 0 5 a o B 0 1
102. 47 3 16 0 5 16 0 1
103. a7 1B 36 a 16 3% 0 1
104, 48 0 5 0 0 B 0 1
105. 48 5 18 0 5 15 0 1
108. 48 15 a9 0 16 3% 0 1

Okay, that looks good to us. Let’s see what stdes has to say:

. Btdes

failure _d: fracture
analysis time _t: timel

id: id

f——— per subject ——— o
Category total mean min median max
no. of subjects 48
no. of records 106 2.208333 i 2 3
{first} entry time ] 0 o o
(firal) exit time 16.6 1 12.5 39
subjects with gap 3
time on gap if gap 30 10 10 10 10
time at risk T14 14.875 1 11.5 39
failures 31 . 65458333 o H 1

Starting with the first two lines, stdes reports that there are 48 subjects in our
data and that there are a total of 106 records, and that the average number of records
per subject is just over two with three being the maximum number of records for any
one subject. From this, we see that the st system correctly recognizes that there are
multiple records per subject. In cases where there is only one abscrvation per subject,
the reported totals in the first and second line would be equal, and the mean, max, and
min number of records per subject would all be egqual to one.

Ir lines 3 and 4, stdes reports that everyone entered at time 0—there is no delayed
entry-—and that the average exit tinie was 15.5 months, with a minimum of cne and a
maximum of 39. Be careful interpreting this reported average exit time. Note that this
is just the average of the follow-up times; it is not the average survival time because
some of our subjects are censored. When there are no censored observations, the average
exit time reported by stdes does equal the average survival time.

In lines 5 and 6, stdes reports that there are three subjects with gaps each 10
months long. This is a strange finding. In most datasets with time gaps, the gaps vary
in length. We were immediately suspicious of these results and wanted to verify them.
One way to identify these three subjects is to make use of the fact that, when there
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are no gaps between consecutive observations for a subject, the ending time of the first
record equals the beginning time of the next record. So, we will sort the data by subject
and time, and then we will generate a dummy variable gap==1 for those observations
with gaps. Then, we can list the observations,

. sort id _t¢ _t
. quietly by id: gen gap=1l if _t0® != _t[ _n-1)] & _n>1
. list id if gap==1

id
28, i8
55. 30
63. 33

. list id time0 timel _t0 _t if 1d==18 | 1d==30 | 1d==33, sepby(id)

id timed timel _t0 _t
27. 18 0 5 0 5
?8. 18 is5 17 15 17
54, 30 0 5 o 5
55, 30 i5 19 15 19
62. 33 0 1) O 5
63, 33 15 23 15 23

All appears well; each of these records had a gap lasting 10 months, yet perhaps we still
might want to check that the data were entered correctly.

Returning to the stdes output, on line 7 we observe that subjects were at risk of
failure for a total of 714 months. This is simply the sum of the time spanned by the
records, calculated by stdes by calculating the length of the time interval represented
by each record (_t0, _t] and then summing these lengths conditional on _st==1.

Finally, in line 8, stdes reports that there were 31 failures, or 31 hip fractures, in
our data. Note that the maximum number of failures is 1, indicating that we have single
failure-per-subject data, and that the minimum number of failures is 0, indicating the
presence of censored observations. Of course, we can also sce that there are censored
ohservations when we compare the total number of failures and the total number of
observations on line 2. As we may expect, for a dataset with multiple failures-per-
observation, stdes will provide in line 8 summary statistics indicating the existence of
multiple failures-per-subject data.

{Continued on next page)
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So, all looks fine based on stdes. Next, let’s try stvary;

. capture drop gap
. Btvary

failure _d: fractura
analysis time _t: timel

id: id
subjects for whom the variable is
never always sometimes
variable constant varying missing missing missing
protect 48 0 8 0 40
age 48 Q 8 0 40
calcium B 40 48 0 o]

By default, stvary reports on all variables in the dataset, omitting the variables used
or created by stset. (stvary optionally allows variable lists, so we can specify those
variables that we wish to examine.)

The variable protect records if the subject is in the experimental or control group,
age records the age at enrollment in the study, and calcium records the sub ject’s blood
calcium concentration. Recall that this last characteristic was examined approximately
every five months, so the variable varies over time.

Looking at stvary’s output, what catches our eye is the large number of “sometimes
missings”. Well, we already knew that protect and age did not have the values filled
in on subsequent records and that we would have to fix that., Let us now follow our
own advice and use streset and stfill to fix this problem. In this case, streset is
unnecessary since there are no observations for which _st==0, but it never hurts to be
cautions:

. 8treset, past future
{output omitted )
. 8tfill age protect, forvard

failure _d: fracture
analysis time _t: ({timel-origin)
origin: min
exit on or before: time .
id:  id
replace missing values with previously cbserved values:
age: b8 real changes mada
protect: 58 real changes made

. Btreset
{output omitted )
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Now, stvary reports

. Btvary

fajlure _d: fracture

analysis time _t: timel

id: 4d
subjects for whom the variable is

never always  sometimes

variable constant varying wissing  missing  miassing
protect 48 ¢ 48 0 0
age 43 0 48 0 0
calcium 8 40 48 0 0

Satisfied, we can save these data as hip2.dta.

. save hip2
file hip2.dta saved

Note that when you stset a dataset and save it, Stata remembers how the data were
set the next time you use the data.






8 Nonparametric analysis

The previous two chapters served as a tutorial on stset. Once you stset your data, you
can literally nse any st survival command, and the nice thing is that you do not have
to continually restate the definitions of analysis time, failure, and rules for inclusion.

As previously discussed in Chapter 1, the analysis of survival data can take one of
three forins: nonparametric, semiparametric, and parametric, all depending on what
we are willing to assume about the form of the survivor function and about how the
survival experience is affected by covariates.

Nonparametric analysis follows the philosophy of letting the dataset speak for itself
and makes no assumption about the functional form of the the survivor function (and
thus no assumption about the hazard, cumulative hazard, etc.), and the effects of co-
variates are not modeled either—the comparison of the survival experience is done at a
qualitative level across the values of the covariates.

Most of Stata’s nonparametric survival analysis is performed via the sts command,
whicl: calculates estimates, saves estimates as data, draws graphs, and perforins tests,
amang other things; see [ST] sts.

8.1 Inadequacies of standard univariate methods

Before we proceed, however, it is important to discuss briefly the reasons that the typical
preliminary data analysis tools do not translate well into the survival analysis paradigin.
For example, the most basic of analyses would be one that analyzed the mean time to
failure or median time to failure.

Let us use the hip-replacement dataset, which we stset at the end of Chapter T:

{Continned on next page)
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. use http://www.stata-press.con/data/cgg/hip2
{hip fracture study)

« list id _t0 _t fracture protect age calcium if 20<=id & i1d<=22, sepby{(id)

id 0 _t fracture protact age calcium
az. 20 c 5 0 0 67 11.19
aa. 20 5 15 ol o 67 10.68
34. 20 16 23 1 o] 67 10.48
35. 21 4] 5 3] 1 g2 g8.57
36. a 5 [} 1 1 52 7.28
a7. 22 0 B o 1 BO 7.98
38. 22 5 6 a 1 a0 9.65

Putting aside for now the possible effects of the covariates, if we were interested in
estimating the population mean time to failure, we might be tempted to use the standard
tools such as

el Lt

Variable | Obs Mean Std. Err. (95% Conf. Intervall

t | 106 11.5283 .B237498 9.894958 13.16166

We might quickly realize that this is not what we want because there exist multiple
records for each individual. Being smmarter, we could just consider those values of _t
corresponding to the last record for each individual,

. sort id _t
. quietly by id: gen last = _p==_N
.oei _t if laet
Variable | Obs Mean Std. Err. [88% Conf. Interval]

t ‘ 48 15.5 1. 480368 12.52188 18.47812

and we now have a mean based on 48 observations (one for each subject). This will not
serve, however, becanse _t does not always correspond to failure time—some times in
our data are eensored, meaning that the failure time in these cases is known ouly to be
greater than _t. As such, the estimate of the mean is biased downwards.

Dropping the censored observations and redoing the analysis will not help. Consider
an extreme case of a dataset with just one censvred ohservation and assume the obser-
vation is censored at time 0.1, long before the first failure. For all you know, had that
subject not been censored, their failure might have occurred long after the last failure
in the data and so had a large effect on the mean. Wherever the censored observation is
located in the data, we can repeat that argument, and so, in the presence of censoring,
obtaining estimates of the mean survival time calculated in the standard way is simply
not possible.
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Estimates of the median survival time are similarly not possible to obtain using stan-
dard, nonsurvival tools. The “standard” way of calculating the median is to order the
observations and report the “middle” one as the median. In the presence of censoring,
that ordering is impossible to ascertain. (The modern way of calculating the median
is to turn to the calculation of survival probabilities and find the point at which the
survival probability is 0.5.}

Thus, even the most simple analysis—never mind the more complicated regression
models—will break down when applied to survival data. In addition, there are even
more issues related to survival data—truncation, for example—that would only further
complicate the estimation.

Instead, survival analysis is a fleld of its own. Given the nature of the role that
time plays in the analysis, much focus is given to the functions that characterize the
distribution of the survival time: the hazard function, the cumulative hazard function,
and the survivor function being the most common ways to describe the distribution.
Much of survival analysis is concerned with the estimation of and inference for these
functions of time.

8.2 The Kaplan—Meier estimator

8.2.1 Calculation

The estimator of Kaplan and Meier (1958) is a nonparametric estimate of the survivoer
funetion S{t), the probability of survival past time ¢ {or equivalently, the probability
of failing after ¢). For a dataset with observed failure times, t;,...,tx, where k is the
number of distinct failure times observed in the data, the Kaplan—Meier estimate (also
known as the product limit estimate of S{t)) at any time ¢ is given by

Sw= 1] (’”—;d-) (5.1)

i<t ’
where 7; is the number of individuals at risk at time ¢; and d; is the number of failures
at time ¢;. The product is over all observed failure times less than or equal to £,

How does this estimator work? Consider the hypothetical dataset of subjects given
in the usual format,

id t failed
1 2 1
2 4 1
3 4 i
4 B 0
5 7 1
[ 8 0

and form a table that summarizes what happens at each time in our data {whether a
failure time or a censored time):
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At time No. at risk No. failed No. censored

2 6 1 0
4 5 2 0
5 3 0 1
7 2 1 ]
8 1 0 1

At time ¢t = 2, the earliest time in our data, all 6 subjects were at risk, but at that
instant, 1 failed (id==1). At the next time, ¢t = 4, 5 subjects were at risk, and at that
instant, 2 of the § subjects failed. At time ¢ = 5, 3 subjects were left, and no one failed,
but onc subject was censored, leaving us with 2 subjects at time £ = 7, of which one
failed. Finally, at time ¢ = 8, we had 1 subject left at risk, and this subject was censored
at that time.

Now we ask the following:

s What is the probability of survival beyond time ¢t = 2, the earliest time in our
data? Since 5 out of the six subjects survived beyond this point, the estimate is
5/6.

o What is the probability of survival beyond time ¢ = 4, given survival right up to
t = 47 Since we had 5 subjects at risk at time ¢ = 4, of which 2 failed, we estimate
this probability to be 3/5.

o What is the probability of survival beyond time t = 5, given survival right up to

t = 57 Since 3 subjects were at risk, and no oue failed, the probability estimate
is3/3=1.

and so on. We can now add these individual component probabilities (calling them p)
to our table:

At time No. at risk No. failed No. censored p

2 6 1 0 5/6
4 5 2 0 3/5
5 3 0 1 1
7 2 1 0 1/2
8 1 0 1 1

» The first value of p, 5/6, is the probability of survival beyond ¢ = 2.

e The second value, 3/5, is the {conditional) probability of survival beyond ¢ = 4,
given survival up until ¢ = 4, which in these data is the same as survival beyond
time ¢ = 2. Thus, unconditionally, the probability of survival beyond ¢ = 4 is

(5/6)(3/5) = 1/2.
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o The third value, 1, is the conditional probability of survival beyond ¢ = 5, given
survival up until £ = 5, which in these data is the same as survival beyond time
t = 4. Unconditionally, the probability of survival beyond t = 5 is thus equal to

(1/2)(1) = 1/2.

Thus, the Kaplan-Meier estimate is the running product of the values of p that we have
previcusly calculated, and we can add it to our table.

At time No. at risk No. failed No. censored p §(t)

2 6 1 0 5/6  5/6
4 5 2 0 3/5 1/2
5 3 0 1 1 1/2
7 2 1 0 /2 1/4
8 1 0 1 1 1/4

Note that since the Kaplan—Meier estimate in (8.1) only operates on observed failure
times (and not at censoring times), the net effect is simply to ignore the cases where
p =1 in our calculating our product, which changes nothing.

In Stata, the Kaplan—Meier estimate is obtained using the sts 1list command, which
gives a table similar to the one we constructed:

. input id time failed
id time failed

e L BRI N N B
O DN b [0 b
Fa R =t B 4 I 5]
T O e

o
=]

. steet time, fail(failed)
{output omitted )

. Btz liet
failure _d: failed
analysis time _t: time
Beg. Net Survivor Std.
Time Total Fail Lost Function Error {95% Conf. Int.)
2 [ 1 0 0.8333 0.1521 0.2731 0.9747
4 B 2 0 0.5000 0.2041 0.1109 0.B0O37
5 3 0 1 0.5000 0.2041 0.1109 0.8037
7 2 1 ¥ 0.2600 0.2041 0.0123 0.6459
8 1 0 1 0.2500 0.2041 0.0123 0.6459

The column “Beg. Total” is what we called “No. at risk” in our table; the column “Fail”
is “No. failed”; and the column “Net lost” is related to our “No. censored” column but
is modified to handle delayed entry (see Section 8,2,3).
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The standard error reported for the Kaplan-Meier estimate is that given by Green-
wood’s (1926) formula:

@Sy =8 Y -

sz mlny = dj)

These standard errors, however, are not used for confidence intervals. Instead, the
asymptotic variance of In{— In §(t}},

5 - — DT :
{on (252}

is used, where the sums are calculated over j|t; < t (Kalbfleisch and Prentice 2002,

18). The confidence bounds are then caleulated as §(t)e"p{izﬂf23(‘”, where 2,2 is the
(1 — a/2} quantile of the normal distribution.

8.2.2 Censoring

When censoring eccurs at some time other than an cbserved failure time, the effect is
sitnply that the censored subjects are dropped from the “No. at risk™ total without
processing the subject as having failed. However, when some subjects are censored at
the same time that others fail, we need to be a bit careful about how we order the
censorings and failures. When we went through the calculations of the Kaplan—Meier
estimate in Section 8.2.1, we did so without explaining this point, yet be assured that
we were following some convention.

The Stata convention for handling a censoring that happens at the same time as a
failure is to assume that the failure occurred before the censoring, and in fact, all of
Stata’s st comunands follow this rule. Recall that in Chapter 7 that we defined a time
span based ou the stset variables _t0 and _t to be the interval (¢q,t], which is open at
the left endpoint and closed at the right endpoint. Therefore, if we apply this definition
of a time span, then any record that is shown to be censored at the end of this span
can be thought of as instead being censored at some time t + ¢ for an arbitrarily small
€. In other words, the subject can fail at time ¢, but if the failure is censored, Stata
assumes that the censoring took place just a little bit later, and thus, failures occur
before censorings.

This is how Stata handles this issue, but there is nothing wrong with the convention
that handles censorings as occurring before failures when they appear to happen con-
currently. One can force Stata to look at things this way by subtracting a small number
from the time variable in your data for those records that are censored, and most of the
time the number may be chosen small encugh as to not otherwise affect the analysis.
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0 Technical Note

If you choose to force Stata to treat censorings as occurring before failures, be sure to
modify the time variable in your data, and not the .t variable that stset has created.
In general, mannally changing the values of the stset variables _t0, _t, 4, and _st
is dangerous, since these variables have relations to your variables, and some of the
data-management st commands exploit that relationship.

Thus, instead of something such as
. replace t = _t - 0.0001 if d ==10
use

. replace time = time - 0.0001 if failed == O
. stset time, failure{failed) 0

8.2.3 Left truncation (delayed entry)

Recall that left truncation refers to subjects who do not come under observation until
after they are at risk. In other words, by the time you begin observing this subject,
they have already survived for some time, and you are only observing them because
they did not fail during that time.

At one level, such observations cause no problems with the Kaplan-Meier calculation,
In (8.1}, n; is the number of subjects at risk (cligible to fail), and this number simply
needs to take into account that subjects are not at risk of failing until they come under
observation. When they enter, we simply increase n; to reflect this fact.

For example, if you have the following data (note that subject 6 enters at time {5 = 4
and is censored at time ¢t = 7),

id t tl failed
H 0 2 1
2 Q 4 1
3 0 4 1
4 0 & 0
5 0 7 1
[ 4 7 0
7 0 8 0

then the “risk-group” table is
At time No. at risk No. failed No. censored No. added

2 6 i g 0
4 ) 2 0 1
5 4 0 1 0
7 3 1 1 0
8 1 0 1 0

and now it is just a matter of making the Kaplan—Meier calculations based on how many
arc in the “No. at risk” and “No. failed” columns. We will let Stata do the work:
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. input id time timel failaed

id timal timal failed

1. 1 0 2 1
2. 2 a 4 1
3. 3 0 4 1
4, 4 0 b [¥]
5. b 0 7 1
6. 6 4 7 0
7. T 0 g o
8. end

. atset timel, fail(failed) timal{timed)
{output omitted )
. st list
failure _d: failed

analysis time _t: timel

Beg. Net Surviver Std.
Time Total Fail Leost Function Error {95% Conf. Int.]
2 6 1 0 0.8333 0.162i 0.2731 0.9747
4 5 2 -1 0.5000 0.2041 0.1109 0.8037
& 4 0 1 0.5000 0.2041 0.1109 0.8037
7 3 1 1 0.3333 0.1926 0.0461 0.6756
8 1 0 1 0.3333 0.1926 G.0461 0.6766

Notice how Stata listed the delayed entry at ¢t = 4: “Net Lost” is —~1. In order to
conserve columns, rather than listing censorings and entries separately, Stata combines
them into a single column containing censorings-minus-entries and labels that column
as “Net Lost™,

There is a level at which delayed entries cause considerable problems. 1In their
presence, the Kaplan—Meier procedure for calculating the survival curve can vield absurd
results. This happens when some late arrivals to the study enter after everyone before
them has failed.

Consider the following output from sts 1ist for such a datasct:

. gts list
failure _d: failed

analysis time _t: timel

Beg. Net Survivor 5td.

Time Total Fail Lost Function Error [95% Conf. Int.]
2 ] 1 o] 0.8333 0.1521 0.2731 0.9747
4 6 2 -1 ¢.5000 0.2041 0.1108 0.8037
1) 4 o 1 0. 65000 0.2041 0.1108 Q.8037
7 3 1 i 0.3333 0.1925 0.0461 0.8756
B 1 1 0 0.0000
] 0 0 -3 0.0000
10 3 1 0 ¢. 0000
11 2 1 1 Q.0000
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As you can see, we constructed these data to include three additional subjects to enter
at t = 9, after everyone who was previously at risk had failed. At ¢ =8, S(t) has reached
zero, never to return. Why does this happen? Note the product form of {8.1). Once a
product term of zero has been introduced {which occurs at ¢ = 8}, the product is zero,
and further multiplication by anything nonzero is pointless. This is a shortcoming of
the Kaplan—Meier method, and in Section 8.3 we show that there is an alternative.

QO Technical Naote

TFhere is one other issue regarding the Kaplan—Meier estimator in regards to delayed
entry. In cases where the earliest entry into the study oceurs after time ¢t = 0, one
may still ealculate the Kaplan-Meicr estimator, but the interpretation changes. Rather
than estimating S(1), you are now estimating S{t|t...), where £, is the earliest entry

time.
o |

8.2.4 Interval truncation (gaps)

Interval truncation is really no different than censoring followed by delayed entry. The
subject disappears from the risk groups for a while and then reenters. The only issue
is making sure that our “No. at risk” calculations reflect this fact, but Stata is up te
that.

As with delayed entry, if a subject with o gap reenters after a final failure—meaning
that a prior estimate of S(t) i3 zero—then all subsequent estimates of S(¢) will also be
zero regardless of future activity.

8.2.5 Relationship to the empirical distribution function

The cumulative distribution function is defined as F(t) = 1 — 5(¢), and in fact, by
specifying the failure option, yon can ask sts list to list the estimate of F(t}, which
15 obtained as one minus the Kaplan—-Meicr estimate:

. input id time0d timel failed

id timad timel failed
0]

eI B I P )
haet I I - T N
L= == =
LB S B I S 6 )
[ =3B =

end
., stset timel, fail{failed) time0{time0)
{output omitted )
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. 8ts list, fajlure

failure _d: failed
analysis time _t: timel

Bag. Ket Failure Std.
Time Total Fail Lost Functicn Error [96% Conf. Int.]
2 <] 1 o] 0.1687 0.1523 0.0253 0.7269
4 5 2 -1 0. 5000 0.3041 0. 1963 ¢.58891
=] 4 1] 1 0. 8000 0.2041 0.1963 0.8851
7 3 1 1 G.BE67 0.19286 0.3244 0.9539
8 1 o] 1 0.6667 0.1935 0.3244 0.9533

For standard nonsurvival datasets, the empirical distribution function (edf) is defined
to be

ﬁedf(t) = Z n-t

Jlt; st

where we have j = 1,...,n observations. That is, ﬁed;( t} is a step function that increases
by 1/n at each observation in the data. Of course, F?edf(t) has no mechanism to account
for censoring, truncation, and gaps, but in cases where none of these exist, it can be
shown that

S(t) =1 - Ruslt)

where § (t) is the Kaplan—Meier estimate. To demonstrate, consider the following simple
dataset, which has no censoring or truncation:

. input t

ind Wk =
LA R o ]

end
. Btset t
{output ormitted)
. sta list, failure

failure _d: 1 {(meaning all fail)
analysis time _t: t

Beg. Net Failure Std.
Time Total Fail Lost Function Error [95% Conf. Int.]
1 4 1 1] 0.3500 0.2165 0.0395 0.8721
4 3 2 0 0.7500 0.21656 0.3347 0.9911
5 1 1 0 1.0000 . . .

This reproduces Fogr (t), which is a nice property of the Kaplan-Meier estimator. Despite
its sophistication in dealing with the complexities caused censoring and truncation, it
reduces to the standard methodology when these complexities do not exist.

i
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8.2.6 Other uses of sts list

The sts list command lists the Kaplan-Meier survivor function. Let us use our hip-
fracture dataset (the version already stset):

. use http://www._stata-press.com/data/cgg/hip2
(hip fracture study)

. sts list

failure _d: fracture
analysis time _t: timel

id: id
Bag. Net Surviver otd.
Time Total Fail Lest Function Error [95% Conf. Int.]
1 48 2 o] 0.9683 0.0288 0.8435 0.9894
2 46 1 0 0.9375 0.0349 0.81i86 0.9794
3 45 b3 o 0.9187 0.0399% 0.7930 0.9679
4 44 2 o .87580 0.0477 0.7427 0.9418
{output omitted)
13 21 1 0 0.5384 0.0774 0.3767 0.6752
15 20 1 -2 0.5114 G.07B1 0. 3607 0.6511
18 21 i ] 0. 4871 0.0781 0.3285 0.6283
{output omitted)
ag 2 4] 1 0.1822 0.0760 0.0638 0.3487
as 1 0 1 0.1822 0.0780 0. 0638 0.3487

sts list can also produce less detailed output. For instance, we can ask to see 5 equally
spaced survival times in our data by specifying the at () option:

. Bta list, at(5)
failure _d: fracture

analysis time _t: timel

id: id
Bep. Surviver Std.

Time Tetal Fail Function Error [85% Conf. Int.]
i 48 2 0.95683 0.0288 0.8435 0.5894
13 21 18 0.6384 0.0774 0.3767 0.68752
5 10 g 0.2776 .0749 0.1443 0.4282
a7 2 2 0.1822 00760 0.0638 0.3487

49 1 aQ

Note: Survivor function is calculated over full data and evaluated at
indicated times; it is not calculated from aggregates shown at left.

sts list will also list side-by-side comparisons of the estimated survivor function.
Recall that our hip-fracture data has two study groups, one that was assigned to wear
an experimental protective device {(protect==1), and a control group that did not wear
the device (protect==0).
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. ste list, by{(protect) compare

failure _d: fracturs
analysis time _t: timel

id: id
Survivor Function
protect 0 1
time 1 0.9000 1.0000
] 0.6000 1.0000
9 0.4364 0.8B2%
13 0.1870 0.7942
17 0.0831 0.7501
21 0.0831 0.7601
25 0.5193
29 0.4544
33 0.3408
ar 0.3408
41 .

sts list has options that allow you to control these lists to get the desired output; see
[sT} sts for more details.

8.2.7 Graphing the Kaplan—Meier estimate

sts graph graphs (among other things) the Kaplan ‘Meier estimate. Typed without
argnments, sts graph graphs the overall (estimated) survival funetion for your data.

. use http://www.stata-press.com/data/cgg/hip2
{hip fracture study)

. sts graph

failure .d: fracture
analysis time _t: timeil
id: id

which produces the graph shown in Figure 8.1.

{Continued on next page)
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Kaplan-Msier survival estimate -

0.00
1
o]

1 . 20 S
analysis time ) .

Figure 8.1: Kaplan-Meier estimate for hip-fracture data

sts graph has many opticns, including most of the options available with twoway.
These options are designed to enhance the visual aspect of the graph and to show various
aspects of the data.

sts graph with the by () option can plot multiple survival curves. We can type the
following to compare the survival curves of the treatment group (protect==1) versus
the control group (protect==0),

. Bts graph, by(protect)

which produces the graph given in Figure 8.2.

{Continued on next page)
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Kaplan-Meier survival estimates, by protact

T 2|0 T T
analysis time
protect=0 ~———- protect = ]

o
-
=]

Figure 8.2: Kaplan-Meier estimates for treatment vs. control
As hoped, we see that the treatment group has a better survival experience than the
control group.

sts graph also has options to indicate the number of censored observations, delayed
entries, or the number of subjects at risk. Specifying censored(number), for example,
displays tick marks approximately at the times when censoring occurred and, above
each tick mark, displays the number of censored observations,

. sta graph, censored(number)

which produces the graph given in Figure 8.3.

(Continued on next page)
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Kaplan—-Meiler survival estimate
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analyals tima
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Figure 8.3: Kaplan—Meier with the number of censored observations

We could also combine censored (number) with by (protect) if we wish.

Option enter is an alternative to censored (). It attempts to show more information
than censored() by adding the nutnber who enter to the censoring information. The
number that entered is displayed below the curve, and the number censored is displayed
above the curve. Unlike censored(), these numbers are centered along the flat portions
of the curve, not where the censorings or entries exactly oceurred.

Option lost is another alternative. When we specify lest, the numbers displayed
are censored minus entered, which is, say, the effective number lost. These numbers are
displayed above the curve, centered along the flat portions.

Options enter and lost are most useful with delayed-entry data.

ats graph has other useful options for pletting Kaplan—Meier curves, including an
option to add confidence bands, and the noorigin option to specify that we wish the
plotted survival curve to begin at the first exit time instead of at ¢ = 0. It is worth
taking the time to read [ST] sts graph in the Stata manual and to explore the behavior
of these and other options.

8.3 The Nelson—Aalen estimator

The cumulative hazard function is defined as
t
H(t) = / () du
0

where k() is the hazard function. In Chapter 2, we discussed the count-data interpreta-
tion of H(t), namely that it may be interpreted as the total number of expected failures
in {0,%) for a subject, if failure were a repeatable process.
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In this section, we obtain a calculation formula for the empirical cumulative hazard
function just as, in Section 8.2, we gave a calculation formula for the empirical survival
function. One way we could do this would be to use the theoretical relationship between
H(t) and 5(t),

H{t) = —In{S()}

where for S(t) we could use the Kaplan-Meier estimator. There exists, however, an
alternative nonparametric method for estimating H(t) that has better small-sample
properties. The estimator is due to Nelson (1972) and Aalen (1978),

- d.
Ht)= Y n—J
Jltz=e

where n; is the number at risk at time ¢;, d; is the number of failures at time #;, and
the sum is over all distinct failure times less than or equal to ¢t. That is, given some
data,

id t failed
1 2 1
2 4 1
3 4 1
4 5 0
5 7 1
6 8 0

we can write the risk table

At time n; d; No. censored
2 6 0

= b L2 oon

1
4 2 0
5 ¢ 1
7 1 0
8 0 1

We calculate e; = d;j/n;, the expected number of failures at each observed time, and
then sum these to form H(%):

At time n; d; No. censored €, H {t)
2 6 1 0 0.1667 0.1667
4 5 2 0 0.4000 0.5667
5 3 0 1 0.0000 0.5667
7 2 1 0 0.5000 1.0667
8 1 0 1 0.0000 1.0667

12 {t) is the Nelson-Aalen estimator of the cumulative hazard, and sts 1ist with the
na option will make this caleulation:




8.3 The Nelson—Aalen estimator 107

. input id time failed

id time failed
1 1 2 1
2 2 1
3. 3 4 1
4. 4 -] o
5. 6 7 1
6. 6 8 ¥l

7. end

. stset time, fail(failed)
{output omitted )

. 8tz list, na

failure _d: failed
analyeis time _t: time

Beg. Net Nelscn-Aalen Std.
Time Total Fail Lost Cum. Haz. Error [96% Conf. Int.]
2 ] 1 O 0. 1667 0. 1667 0.0235 1.1832
4 5 3 o 0.b8E8T .3283 0.1820 1.7838
1) a o 1 0.B8ET 0.3283 0.1820 1.7628
7 2 1 O 1.0667 0.5981 0.3564 a.a0s
8 1 [ 1 1.0667 0.5981 0.3664 3.2015

The standard errors reported above are based on the variance calculation {Aalen
1978),

— d
Var{H(t)} = Z n—;
e d

and the confidence intervals reported are H {t) exp{£z, /gg(t)}, where
_ Var(H(t)}
{H@®)}?

estimates the asymptotic variance of In ﬁ(t) and 24,7 is the (1 — @/2) quantile of the
normal distribution.

&)

The na option is also valid for sts graph, in which case you are plotting the Nelson-
Aalen cumulative hazard instead of the Kaplan—Meier survival function. Using the hip-
fracture data, we can compare the Nelson—Aalen curves for treatment versus control,

. usa hitp://www.stata-press.com/data/cgg/hip2
(hip fracture atudy)

. sts graph, by(protect) na

which produces Figure 8.4. Naturally, we see that the cumulative hazard is greater for
the contral group.
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Nelson-Aaten cumulative hazard estimates, by protect

analysis time

protect=0 ——-—- protect = 1 |

Figure 8.4: Nelson—Aalen curves for treatment vs. control

Theoretically, the survival and cumnlative hazard functions are related by
5(t) = exp{-H(t)}

or, if you prefer, H(t) = —In{5(¢})}. We can use these relations to convert one estimate
to the other. It has been shown that, in small samples, the Kaplan-Meier product-
limit estimator is superior when estimating the survivor function, and the Nelson—
Aalen estimator is superior when estimating the cumulative hazard function. For the
survivor function and the cumulative hazard function, both the Kaplan—Meier estimator
and the Nelson—Aalen estimator are consistent estimates of each, and the statistics are
asyruptotically equivalent (Klein and Moeschberger 2003, 104). That is, in very large
samples, it does not matter how you estimate the survival function, whether by Kaplan—
Meier or by transforming the Nelson--Aalen.

We can compare the survivor curves estimated both ways. The command sts
generate will prove useful here. sts generate will create variables containing the
Kaplan-Meier or Nelson-Aalen estimates, depending on which you request. If we spec-
ify the Kaplan-Meier, we can then convert this estimate into an estimate of the cumu-
lative hazard, based on the Kaplan Meier. If we specify the Nelson Aalen, we can then
convert this estimate into an estimate of the surviver function, based on the Nelson—
Aalen.

With the hip-fracture data still in memory,

. 8ts generate XmS = 2 /* obtain K-M Burvivor sstimate */

. 8ts generate naH = na /* cbtain N-A eumulative hazard estimate +/

. gen naS = exp(-naH) /* calculate N-A survivor estimate */

. gen kmH = —log(kmS) /* calculate K-M cumulative hazard estimate =/

. label var kms "K-M"
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. label var nal "N-A"
. label var kmH "H-M"
. label var naH "N-A"

First, we graph the comparison of the survivor functions, producing Figure 8.5:

. line kmS naS _t, ¢{J J} sort

Figure 8.5: Estimated survivor functions

The top curve is the survivor function estimated by transforming the Nelson—Aalen
estimator, and the bottom one is the Kaplan-Meier. These results are not unusual.
It may be shown using a Taylor expansion that the Nelson—Aualen estimator of the
survivor function is always greater thanu or equal to the Kaplan—Meier estimator. See,
for example, Appendix 1 of Hosmer and Lemeshow {1999) for details.

Next, we graph the comparison of the cumulative hazard functions, producing Fig-
ure 8.6:

. line nalf kmH _t, c{J I} sort

(Continued on next page)
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Figure 8.6: Estimated cumulative hazard functions

The top curve is the cumulative hazard obtained by transforming the Kaplan—Meier
survivor function, and the hottom one is the Nelson-Aalen curve. By analogy to the
above discussion, the Kaplan—Meier version of the cumunlative hazard is always greater
than or equal to the Nelson—~Aalen estimator.

The above graphs are typical for most datasets in that they demonstrate that most
of the time, the Kaplan-Meier and Nelson—Aalen estimators are quite similar onee the
tranusformation has been made so that they both estimate the same things. The Nelsan—
Aalen estimator, however, does offer one additional advantage. Recall in Section 8.2.3
where we discussed a shortcoming of the Kaplan—Meier estimator, namely, that once
the estimator is zero, it remains zero regardless of future activity. The Nelson—Aalen
estimator does not suffer from this problem, since it will increase with every failure
event, even after the Kaplan-Meier estimate would have reached zero. In cases where
this is at issue, the Nelson-Aalen estimator is to be preferred.

Q Technical Note

What lead to the Kaplan-Meier estimator falling to zero and staying at 0 in Sec-
tion 8.2.3 was that (1) there was a gap during which no one in the data was at risk, and
(2) there was no one in the group at risk before the gap who was known to have survived
longer than when the gap started. That is, there was one group of people at risk, and
that group evaporated before anyone from the second group came under observation,
and in the first group, the empirically calculated survival function had indeed fallen to
0, meaning that at the last time anything was known about the group, all that were left
were known to fail.

The Nelson-Aalen estimator deals better with data like that, but understand that
if your data contain a gap during which no one is a4 risk, then your data are absolutely
silent about what the risks might be during that period.
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If there is such a gap, the Nelson-Aalen estimator produces a consistent estimate of

H*(3) :/n h(u)f(u)du

where I{u) is an indicator function equal to 0 over those periods where no subject is at
risk, and 1 otherwise.

Hence, up until the gap, the Nelson-Aalen curve is an estimate of H{t}, but after
the gap, it is an estimate of H(¢no risk during the gap).

Few datasets actually have such gaps. Understand, gaps in subject histories are not
a problem; it is only when all the gaps in all the subjects add up in such a way that
no one is at risk during a period that the dataset itself will have such a gap. When
datasets do have such gaps, you want to avoid the Kaplan-Meier estimate and use the
Nelson—-Aalen, and still you need to think carefully as you interpret results.

For instance, let us imagine that you do a short study on smoking and foliow subjects
for only two years. The second oldest person in your data was 40 years old at enrollment,
meaning that he was 42 at the end of the study. The oldest person was 80 at enrollment.
You would not want to draw the conclusion that the risk of death due to smoking is
G between ages 42 and 80. You observed no one during that period and so have no

information on what the risk might be.
@]

8.4 Estimating the hazard function

sts graph can alse be used to plot an estimate of the hazard function, h(t). Because the
hazard is the derivative of the cumulative hazard, H(t), it would seem straightforward
to estimate the hazard itself. However, examination of Figure 8.4 and the subsequent
graphs reveals that the estimated cumulative hazards available to us are step functions
and thus cannot be directly differentiated. That is not to say that it is not straightfor-
ward to take Figure 8.4 and picture in our minds what the derivative of the enmulative
hazard would look like; for the control group, it would be fairly linear (since the cumu-
lative hazard is parabolic}, and for the treatment group, the derivative would start off
as constant for some time (cumulative hazard is initially linear) and then increase.

It turns out that we can estimate the hazard by taking the steps of the Nelson-
Aalen cumulative hazard and smoothing them with a kernel smoother. More precisely,
for each observed death time £;, if we define the estimated hazard contribution to be

AH(t;) = H(t;) — H(t;—1)

we can obtain these hazard contributions using sts generate newwar = h. Then we
can estimate h(t) with

) =13 K (t 'btf) IN:D
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for some symmetric density function K {} (the kernel) and bandwidth b; the summation
is over the D times at which failure occurs (Klein and Moeschberger 2003, 167).

This whole process can be automated by specifying option hazard to sts graph,
Using our hip-fracture data, we can graph the estimated hazards for both the treatment
and control groups as follows:

. uge http://wwv.stata-press.com/data/cgg/hip2, clear
{hip fracture study}

. 8ts graph, hazard by(protect) kernel{gaussian) width{4 5)

This produces Figure 8.7. The graph agrees with our informal analysis of the Nelson—
Aalen cumulative hazards, Note that in applying the kernel smoother, we specified
a Gaussian (normal) kernel function and bandwidths of four for the control group
(protect==0) and five for the treatment group (protect==1), although suitable de-
faults would have been provided had we not specified these; see [R] kdensity for a list
of available kernel functions and their definitions.

Smoothed hazard estimates, by protect
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Figure 8.7: Smoothed hazard functions

One interesting feature of smoothed hazard plots is that you can assess the assump-
tion of proportional hazards (the importance of which will be discussed in Chapter 9
on the Cox model) by plotting the estimated hazards on a log scale.

- &ta graph, hazard by(protact) kernel(gaussian) width(4 6) yscala(log)

By examining Figure 8.8, we find the lines to be somewhat parallel, meaning that the
proportionality assumption is violated only slightly. When hazards are proportional, the
proportionality can be exploited by using a Cox model to assess the effects of treatment
more efficiently; see Chapter 9.
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Smoothed hazard estimates, by protect
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Figure 8.8: Smoothed hazard functions, log scale

8.5 Tests of hypothesis

In previous sections, we have discussed how to compare the survival experience between
two {or more) groups using the by() option to sts list and sts graph. In order to
form formal tests of hypothesis for the equality of survivor functions across groups, you
can use the sts test command.

sts test will allow you to test the equality of survivor functions using one of sev-
eral available nonparametric tests, namely, the log-rank (Mantel and Haenszel 1959),
Wilcoxon (Breslow 1970; Gehan 1965), Tarone-Ware (1977), Peto—Peto-Prentice (Peto
and Peto 1972; Prentice 1978), and generalized Fleming-Harrington (Harrington and
Fleming 1982) tests.

All these tests are appropriate for testing the equality of survivor functions across
twa or more groups. Note that these tests do not test the equality of the survivor
functions at a specific time point. Instead, they are global tests in the sense that they
cotupare the overall survival functions. These tests work by comparing {at each failure
time) the expected versus the observed number of failures for each group, and then
combining these comparisons over all observed failure times. The above tests differ only
in respect to how they weight each of these individual comparisons that occur at each
failure time when combining these comparisons to form oue overall test statistic. '

8.5.1 The log-rank test
Typing
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. Bts test wrarneme, logrank

performs the log-rank test. wvarname should be a variable taking on different values
for different groups, such as 1, 2, 3, ..., or any distinct set of values. In our hip-
fracture data, we have the variable protect==0 for the controls and protect==1 for the
treatment group, and so we can type

. use http://www.stata-prese.com/data/cgg/hip2
{hip fracture study)

. Bts test protect, logrank

failure _d: fracture
analysis time _t: timel
id: id

Log-rank test for equality of surviver functiong

Events Eventsa
protect obsarved axpacted
0 18 7T.14
1 12 23.88
Total 3 31.00

chi2(i) = 29.17

Pr>chi2 = 0.0000

Although the log-rank test is a rank test, it can be viewed as an extension of the familiar
Mantei-Haenszel (1959) test applied to survival data. Let’s say that we are interested
in comparing the survival experience of r groups. Assume that in all groups combined
there are k distinct failure times. Further assume that at failure time t; there are n;
subjects at risk, of which d; fail and n; — d; survive. Then the log-rank test statistic is
computed by constructing, at each of the k distinct failure times, an r x 2 contingency
table and then cornbining results from these k tables. To be clear, for each time t;, we
wonld have a table of the form given in Table 8.1.

Table 8.1: r x 2 contingency table for time ¢;

Group Failures at ¢; | Survived at ¢; At risk at ¢;
1 dlj nlj — dlj ﬂ.lj
2 dgj Nzj — dzj Moy
T drj Rry — dr} Tiry
Total d; n; —d; 71
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The expected number of failures in group 7 at time ¢;, under the null hypothesis of
no difference in survival among the r groups, is E;; = n;;d;/n;. The chi-squared test
statistic (distributed as x? with r — 1 degrees of freedom under the null) is calculated
as a quadratic form u"V~!u using the row vector

U’SZW(tj)(dlj—Elj,...,drj—Er') (82)

=1
and the r x r variance matrix V, where the individual elements are calculated by

k

T2t N d s —ds .
vy =y S ladtn, 2 4) (5;—: - ﬁ) - (8.3)
=1 L] (n.? - 1) T
wherei=1,...,r,{=1,...,r,and §;; = 1 if i = and 0 otherwise,

The weight function W({t;) is what characterizes the different flavors of the tests
computed by sts test and is defined as a positive function equal to zero when ny; is
zero. In the case of the log-rank test, W (t;) = 1 when n;; is nonzero.

The important thing to recognize is that the test statistic is constructed by com-
bining the information from the contingency tables obtained at every failure time, and
consequently, the test takes into account the cntire survival experience and not just a
specific point in time.

Stata shows a summary of those k tables in the cutput. The above output included
the “Events observed” category that refers to the number of failures observed—19 for
the first group and 12 for the second—and “expected” refers to the number of events
that would be expected if the two groups shared the same survival function—7.14 in
the first group and 23.86 in the second. In this case, the observed valucs are different
enough from the expected so as to produce a highly significant chi-squared value. The
log-rank test clearly rejects the null hypothesis that the survivor functions of the two
groups arc the same.

Becall that the relative survival experiences of the distinct groups may he character-
ized by the groups’ hazard functions, and thus the null hypothesis of the tests computed
by sts test may be expressed in terms of the hazards. Namely, for sts test the null
hypothesis is

Ho: hy(t) = ha(t) = - - = he(f)

This is the null hypothesis for all tests computed by sts test, and the different tests
vary in power according to how H, is violated. For example, the log-rank test is most
powerful when the hazards are not equal but instead are proportional to one another.
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8.5.2 The Wilcoxon test

Typing
eta tast wvarneme, wilcoxon
will perform the generalized Wilcoxon test of Breslow {1970) and Gehan (1965).

. use http://www.stata-press.com/data/cgg/hip2
{hip fracture study)

. ats test protact, wilceoxen

failure .d: fracture
analysis time _t: timel
id: id

Wilcoxon {(Breslow) test for equality of survivor functions

Events Events Sum of
protact observed axpacted ranks
Q 19 7.14 ar4a
1 12 23.86 -374
Total 31 31.00 o]

chi2{1} = 23.08
Pr>chi2 = 0.0000

The Wilcoxon test is also a rank test and is constructed in the same way as the
log-rank test, except that for this test we set W{;) = n; in {8.2) and (8.3). That
is, the Wilcoxon test places additional weight to tables at earlier failure times—when
more subjects are at risk—than to tables for failures later in the distribution. The
Wilcoxon test is preferred to the log-rank test when the hazard functions are thought
to vary in ways other than proportionally. However, there is a drawback. Because of
this weighting scheme, the Wilcoxon test can prove unreliable if the censoring patterns
differ over the test groups.

8.5.3 Other tests

In addition to the log-rank and the generalized Wilcoxon, sts test can also perform
other tests:

1. The Tarone—Ware test: ats test varname, tware
Based on Tarone and Ware (1977), this test is nearly identical to the Wilcoxon
test, except that the weight function is W(t;) = /%5 instead of W{t;) = n;. As
such, more weight is given to the earlier failure times when more subjects are at
risk, but not as much as the Wilcoxon test. As a result, this test is less susceptible
to problems should there exist vast differences in the censoring patterns among
the groups.
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2. The Peto-Peto-Prentice test: sts test varname, peto
Based on Peto and Peto (1972) and Prentice (1978), this test uses as a weight
function an estimate of the overall survivor function; that is, W{t;) = §(tj),
where §{tj) is similar {but not exactly egual) to the Kaplan—Meier estimator,
While more computationally intensive, this test is not susceptible to differences
in censoring patterns among groups.

3. The Fleming-Harrington test: sts test warname, fhip g)
Due to Harrington and Fleming (1982), this test uses W(t;) = {S(t,)}{1 —
§(t_7-)}‘?, where S (t;) is the Kaplan-Meier estimator, and p and ¢ are chosen by
the user so that the weighting scheme is customized. When p > ¢, more weight
iz given to carlier failures than to later ones. When p < ¢, the opposite is true.
Note that when p = ¢ = 0, the test reduces to the standard log-rank test.

8.5.4 Stratified tests

The tests of equality of survival functions performed by sts test, in all its incarnations,
may be modified so t¢hat the tests are stratified. In a stratified test, we perform the test
separately for different subgroups of the data and then combine the test results into
a single, overall statistic. For instance, we might be testing that group A had similar
survival experiences as group B but then decide to stratify on sex, so we wonld test (1}
that females in Group A had similar survival as females in Group B and (2) that males
in Group A had similar survival as males in Group B. Why do this? Because perhaps
we think the survival experiences of males and females differ. If Group A had more
females than Group B, then if we just compared the two groups, we could be misled
into thinking there is a difference due to A and B.

For the stratified test, the calculations in (8.2) and (8.3) are formed over each stratum
to form stratum-specific quantities u, and V, which are then summed over the strata
to form u=73_,u, and V=3 V.. The test statistic is then calculated as u'Vu, and
is redefined this way.

In our hip study, we know that age is an important factor associated with hip
fractures. As age increases, so does the degree of osteoporosis, making bones more
fragile and thus more susceptible to fractures. As a way of controlling for this, we might
categorize each of the subjects into one of three age groups and then stratify on the
age-group variable. In our data, age varies from 62 to 82, as we see by using summarize:

., use http://www.stata-press.com/data/cgg/hip2
(hip fracture study)

. summarize age
Variable l Obs Mean  Std. Dev. Min Hax

age ‘ 106 70.46226  B,467087 652 82
. gen agegrp = 1
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. replace agegrp =~ 2 if apge>65
{78 real changes mads)
. replace agegrp = 3 if age>75
{20 real changes made}

. tab agegrp
agegrp Freq. Parceont Cum.
1 28 26.42 26,42
2 58 64.72 81.13
3 20 18,87 100.00
Total 106 100.00

. sts test protect, logrank strata(agegrp)

fajlure _d: fractura
apalysis time _t: timel

id: id
Stratified log-rapk test for equality of surviver functions
Events Events
protect observed expected(x)
¢ 19 T.15
1 12 23.86
Total 31 31.00
{(*} sum over calculations within agegrp
chiz(1) = 30.03
Pr>chi2 = 0.0000

Even accounting for age, we still find a significant difference. The detail option will
allow us to see the individual tables that go into the stratified results:

. Btg test protect, logrank strata(agegrp) detail

fajlure _d: fracture
analyeis time _t: timel

id: id
Stratified log-rank test for aquality of surviver functions
~> agegrp = 1
Events Events
protect observed expected
o 4 0.83
1 1 4.07
Total & 5.00
chi2(1) = 13.72

Pr>chi2 = 0.0002
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—-> agegrp = 2
Events Events
protect observed axpected
1] 10 4.34
1 8 13.66
Total i 18.00
chi2(1) = 11.36
Pr>chi2 = 0.0007
-> agegrp = 3
Events Events
protect obaerved expected
0 & 1.89
1 3 6.11
Total 8 8.060
chiZ(1) = 8.32
Pr>chi2 = 0.0039
-» Total
Events Evente
protect observed axpected(x)
0 ig T.16
1 1z 23.885
Total 31 31.00
{#) sum over calenlatlons within agegrp
chi2(1) = 30.03
Pr>chi2 = 0.0000
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The above illustrates how the test works. sts test ran separate log-rank tests for each
of the age groups, with the results of each of those individual tests being the same as if

we typed

. 8te test protect if agegrp==1, logrank
. &8t8 test protect if agegrp==2, logrank
. Ets test protect if agegrp==3, logrank

and then sts test combined those three tests into one.






9 The Cox proportional hazards model

Recall that in Section 3.2 on semiparametric models, we formulated an analysis of
survival data where no parametric form of the survivor function is specified and yet the
effects of the covariates are parametrized to alter the baseline survivor function (that for
which all covariates are equal to zero) in a certain way. The Cox (1972) model, which
assumes that the eovariates multiplicatively shift the bascline hazard function is by far
the most papular of choices, due in part to its elegance and computational feasibility.

The Cox proportional hazards regression tnodel (Cox 1972) asserts that the hazard
rate for the jth subject in the data is

h(tlx;) = holt) exp(x;8,) (9.1)

where the regression coefficients 3, are to be estimated from the data.

The nice thing about this model is that ho(t), the baseline hazard, is given no partic-
ular parametrization and, in fact, is left unestimated. The model makes no assumptions
about the shape of the hazard over time—it could be constant, increasing, decreasing,
increasing and then decreasing, decreasing and then increasing, or anything else you can
imagine, but what is assumed is that whatever the shape, it is the same for everyone.
One subject’s hazard is a multiplicative replica of another's; comparing subject j to
subject m, the model states that

hltlx;) _ exp(x;8,)
h(txm)  exp(xmBs)

which is constant, assuming the covariates x; and x,, do not change over time.

How exactly is this possible, given that a parametric regression model, in its like-
lihood calculations, contains terms using the hazard function and survival function
and that at first blush, a likelihood caleulation involving the baseline hazard seems in-
evitable? For the answer, we refer you back to Section 3.2, where we gave a heuristic
approach that explains that by confining our analysis to only those times for which
failure occurs and by conditioning on the fact that failures occurred only at those times,
the baseline hazard drops out from the calculations. For a more technical treatment of
how this happens, see Kalbfleisch and Prentice {2002, 71-74).

For now however, just realize that estimation is still possible, even after leaving the
baseline hazard function unspecified, and this offers a considerable advantage when we
are not able to make reasonable assumptions about the shape of the hazard; for example,
ho(t) = o {constant) or ho(t) = apt?~! (Weibull). Compared to these parametric
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approaches, the advantage of the semiparametric Cox model is that we do not need to
make assumptions about ho(t}, assumptions about which we may be wrong and which, if
we are wrong, could produce misleading results about 3,. The cost is a loss in efficiency;
if we knew the functional form of hy(¢), we could de a better job of estimating 3,.

9.1 Using stcox

Stata’s stcox command fits Cox proportional hazards models. After stsetting your
dataset or loading a dataset that has already been stset, you type stcox followed by
the x (independent) variables. Note that this syntax differs from most of Stata’s other
estimation commands in that you need not specify a response variable. For survival
data, the response is the triple (fo,t,d), which denotes the time span (to,t] with fail-
ure/censoring indicator d, and Stata remembers these variables from when you stset
your data.

Below, we also specify the nokr option, for reasons explained later:

- use http://wyu.stata-press.con/data/cgg/hip2
{hip fracturs study)

. atcox protect, nohr
failure _d: fractura

analysis time _t: timel
id: id
Iteration 0: log likelihood = -98.571254
Tteration 1: log 1ikelihood = -86.655669
Iteration 2; log likelihood = -B86,370782
Iteration 3: log likelihood = -BE.36904
Refining estimates:
Iteraticon 0: log likelihood = -B6.36904

Cox regression -- Breslow method for tias
No. of subjects = 48 Number of obs = 106
No. of failuras = 31
Time at risk = 714
LR chi2(1) = 24.40
Log likelihood = -86.36904 Prob > chi2 = 0.0000
-t
_d Coef. Std. Err. z Prlzl [95% Conf. Intervall
protect -2.047599 4404029 -4.66 0.000 -2.510773 -1.184426

These results report that for our hip-fracture data,
h{tlprotect) = ho(t) exp(—2.047599 * protect)}

Recall that in our hip-fracture data, the variable protect equals 1 or 0; it equals 1 if
the subject wears an inflatable hip-protection device and 0 otherwise. These results say
that
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hitlprotect ==0} = hgy{t);
hitlprotect ==1) = hy(t) exp(—2.047599)

and so the ratio of these hazards (the hazard ratio) is exp(—2.047599) = 0.12904437.

Whatever the hazard rate at a particular time for those who do not wear the device,
the hazard at the same time for those who do wear the device is 0.129 times that hazard,
which is substantially less. More exactly, these results report that if we constrain the
hazard rate of those who wear the device ta a multiplicative constant of the hazard of
those who do not wear the device, then that multiplicative constant is estimated to be
0.129.

In obtaining these resuits, we made no assumption about the time profile of the
hazard, although we would guess, if forced, that the hazard probably increases. We did,
however, assert that whatever the shape of the hazard for the group protect==0, it is
that same shape for the group protect==1 but mulitiplied by a constant.

9.1.1 The Cox model has no intercept

Note that Stata reported no intercept for the model above, which makes the Cox model
different from many of Stata’s other estimation commands. The Cox model has no
intercept because the intercept is subsumed into the baseline hazard hy(f), and mathe-
matically speaking, the intercept is unidentifiable from the data. Pretend that we added
an intercept to the model,

h(tlx;) = ho(t) exp(fo + x;3,;)
then
R{tlx;) = {ho(t) exp(Bo)} exp(x;8,)

We would now call {ho(t) exp(J;)} our new baseline hazard. The value of Fp is undefined
because any value works as well as any other—it would merely change the definition of
ho(t), which we do not define anyway.

9.1.2 Interpreting coefficients

Exponentiated individual coefficients have the interpretation of the ratio of the haz-
ards for a one-unit change in the corresponding covariate. For instance, if the coef-
ficient on variable age_in_years in some model is 0.18, then a 1-year increase in age
increases the hazard by 20% because exp(0.18) = 1.20. If the coefficient on the variable
weight in kilos is —0.2231, then a l-kilogram increase in weight decreases the hazard
by 20% because exp(—0.2231) = 0.8. If the coefficient on variable one_if female is
0.0488, then females face a hazard 5% greater than males because exp(0.0488) = 1.05,
and a 1-unit increase in one if female moves the subject from being male to female.



124 Chapter 9. The Cox proportional hazards model

'T'o see this more clearly, note that for a subject with covariates z1,z,, ..., zx, the
hazard rate under this model is

h{tlz1,z2,. .., zk) = ho(t) exp(Biz1 + Bazy + - -+ + Przy)

For a subject with the same covariates, except that z; is incremented by 1, the hazard
would be

h(tlzy,zo+ 1,...,2%) = hoft) exp{fz1 + Ba(z2 + 1)+ -+ Brar}

and the ratio of the two hazards is thus exp(fs).

In our stcox example, we fit a model using the covariate protect, and the hazard
ratio for this variable was estimated to be exp(~2.0476) = 0.129. A subject wearing
the device is thus estimated to face a hazard rate that is only 12.9% of the hazard faced
by a subject who does not wear the device.

This hazard-ratio interpretation is so useful that, in the previous example, we had
to go out of our way and specify the nohr (no hazard ratio) option to keep stcex from
exponentiating the coefficients for us, Here is what we would have seen by default
without the nohr option:

- usa http://www.stata-press.com/data/cgg/hip2
(hip fracture study)

. BLcoX protect

failure _d: fracture
analysis time _t: timel
id: id
Iteration 0: log likelihood = -98.571254
Iteration 1: leg likelihood = -~86.856669
Iteration 2: log likelihood = -86,3707892
Iteration 3: log likelihood = -86,36504
Refining estimates:
Iteration 0: log likelihood = ~B6.36904

Cox regrasaion -- Breslow method for ties
Ne. of subjects = 48 Number of obe = 108
No. of failures = 31
Time at risk = 714
LR chi2(1) = 24.40
Log likelihood = —86.36904 Prob > chi2 = 0.0000
_t
.d | Haz. Ratic Std. Err. z P>|z]| [95% Coenf. Intervall
protect .1290443  .0B6B31B -4.66 0.000 .05443386 -3059218

The only difference in results from typing stcox protect, nohr and stcox protect
is that this time stcox reported hazard ratios—exponentiated coefficients—rather than
the coefficients themselves. This is only a difference in how results are reported, not in
the results themselves.

h 4

A
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{1 Technical Nate

Note that the reported standard error also changed. When we specified the nohr
option, we obtained the estimate 3, = —2.047599 with the estimated standard error
(.4404029. When we left off the nohr option, we instead obtained exp{d,) = 0.1200443
with the standard error 0.05668315, which is & result of fitting the model in this scale
and was obtained by applying the delta method to the original standard error estimate.
The delta method obtains the standard error of a transformed variable by calculating
the variance of the corresponding first-order Taylor expansion, which in the case of
the transform exp(8;) amounts to multiplying the original standard error by exp(s, ).
This trick of calculation yields identical results as transforming the parameters prior to
estimation and then re-estimating.

The next two colummns in the original output report the Wald test of the null hypoth-
esis H,: 3; = 0 versus the alternative H,: 5, # 0, and the numbers reported in these
columns remain unchanged. In the new output, the test corresponds to H,: exp(8;) = 1
versus H,: exp{f3,;) # 1. Hazard ratios equal to one correspond to coefficients equal to
zero because exp(0} = 1. In the new output, the test corresponds to exp{f.) = 1, but
what is in fact reported is the test for 4; = 0. That is, the z-statistic is calculated using
the original coefficient and its standard error, not the transformed coefficient and the
transformed standard error. Were it calculated the other way, you would get a different,
yet asymptotically equivalent test. Confronted with this discrepancy, Stata leaves the
results in the original metric because, in the original metric, they often have better
small-sample properties. Tests based ou estimates of linear predictors are often better
left untransformed.

The confidence interval for the hazard ratio is that based on the transformed (ex-
ponentiated) endpoints of the confidence interval for the original coeflicient. An al-
ternative, asymptotically equivalent method would have been to base the calculation
directly on the hazard ratio and its standard error, but this confidence interval would
not. be guaranteed to be entirely positive, even though we know a hazard ratio is always
positive. TFor this reason, and because confidence intervals of the untransformed coef-
ficients usually have better properties, Stata reports confidence intervals based on the

“transform-the-endpoints” calculation.
a

stcox, like all Stata estimation commands, will redisplay results when invoked with-
out arguments. Typing stcox would redisplay the above hazard-ratio output. Typing
stcox, nohr would redisplay results but would report coefficients rather than hazard
ratios.

9.1.3 The effect of units on coefficients

The units in which you measure the covariates x make no substantive difference, but
choosing the right units can ease interpretation.
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If the covariate zg measures weight, it does not matter whether you measure that
weight in kilograms or pounds—the coefficient will just change to reflect the change in
units. If you fit the model using kilograms to obtain

h(t|x) = ho(t) exp(Brzy + Foza + - + Brzp)

and now you wish to substitute z3 = 2.2z, which is to say, the same weight but
measured in pounds, then

h(t|x) = ho(t) exp{Bra + (B2/2.2)25 + - + Braz }

When estimating the coefficient on x, you are in effect estimating 5;/2.2, and results
from steox will reflect this in that the cstimated coefficient for 23 will be the coefficient
estimated for zz in the original model divided by 2.2. If the coefficient we estimated
using kilograms was f; = 0.4055, say, then the coefficient we estimate using pounds
would be /2.2 = (.1843, and this is what stcox would report. The models are,
logistically speaking, the same. Weight would have an effect, and that effect in kilograms
would be 0.4055*kilograms. That same effect in pounds would be 0.1843*pounds.

Note, however, that the effect on the reported hazard ratios is nonlinear. The
estimated hazard ratio for a one-kilogram increase in weight would be exp(0.4055) = 1.5.
The estimated hazard ratio for a one-pound increase would be exp(0.1843) = 1.202,

Changing the units of covariates to obtain hazard ratios reported in the desired units
is a favorite trick among those familiar with proportional hazards models, and rather
tlian remember the exact technique, it is popular to just let the software de it for you.
For instance, if you are fitting a model that includes age,

. stcox protect age

and you want the hazard ratios reported for a five-year increase in age rather than a
one-year increase, changing the units of age, type

. generate age5 = age/5
. Btcox protect ageb

If you do this with the hip-fracture dataset, in the first case you will get a reported
hazard ratio of 1.110972. meaning that a l-year increase in age is associated with an
11% increase in the hazard. In the second ecase, you will get a reported hazard ratio of
1.692448, meaning that a H-year increase in age is associated with a 69% increase in the
hazard, and note that Inn(1.110972) = 1n(1.692448)/5.

Changing units change coefficients and exponentiated coeflicients (hazard ratios) in
the expected way. On the other hand, shifting the means of covariates changes nothing
that Cox reports, although, as we will demonstrate later, shifting a covariate pays divi-
dends when using stcox to estimate the baseline survivor or cumulative hazard function,
since doing so effectively changes the definition of what is considered “baseline”.

Nevertheless, coefficients and hazard ratios remain unchanged. Using the hip2.dta
dataset, whether we measure age in years since birth or in years above 60 doesn’t matter,
and in fact,
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. shcox protect age

. generate age8) = age - 60

. 8tcox protect agebl
will yield identical displayed results from stcox. In both cases, the estimated hazard
ratio for age would be 1.110972,

In most linear-in-the-parameters models, shifting from where the covariates are mea-
sured causes a corresponding change in the overall intercept of the model, but since that
overall intercept is wrapped up in the baseline hazard in the Cox model, there is no
change in reported results. Note that for some constant shift ¢,

hitlx) = ho(t)exp{fiz + Galze — €} + - + Brax)}
{ho(t) exp(—PBac) } exp(Brxy + Boxa + -+ - + Brzi)

and so all we have really done is to redefine the baseline hazard {something we do nat
directly estimate anyway).

9.1.4 Estimating the baseline cumulative hazard and survivor functions

In the Cox model given in (9.1), hy(t) is called the baseline hazard function and

exp(x83,) = exp(B1x) + -+ + Brxi)

is called the relative hazard, and thus x3_ is referred to as the log-relative hazard, also
known as the risk score.

From (9.1), note that hg(t) corresponds to the overall hazard when x = 0, because,
in that case, the relative hazard is 1.

Although the Cox model produces no direct estimate of the baseline hazard, esti-
mates of funections related to hgt) can be obtained after the fact, conditional on the
estimates of 3, from the Cox model. One may obtain estiinates of the baseline survivor
function Sp(t) corresponding to hg(t), the baseline cumulative hazard function Hy(t),
and the baseline hazard contributions which may then be simmoothed to estimate hg(t)
itself.

We noted previously, when we fit the model of the relative hazard of hip fracture,
that we suspected that the hazard was increasing over time, although nothing in the
Cox madel would constrain the function to have that particular shape. We can, indeed,
verify our suspicion by asking stcox to return to us, along with the estimated Cox
results, the estimate of the baseline cumulative hazard based npon them:

. usa htip://vyw.stata-press.com/data/cgg/hip2
{hip fracture study)

. 8tcox protect, basachazard(HO)
{output omitted)
. line HO _t, c(J) seort
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Figure 9.}1: Estimated baseline cumnlative hazard

We see that the cumulative hazard does appear to be increasing and at an increasing
rate, meaning that the hazard itself is increasing (recall that the hazard is the derivative
of the cumulative hazard).

Figurc 9.1 is the cumulative hazard for a subject with all covariates equal to 0,
which in our case, means protect==0, the control group. In general, the {nonbaseline)
cumulative hazard function in a Cox model is given by

Hitlx) = /;h(u|x)du

exp(xBy) [ hofu)du
= exp(x,)Holt)

Thus, the cumulative hazard for those who do wear the hip-protection device is H(t) =
0.129Hy(t), and we can draw both cumulative hazards on one graph,

. gen H1 = HO *= 0.12%0
. labal wvariable HO HC
. line H1 HO _t, c(J J) sort

which preduces Figure 9.2.

v
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Figure 9.2: Estimated cumulative hazard: treatment vs. controls
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We can also retrieve the estimated survivor function when we fit the model, using the

basesurv option to stcox,

. stcox protect, basasurv(30}
{output omitted )}
. line 80 _t, c(J) sort

which produces Figure 9.3,

bassling survivor

Figure 9.3: Estimated baseline survivor function
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As with the cumulative hazard, the baseline survivor function Sp(t) is the survivor
function evaluated with all the covariates equal to zero. The formula for obtaining the
value of the survivor function at other values of the covariates can be derived from first
principles,

S(tlx) exp{—H (t[x)}

exp{~exp(x8,) Ho(t)}
Sp(2)exe(x0:)

and so we can draw both survival curves on one graph by typing

. gen 31 = 30 ° 00,1290
. label vayiable 50 B0
. lina 51 30 _t, connect(J J) sort

which produces Figure 9.4.

]
8
&

Figure 9.4: Estimated survivor: treatment vs. controls

In drawing these graphs, we have been careful to ensure that the points were connected
with horizontal lnes by specifying 1ine's connect () option. We did that to draw the
graphs so they would emphasize that the estimated functions are really step functions,
no different than the Nelson-Aalen and Kaplan—Meier estimators of these funciions
in models without covariates. These functions are estimates of empirically observed
functions, and failures only occur in the data at specific times.

O Technical Note

If you fit a Cox regression model with no covariates and retrieve an estimate of the
baseline survivor function, you will get the Kaplan—Meier estimate. For example, with
the hip-fracture data, typing
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. Bts gen 52 = 8
. stcox, estimate basesurv(81)

will produce variables 81 and 52 that are identical up to calculation precision. (Note
that to fit a Cox model with no covariates, we needed to specify the estimate option so
that Stata knew we were not merely redisplaying results from the previcus stcox fit.)

By the same token, if you fit a Cox regression model with no covariates and retrieve
an estimate of the baseline cumulative hazard, you will get the Nelson—Aalen estimator.

For the details, we refer you to Kalbfleisch and Prentice (2002, 85-86) and just men-
tion that the estimation of the baseline functions involves the estimation of quantities
called hazard contributions at each failure time, and that each hazard contribution is
the increase in the estimated cumulative hazard at each failure time. Nominally, these
calculations take inte account the estimated regression parameters, and so one can think
of the estimated baseline survivor function from a Cox model as a “covariate-adjusted”
Kaplan-Meier estimate—use the estimated @, to put everyone on the same level by
adjusting for the covariates, and then proceed with the Kaplan—-Meier calculation.

In models with no covariates, these hazard contributions reduce to coincide with the

calculations involved in the Kaplan—Meier and Nelson—Aalen curves.
a

9.1.5 Estimating the baseline hazard function

In the previous section, we demonstrate how to use stcox to retrieve an estimate of the
bascline survivor or baseline cumulative hazard funetion, So(t} or Hyp(t), but note that
estimates of ho(t) cannot be obtained directly from stcox. Since ko(t) is the derivative
of Hy(t), you might wonder, why not just take the derivative of the estimated Hy(f} and
use that as an estimate of kg(#)? Or, since ho{t) is a function of the derivative of Sy(t},
why not follow a similar approach using the estimate of Sp(t)? The formal answer is
that the derivative of these estimated functions is everywhere 0, except at the failure
times, where it is undefined (recall that these are step functions).

This is all to say that if you want an estimate of the baseline hazard itself, you will
have to somehow smooth out the discontinuities associated with these step functions.
One way to do this is to usc standard kernel-smoothing methodelogy, similar to what
we did in Section 8.4, Formally, if we define the baseline hazard contribution for each
observed failure time t; as h.; (see the technical note below), we can estimate ho(t)
using

-~ b E—1:\ ~
ho(t) :b“lzK( b‘f)htj
i=1

for seme symmetric density function K'(} {the kernel) and bandwidth b; the summation
is over the [ times at which failure occurs.
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We can do this in Stata by first specifying option basehc (rewvar) to stcox te obtain
the baseline hazard contributions and then using stcurve to perform the smoothing.

. use http://www.stata-press.com/data/cgg/hip2, clear
(hip fracture study)

. Btcox protect, basehe(h()
{output omitted )

. stcurve, hazard at{protect=0)

This produces Figure 9.5, which is a graph of the estimated baseline hazard function
(that is, the hazard for protect==0).

Cox proportional hazards regression
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Figure 9.5: Estimated baseline hazard function

Alternately, using the same baseline hazard contribntions, we can use stcurve to
plot a comparison of the estimated hazards for treatments and controls, this time cos-
tomizing the selection of kernel function and bandwidth:

. stcurve, hazard atl(protect=0) at2(protect=1} kernel{gaussian) width{4)

This produces Figure 9.6. Comparing this graph with Figure 8.7, we see the implications
of the proportional hazards assumption. The hazards depicted in Figure 9.6 are indeed
proportional, and if graphed on a log scale (we leave it to you as an exercise to try
this!) they would be parallel, or at least close enough to parallel with respect to the
smoothing. Still, the respective plots in both graphs are quite similar over the ranges
they share in common on the r.axis.

Note that in Figure 8.7 the hazard functions are estimated over the range of ob-
served failure times for each group while the hazards in Figure 9.6 are estimated over
the complete range of observed failure times. This is one further consequence of the
proportional hazards assumption. Under a Cox model, all failure times contribute to the
estimate of the baseline hazard, not just those for which protect==0, and the baseline
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hazard may in turn be transformed to the hazard for any covariate pattern using the
proportionality asswuption, However, when we estimate the hazard separately for each
group (Figure 8.7), estimates are only valid over the range of observed failure times for
that particular group.

Cox proportional hazards regression

(Q' =
5
E
ERh
B
M
]
=
%
&
4y
o
1 T T T T
0 10 20 30 40
analysis time

pratect=0 - ———- pratect=1

Figure 9.6: Estimated hazard functions, treatment vs. control

d Technical Note

The baseline hazard contributions, ?it ,» obtained from stcox are not the magnitudes
of the steps of the estimated baseline cumnulative hazard obtained from stcox. Instead,
a form of the estimators derived from the estimated baseline survival function is used,
as described in Kalbfleisch and Prentice (2002, 85-86). The difference between the
estimators mirrors the difference between estimating a survival function using Kaplan—
Meier and taking the Nelson-Aalen cumulative hazard and transforming it—they are
asymptotically equivalent estimators of the same thing, and in practice, the difference
is usually quite small; see Section 8.3.

Q

stecurve is a wonderfully handy command for graphing estimated survival, cumu-

lative hazard, and hLazard functions after both stcox and streg that fits parametric

survival models (Chapter 12). It is handy after stcox because it automates the process

of taking quantities estimated at baseline using stcox and transforming them to adhere
1o covariate patterns other than baseline.
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stcurve can graph

1. The survivor function. Type stecurve, survival after specifying option
basesurv{newvar) to stcox.

2. The eumulative hazard function. FType stcurve, cumhaz after specifying option
basech(newvar) to atcox.

3. The hazard function. Type stcurve, hazard after specifying option
basehc(newvar) to stcox.

stcurve can graph any of those functions at the values for the covariates you specify.
The syntax is as follows;

stcurve, ...at(varmnaeme=# varname=# ...)

If you do not specify a variable’s value, the average value is used, and thus if the
at() option is omitted altogether, a graph is produced for all the covariates held at
their average values. This is why we had to specify at{protect=0) when graphing the
baseline hazard function; had we not, we would have obtained a graph for the average
value of protect, which would not be very meaningful considering protect is binary.
The at() option can alsc be generalized to graph the function evaluated at different
values of the covariates on the same graph. The syntax is

stcurve, ...atl{warmame=# varname=# ...) at2(...) at3(...)

Earlier in this section, we graphed estimated cumulative hazard and survival func-
tions, and we did so manually even though we could have used stcurve instead. We
did this not to be mysterious but to emphasize the relationship between these functions
at bascline and at covariate patterns other than baseline. We could have done the same
with the hazard function (i.e., manually transform the baseline hazard contributions),
but then we would have had to do the smoothing ourselves. In the case of hazard
functions, we preferred to simply use stcurve.

To wit, Figures 9.1 through 9.4 all could have been produced with stcurve without
having to generate any additional variables (cutside of those produced by stcox). For
example, Figure 9.2 can be replicated by

. BLcex protect, basachazard(H0)
. steurve, cumhaz atl{protect=0) atZ(protect=1)

9.1.6 The effect of units on the baseline functions

The uvnits in which you measure covariates (kilograms or pounds, inches or centimeters)
change coeflicients and hazard ratios in the obvious way but do not change the baseline
eumulative hazard function, survivor function, and hazard contributions.

The origin from which you measure covariates—absolute zero or the freezing point
of water, absolute weight or deviation from the normal (normal being the same for
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everyhody)—does not change coefficients A, and hazard ratios {exponentiated coef-
ficients}, but it does change the estimated baseline cumulative hazard and baseline
survivor, since you are changing how you define “all covariates equal to zero".

Consider fitting the model
. stcox protact age
versus

. gen age6l = age - 60
. Btcox protact ageb0
In the first case, ho(t) corresponds to a newborn who does not wear the hip-protection
device {admittedly, not a very interesting hazard}, and the second to a 60-year-old
who does 1ot wear the hip-protection device. Not surprisingly, the baseline cumulative
hazard (and the baseline survivor) functions differ.

Yet, it seems innocuous enough to type

. stcox protect age, basesurv(§)
. lins § _t, c{J) sort

and wonder what is wrong with Stata since the plotted baseline survivor function only
varies between 0.99375 and 0.9999546, which appears incorrect since 30% of the subjects
in the data were observed to fail. (Answer: you just plotted the survivor function for
newborns.)

In the casc of estimating the baseline survivor function, the problem can get worse
than just misunderstanding a correctly calculated result. Numerical accuracy issues can
arise. For example, try the following experiment:

. use http://www.stata-press.com/data/cgg/hip2, clear

. gen age_big = age + 300

. stcox protect age_big, bases{S0)}
All we have done is change the definition of what an age of “zero” means. In this new
scaling, when vou are born, your value of age_big==300, and you continue to age after
that, so a person who is age 60 has age big==360. The estimates of the coefficients and
their associated hazard ratios will not be affected by this {nor should they).

Look, however, at the resulting estimate of the baseline survivor function:

. list S0
50
1. 1
2. 1
a. 1
{output omitted )
105, 1
106, 1
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What happened? The baseline survivor function is being predicted for a subject with
age_big==0, meaning age==-300. The probability of surviving is virtually 1. It is not
exactly 1—it is really 1 — ¢ where ¢ is a very small number. Upon further investigation,
you would discover that the numbers the computer listed are not exactly 1, either; they
merely round to 1 when displayed in a nine-digit {%9.0g) format. In fact, you would
discover that there are actually 8 distinct values of SO in the listing, corresponding to
the 3 bits of precision with which the computer was left when it struggled to present
these numbers so very subtly different from 1 as accurately as it could.

The point is that this estimate is a poor estimate of the baseline survivor function,
and it is not Stata’s fault. If you push Stata the other way,

. gen age_pmall = age - 300
. stcox protect age_small, bases{502)

you will again obtain fine estimates of 8_, but this time the baseline survivor function,
corresponding to a person who is 300-years-old, wilt be estimated to be 0 everywhere:

. list 3502
502
1. 0
2. 0
3. 0
{output omitted )
105.
106, 0

This time the numbers really are exactly 0, even though they should not be, and even
though the computer (in other circumstances) could store smaller numbers. Given the
calculation formula for the baseline survivor function, this result could not be avoided.

The moral of the story is, if you intend to estimate the baseline survivor function,
be sure that x = 0 in your data corresponds to somelhing reasonable, You only need
to be concerned about this if you intend to estimate the baseline survivor function; the
calculation of the baseline cumulative hazard (which is not bounded between 0 and 1)
and the calculation of the baseline hazard contributions (upon which hazard function
estimation is based) are more numerically stable,

9.2 Likelihood calculations

Cox regression results are based on forming, at each failure time, the risk pool or risk set,
the collection of subjects who are at risk of failure and then maximizing the conditional
probability of failure. The times at which failures occur are not relevant in a Cox
model—the ordering of the failures is. As such, when subjects are tied (fail at the same
time) and the exact ordering of failure is unclear, this requires special treatment. We
first consider, however, the case of no ties.
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g.2.1 No tied failures

Consider the straightforward data

. list
subject t
1. 1 2 4
2. 2 3 1
3. 3 6 3
4. 4 12 2
. stzet T

{output omitted )

There are four failure times in these data—times 2, 3, 6, and 12—but the values of the
times do not matter; only the order of the subjects matters. There are four distinct
times from which we form four distinct risk pools:

1. Time 2:
Risk group (those available to fail): {1,2,3,4}
Subject #1 is observed to fail

2. Time 3:
Risk group: {2,3,4}
Subject #2 is observed to fail

3. Time 6:
Risk group: {3,4}
Subject #3 is observed to fail

4. Time 12:
Risk group: {4}
Subject #4 is observed to fail

At each of the failure times, we take as given that one of the subjects must fail, and we
calculate the conditional probability of failure for the subject who actually is cbserved
to fail. Thus, we have the likelihood funetion

L(B) = PLPaPs Py

where each P, i = 1,...,4 represents a conditional probability for each failure time.

The last conditional probability is the easiest to calculate. At time t = 12, given
that one failure occurs, what is the probability that it will be Subject #4? The answer
is I’y = L. since by that point only Subject #4 is available to fail,
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The calculation of P {corresponding to time t = 6) is the next easiest, and following
the derivation of equation (3.2}, we find that P; is the ratio

h{6]z)
h{6lz3} + h(6lzs)

exp(x35)
exp(z3f) + exp(z4f3)

Py

and note that this does not depend on the failure time ¢ = 6. This is fundamental to
Cox regression: the ordering of the failure times is what matters, not the actual times
themselves. Similar arguments lead to the expressions for P and P,

P expl(z2/3)
2 exp(z25) + expizs ) + exp(z4/3)
P = exp(z3)

exp(z18) + exp(z2f) + exp(z3f) + exp(z4)
and thus L(3) = Py P; P3P, can bhe expressed as

1p) - [T 22z
U\ Scr, o0t

where It; is defined to the the risk set (those subjects at risk of failure) at time ¢;,

Generalizing this argument to the case where we have k distinct observed failure
times and multiple = variables gives the Cox likelihood function

g = [T ()

=1

Since we confine ourselves to only the individual binary analyses that occur at each
failure time and make no assumption about the baseline hazard at times when failures
de not occur, the Cox likelihood given in (9.2) is not a likelihood in the strict sense—it
is a partial likelihood., However, for all intents and purposes, (9.2) can be treated as
a likelihood; that is, maximizing it results in an estimnate of 3, that is asymptotically
normal with mean 3, and variance—covariance matrix equal to the inverse of the negative
Hessian (matrix of second derivatives of (9.2} with respect to 3,). For a more technical
discussion, see, for example, Kalbfleisch and Prentice (2002, 130-133).

As is often done with other likelihoods, estimates of 8, are obtained by maximizing
the natural logarithm of L(83,), and not L{3_) itself. In Figure 9.7, we plot the log
likelihood and label the value of G {a scalar in our small example) that maximizes it.
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Figure 9.7: Log likelihood for the Cox model

139

The maximum {partial) likelihood estimate of 3 is E = (0.48534, and this is exactly what

stcox reports for these data:

. Btcox x, nohr
failure _d:

analysis time _t: t

1 (meaning all fail)

Iteration 0O: log likelihood = -3.1780533
Iteration 1: log likeliheod = -2.9420159
Iteration 2: log likelihcod = -2,8414857
Iteration 3: log likelihood = -2.9414857
Refining estimates:
Iteration O: log likelihood = -2.5414857
Cox regression -- ne ties
No. of subjects = 4 Number of obs = 4
No. eof failures = 4
Time at risk = 23
LR chi2(1) = 0.47
Leg likelihood =  -2.9414887 Prob > chi2 = 0.4515
_t
d Coef. Std. Err. z P>zl [9%Y, Conf. Interval]
x .4853405 .Ta26297 0.66 0.508 ~.8506874 1.921268
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9.2.2 Tied failures

In the previous section, we calculated the probability that a particular subject failed,
given that one failure was to occur. To do that, we used the formula

iER; iPy

Introducing the notation r; = exp{x;3,) allows us to express the above more compactly
as Pr(j fails|risk set ;) = i/ e, T

In our data from the previous section, it never arose that two subjects failed at the
same time, but it is easy cnough to imagine such a dataset:

. list
subject t x
1 1 2 4
2 2 3 1
3 3 3 3
4 4 12 2

For these data, there are three risk pools:

1. Time 2:
Risk group (those available to fail): {1,2,3,4)}
Subject #1 is observed to fail

2. Time 3:
Risk group: {2,3,4}
Subjects #2 and $£3 are observed to fail

3. Time 12:
Risk group: {4}
Subject #4 is observed to fail

The question then becomes, How do we calculate the probability that both subjects 2
and 3 fail, given that two subjects from the risk pool are known to fail at £ = 3? This
is the conditional probability that we need for the second product term in (9.2).

The marginal calculation

One way we could make the calculation is to say to ourselves that subjects 2 and 3 did
not really fail at the same time; it’s just that we were limited as to how precisely we
could measure the fatlure time. In reality, one subject failed and then the other, and
we just do not know in which order they failed.
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Define P; to be the probability that subject 2 fails and then subject 3 fails given
the current risk pool (which would no longer have subject 2 in it). Conversely, let
P32 be the probability that subject 3 fails and then subject 2 fails given the risk pool
reduced by the failure of subject 3. That is, if we knew that 2 failed before 3, then Py
is the contribution to the likelihood. If we knew that 3 failed before 2, then Py is the
contribution.

Following our previous logic, we find that

2 3
Py =
ro+r3t+rTaTy+ Ty
T T
Py = 2 2 (9.3)

Ta+7Ta+ravot+ 74
and in fact, if we had the exact ordering then the substitution of either Pa; or FPs, in
(9.2) would represent the two middle failure times (now that we have separated them).

However, since we do not know the order, we can instead take the probability that
we observe subjects 2 and 3 to fail in any order as Pas + Psp, and use this term instead.
Using our data, if 3 = 0.75, for example, then Py 4+ P32 = 0.2786, and this is what we
would use to represent £ = 3 in the likelihood calculations.

This methed of calculating the conditional probability of tied failure events is called
the marginal caleniation, the exact-marginal calculation, or the continuous-time calcula-
tioni. The last name arises because assuming continuocus times makes it mathematically
impossible that failures occur at precisely the same instant.

Using the exactm option to stcox specifies that ties are to be treated in this manner
when calculating the likelihood.

O Technical Note

Actually, the name exactm is a bit of a misnomer. The exact marginal method as
implemented in most computer software (including Stata) is only an approximation of
the method we have just described. Consider the {not too unusual} case where you have
10 tied failure times. The calculation of the exact marginal would then require 10! =
3,628,800 terms and is computationally infeasible. Instead, the sum of the probabilities
of the specific orderings is approximated using Gauss-Laguerre quadrature. However,
we note that the approximation in this case is a computational issue and not one that
simplifies any assumption about how we want to calculate the likelihood. When the
approximation works well, we fully expect to retrieve {with negligible error) the true
sum of the probability terms.

a

The partial calculation

Another way we could proceed is to assume that the failures really did occur at the
same time and treat this as a multinomial problem. Given that two failures are to occur
at the same time among subjects 2, 3, and 4, the possibilities are



142 Chapter 9. The Cox proportional hazards model

¢ 2 and 3 fail
e 2 and 4 fail
¢ 3 and 4 fail

The conditional probability that 2 and 3 are observed from this set of possibilities is
T2rs
Tary + Targ + rary

P2z =

Using 8 = 0.75, we would obtain psy == 0.3711 for our data.

This is known as the partial calculation, the exact-partial caleulation, the discrete-
time calculation, or the conditional logistic calculation. The last name arises because
this is also the calculation that conditional logistic regression uses to calculate proba-
bilities when conditioning on more than one event taking place.

Of course, this raises the question: Which probability is correct, the marginal prob-
ability (0.2786) or the partial probability (0.3711)7 The answer is a matter of personal
taste in that you must decide how you want to think about tied failures: Do they arise
from imprecise measurements {marginal method), or do they arise from a discrete-time
model (partial method)? In practice, the difference between the calculations is usually
not that severe, and admittedly we chose rz, 73, and ry to emphasize the difference.

Using the exactp option to stcox specifies that ties are to be treated in this manner
when calculating the likelihood. The exact partial method implemented in Stata is
exact; however, it can prove problematic since (1) in some cases it can take too long to
calculate, and (2} numerical problems in the calculation can arise, and so it can produce
bad results when risk pools are large and there exists many ties.

The Breslow approximation

Both the exact marginal and partial calculations are so computationally intensive that
it has become popular to use approximations. When no option as to how to treat tied
failures is specified, Stata assumes the breslew option and uses the Breslow (1974}
approximation. This is an approximation of the exact marginal. In this approximation,
the risk pools for the second and subsequent failure events within a set of tied failures
are not adjusted for previous failures. So, for example, rather than ealeulating Py3 and
Py from (9.3), the Breslow methed instead uses

T2 T3 rara
Poy = X = 3
ra+ 73+ T4 e+ T3+ 1g (T2+T'3+‘!‘4)
r3 To Tatsg

Psy = X = 5

T+ T3+ Ty e+ 13+ 714 (T‘2+?‘3+T‘4)

and thus the contribution to the likelihood is obtained as Py + Pz = 2rgrg/(ra +ra +
r4)°. Since the denominator is common to the failure events, this represents a significant
reduction in the required calculations.
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This approximation works very well when the number of failures in the risk group
is small relative to the size of the risk group itself.

The Efron approximation

Efron’s method of handling ties (Efron 1977) is also an approximation to the exact
marginal, except that it adjusts the subsequent risk sets using probability weights. For
the two failures that occur at ¢ = 3, following the first failure, the second risk set is
either {3,4} or {2,4}. Rather than using r3 + 74 and r3 +r4 as the denominators for the
second risk set, the approximation uses the average of the two sets, {ra+rs+ry+1r4)/2 =
(ra +rs}/2 + r4. Thus, for our example,

P 3 x 3
23 =
o+ 1r3+ry %(T2+T‘3)+?"4
T3 T2
Py = X
o+ T3+ 71y %(T‘2+T3)+T4
and so
27‘2?"3
Poz + Py =

(r2 + 75+ ra){3(r2 +r3) + 74}

This approximation is more accurate than Breslow’s approximation but takes longer to
calculate. Using the efron option to stcox specifies that ties are to be treated in this
manner when calculating the likelihood.

9.2.3 Summary

The hip-fracture dataset is typical in terms of the number of tied failure times. The
dataset contains 21 failure times and 31 failures, meaning an average of 31/21 = 1.48
failures per failure time. In particular, at twelve of the times there is 1 failure, at eight
times there are 2 failures, and at one time there are 3 failures.

Table 9.1 gives the results of fitting the model stcox protect using the various
methods for handling tied failures:

Table 9.1: Comparison of methods for handling ties

Method exp(,a;) 95% Conf. Interval Command used
Exact marginal 0.1172  0.0481 0.2857 stcox protect, exactm
Exact partial 0.1145 0.0460 (0.2846 stcox protect, exactp
Efron 0.1204 0.0503 0.2878 8stcox protect, efron
Breslow 0.1280 0.0544 0.30569 stcox protect

If you do not specify otherwise, stcox uses the Breslow approximation. Specifying
one of efron, exactp, or exactm will obtain results using the other methods. In any
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case, the method used to handle ties is clearty displayed at the top of the output from
stcox. Used with datasets with no ties, the output will state that there are no ties, in
which case the specified method of handling ties becomes irrelevant.

To determine the number of ties in your data, you can do the following (after saving
vour data since this procedure will drop some observations):

. keep if _d /* Keep only the failuras */

(75 observations deleted)

. gort _t

. by _t: gen number = _N /+ Count the instances of _t #*/

. by _t: keep if _n==1 /* Keep one obs. representing _t =/

. * What is the average number of fallures par failure time?
. summarize number

Variable I Obs Mean Std. Dev. Min Max

number l 21 1.47619 .6016852 1 3

. * What is the frequency of number of failures?
. tabulate number

number Freq. Percent Cum.
1 12 57.14 67.14
2 8 38.10 96.24
3 1 4.76 100.00
Total 21 100,00

9.3 Stratified analysis

In stratified Cox estimation, the assumption that everyone faces the same baseline
hazard, multiplied by their relative hazard,

A(tlx;) = ho(t) exp(x;8,)
is relaxed in favor of
h{tix;) = ho(t)exp(x;8,), if jisin group 1,
h(tix;) = heoft)exp(x;8,.), ifjisin group 2,

and 5o on. The baseline hazards are allowed to differ by group, but the coefficients 3_
are constrained to be the same.

9.3.1 Obtaining coefficient estimates

Pretend that in our hip-displacement study we had a second dataset, this cne for males,
which we combined with the dataset for fernales to produce hip3.dta. We could imagine
using that data to estimate a single effect:

. use http://www.stata-press.com/data/cgg/hip3, clear
. stcox protect
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By fitting this model, however, we are asserting that males and females face the same
hazard of hip fracture over time. Let's assume that, while we are willing to assume that
the hip-protection device is equally effective for both males and females, we are worried
that males and females might have different risks of fracturing their hips, and that this
might bias our measurement of the effectiveness of the device.

One solution would be to include the variable male in the model (male==0 for females
and male==1 for males) and so fit

. stcox protect mala

If we did this, we would be asserting that the hazard functions for females and for males
have the same shape, and that it is merely that one function is proportional to the
other. Our concern is that the hazards might be shaped differently. Moreover, in this
study, we do not care how the sexes differ; we just want to ensure that we measure the
effect of protect correctly.

In this spirit, another solution would be to fit models for males and females sepa-
rately:

. stcox protect if male
. stcox protect if !male

If we did this, we would be allowing the hazards to differ {as desired), but we would also
obtain separate measures of the effectiveness of our hip-protection device. We want a
single, more efficient estimate, or perhaps we want to test whether the device is equally
protective for both sexes (regardless of the shape of the hazard for each), and this we
cannot do with separate models, '

The solutien to our problem is stratified estirnation:

. use htip://wvw.stata-press.com/data/cgg/hip3
(hip fracture sztudy)

. stcox protect, strata(male)
failore _d: fracture

analysis time _t: timel
id: id

Itaration 0 log likelihcod = -124.27723
Iteration 1: log likelihoed = -110.21911
Iteration 2:  log likelihcod = -109,.47452
Itaration 3: 1log likelihood = -108.46654
Iteration 4: log likelihood = -105.46654

Refining estimates:
Iteration O: log likelihood = -108,45654

{Continued on next page)
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Stratified Cox regr. -- Breslow method for ties
Ho. of pubjects = 148 Number cf cbs = 208
Ho. of failures = 37
Tine at risk - 1703
LR chi2(1) = 29,82
Log likelihcod =  -109.46654 Prob > chi2 " C.0000
-t
.d { Haz. Ratio 5td. Err. z P>zl [95% Conf. Intarvall
protect .1301043 .0604375 -6.26 0.000 0608564 .2781483

Stratified by male

Using this approach, we discover that wearing the hip-protection device reduces the
hazard of hip fracture to just 13% of the hazard faced when the device is not worn.

Inn Table 9.2, we present the results of the analyses we would obtain from approaching
the problem in each of the ways we have described.

Table 9.2: Comparison of various models for hip-fracture data

Command exp(B,) 95% Conf. Interval
(1) stcox protect 0.0924  0.0442 0.1935
(2) stcox protect male 0.1315 0.0610 0.2836
(3) stcox protect if !male 0.1290 0.0544 0.3059
(4) stcox protect if male 0.1338 0.0268 0.6692
(5) stcox protect, strata(male) 0.1301  0.0609 0.2781

We obtained reasonably similar results when we fit the model separately for females
and males (lines 3 and 4), but different results when we estimated constraining the
baseline hazards to be equal {line 1). Our conclusion is that the hazards functions
are not the same for males and females. In regards to how the hazard functions differ
by gender, it makes virtually no difference whether we constrain the hazards to be
multiplicative replicas of each other (line 2) or allow them to vary freely (line 5), but
we would not have known that unless we had fit the stratified model.

9.3.2 Obtaining estimates of baseline functions

We obtain estimates of the baseline functions after stratified estimation in the same way
as we do after unstratified estimation—we include the basechazard{) or basesurv()
options when we fit the model:

. Btcox protect, strata(mals) basech(H)
{output omitted)
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The result of adding basech(H) is to create the new variable H containing the es-
timated baseline cumulative hazard functions. This one variable contains the baseline
cumulative hazard function for females in those observations for which male==¢ and
that for males in those observations for which male==1. We can thus graph the two
functions using

. gen HO = H if male==0
(100 missing values generated)

- gen Hl = H if male==1
(106 missing values generated)

. lina K0 H1 _t, c{J J) sort

which produces Figure 9.8.

&4

Figure 9.8: Estimated baseline cumulative hazard for males vs. females

Remember, these are the baseline cumulative hazard functions and not the baseline
hazard functions themselves, and smoothed hazard function estimation is not available
for stratified Cox models. Thus, if we think in terms of derivatives, we can COLILPATC
the baseline hazards. Concerning females (HO), there is a fairly constant slope until
time _t==18, and then, perhaps, a higher constant slope after _t==20, suggesting an
increasing hazard rate. Concerning males (H1), there is a very gentle constant slope. In
any case, one could argue equally well that the hazard functions are proportional, or
not.

9.4 Cox models with shared frailty

The term shared frailty is used in survival analysis to describe regression models with
random effects. A frailty is a latent random effect that enters multiplicatively on the



148 Chapter 9. The Cox proportional hazards model

hazard function. In the context of a Cox model, the data are organized as i =1,...,n
groups with 7 = 1,...,n; subjects in group i. For the jth subject in the ith group,
then, the hazard is

hij (t) = h(}(t)ﬂ:g exp(xt-j—;@)

where q; is the group-level frailty. The frailties are uncbservable positive quantities and
are assumed to have mean one and variance 8, to be estimated from data.

For #; = log o;, the hazard can also be expressed as
hij(t) = ho(?) exp(x:; 8 + v;)

and thus the log-frailties, 1, are analogous to random effects in standard linear models.

Before continuing, we must point out that a more detailed discussion of frailty mod-
els is given in Section 15.3 in the context of parametric models. Frailty is best first
understood in terms of parametric models, since these models posit paramstric forms of
the baseline hazard function for which the effect of frailty can be easily described and
displayed graphically. Shared frailty models are also best understood if compared and
contrasted with unshared frailty models, which for reasons of identifiability do not exist
with Cox regression. Therefore, for a more thorough discussion of frailty, we refer you
to Section 15.3.

For our current discussion, it suffices to say that a Cox model with shared frailty is
simply a random-effects Cox model. Shared frailty models are used to model within-
group corrclation; observations within a group are correlated because they share the
same frailty, and the extent of the correlation is measured by 8. For example, we could
have survival data on individuals within families, and we would expect (or at least be
willing to allow} those subjects within each family to be correlated, since some families
would inherently be more frail than others. When # = 0, the Cox shared frailty model
simply reduces to the standard Cox model.

9.4.1 Parameter estimation

Consider the data from a study of kidney-dialysis patients, as described in McGilehrist
and Aisbett {1991) and described in more detail in Section 15.3.2 on parametric frailty
models. The study is concerned with the prevalence of infection at the catheter insertion
point. Two recurrence times {in days) are measured for each patient, and each recorded
time is the time from initial insertion (onset of risk) to infection or censoring.

. use http://www.stata-press.com/data/cgg/kidney2, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)
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. list patient time fail age gender in 1/10, sepby{patient)}

patient time fail age  gender

L. 1 is 1 28 0
2. 1 8 1 28 0
3. 2 13 0 48 1
4, 2 23 1 48 1
5. 3 22 1 az 0
6. 3 28 1 32 0
7. 4 318 1 31.%8 1
8 4 447 1 318 1
9. & 30 1 10 o
10. s 12 1 10 0

Each patient (patient) has two recurrence times (time) recorded, with each catheter
insertion resulting in either infection {fail==1) or right-censoring (fail==0). Among
the covariates measured are age and gender {1 if female, 0 if male),

Note the use of the generic term “subjects”. In this example, the subjects are
taken to be the individual catheter insertions and not the patients themselves. This is a
function of how the data were recorded—the onset of risk occurs at catheter insertion {of
which there are two for cach patient) and not, say, at the time the patient was admitted
into the study. Thus, we have two subjects (insertions) for each group (patient). Sincc
each observation represents one subject, we are not required to stset an id variable,
although we would need to if we ever wished to stsplit the data at some later time.

It is reasonable to assume independence of patients but unreasonable to assume that
recurrence times within each patient are independent. One solution would be to fit a
standard Cox model, adjusting the standard errors of the estimated parameters to ac-
count for the possible correlation. This is done by specifying option cluster (patient)
to stcox. We do this below after first stsetting the data.

. stset time, failure(fail)
{output omitted)

. stcox age gender, nohr cluster(patient)

failure .d: {fail
apnalysias time _t: time

Iteration O: log pseudo-likelihood = -188.44738
Iteration 1: log pseudo-likelihood = -185,36881
Iteration 2: log pseudo-likelihood = -185.11022
Iteration 3: log psendo-likelihcod = -185,10993

Refining estimates:
Iteration O: log pseudo-likelihood = -185,109%3
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Cox regression —— Breslow methed for ties
76 Number of cbe = 76

&8
7424

Ko. of subjects
Ko. of failures
Time at risk

Wald chi2(2) 2.74
Log pseudo-likeliheod =  -185.10993 Prob > chil e 0.2540

(standard errors adjusted for clustering on patient)

Robust
_t Coaf. Std, Err. z ozl [95% Conf. Intervall
age 0022428 Q078139 .29 0.774 -.0130724 _G175575
gonder -, 7086869 487274 -1.64 0.101 -1.763726 . 1563526

Specifying cluster (patient) is equivalent to specifying both option robust and
option cluster(patient); in either case, you obtain the robust estimate of variance
as described in the context of Cox regression by Lin and Wei (1989), with an added
adjustment for clustering (see [P] .robust).

If there indeed exists within-patient correlation, the standard Cox model depicted
above is misspecified. However, because we specified cluster(patient), the standard
errors of the estimated coefficients on age and gender are valid representations of the
sample-to-sample variability of the obtained coefficicnts, We do not know exactly what
the coefficients neasure (for that we would need to know exactly how the correlation
arises), but we can measure their variability, and in many instances we may still be able
to test the null hypothesis that a coefficient is zero. That is, in many instances, testing
that a covariate effect is zero under our misspecified model is equivalent to testing that
the effeet is zero under several other models that allow for correlated observations.

One such model is thie shared frailty model, and more specifically the model where
the shared frailty is gamma distributed (with mean one and variance #). We fit this
model in Stata by specifying option shared(patient) in place of cluster(patient),

. stcox age gender, nohr shared{patient)

failure _d: fail
analysis time _t: time

Fitting ceomparison Cox modal:
Estimating frailty variance:

Iteration 0: log profile likelihced = -182.08713
Iteration 1: log profile likelihood = -181,9791
Iteration 2: leg profile likeliheod = -1B1.974E3
Iteration 3: log profile likelihcod = -181,97453

Fitting final Cox model:

Iteration 0: log likelihkood = -198.06599
Iteration 1: log likelihood = ~183.72298
Iteration 2: log likelihood = -181.99809
Iteration 3: log likelihood = -181.97455
Iteration 4: log likelihcod = -181,97453
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Refining estimates:
Iteration O0: log likelihood = -181.97453

Cox regresaion --

Breslow method for ties Number of obs = 76
Gamma shared frailty Number of groups = as
Group variable: patient

Bo. of subjects = 76 Obs par group: min = 2
No. of failures = 58 avg = 2
Time at risk = 7424 max = 2
Wald chi2(2) 11.66
Log likelihood =  -181.974563 Prob > chi2 = 0.0029
_t Coaf, Std. Err. z P>zl [95Y% Conf. Interwval]
age 0061825 .012022 0.51  0.607 =-.0173801 -0297451
gender -1.575676  .4626528 -3.41  0.001 -2.482458 -.6688924

theta 4TE4497 2673108

Likeliheod-ratio test of theta=0: chibar2(01) = 6.27 Prob>»=chibar2 = 0.008
Note: Standard errors of regression parameters are conditional on theta.

Given the estimated frailty variance, g = 0.475, and the significance level of the
likelihood-ratio test of H,: f = 0, we conclude that under this model there is significant
within-group correlation. To interpret the coefficients, let us begin by redisplaying them
as hazard ratios.

. atcox

Cox regression —-

Preslow method for ties Number of obs = TG
Gamma shared frailty Mumber of groups = 38

Group variable: patient
No. of subjects = 76 Obs per group: min = 2
No. of failuraes = 58 avg = 2
Time at risk = T424 max = 2
Wald chi2{2) = 11.66
Log likelihood =  -181.87453 Prob > chi2 0.0029
_t | Baz. Ratio Std. Err. z P>zl [95% Conf. Interval)
age 1.006202 .01209656 0.B1  0.807 5827701 1.036192
gender 2068678 .095708 -3.41 0.001 .0835376 .5122756

theta .4754457 V2673108

Likelihood-ratio test of theta=0: chibar2(01) =

6.27 Prob»=chibar2 = 0.006

Note: Standard errors of hazard ratios are conditional on theta,

The interpretation of the hazard ratios is the same as before, except that they are
conditional on the frailty. For example, we interpret the hazard ratio for gender as
indicating that, once we account for intragroup correlation via the shared frailty model,
for a given level of frailty the hazard for females is about cne-fifth that for males. Of
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course, a subject’s frailty would have a lot to say about the hazard, and when fitting a
shared frailty model, we can use stcox to additionally estimate the frailties {or more
precisely, the log-frailties 1) for us:

. gtcox age gender, nobr shared(patient) effects(nu)
{output omiited )

. sort mn
. list patient nu in 1/2

patiant o
1. 21 -2.4487067
2. 21 -2.4487087

. list patient nu in 75/1

patient nu
76. 7 .b1871687
6. 7 .51871687

By specifying option effects(nu), we tell stcox to create a new variable nu containing
the estimated random effects (the ;). After sorting, we find that the least frail {or
strongest) patient is Patient 21 with ¥5; = —2.45, and that the most-frail patient is
Patient 7 with ©» = 0.52.

U Technical Note

Estimation in the case of the Cox shared frailty model consists of two layers. In
the outer layer, the optimization is in terms of ¢# only. For fixed 8, the inner layer
consists of fitting a standard Cox model via penalized likelihood, with the v; introduced
as estimable coefficients of dummy variables identifying the groups. The penalized
likelihood is simply the standard Cox likelihood with an added penalty that is a function
of . The final estimate of 8 is taken to be the one that maximizes the penalized log
likelihood. Onece the optimal # is obtained, it is held fixed, and a final penalized Cox
model is fit. For this reason, the standard errors of the main regression parameters {or
hazard ratios, if displayed as such) are treated as conditional on 8 fixed at its optimal
value. That is, when performing inference on these coefficients it is with the caveat that
you are treating & as known. For more details on estimation, see Chapter 9 of Thernean
and Grambsch {2000).

Q

9.4.2 Obtaining estimates of baseline functions

Baseline estimates for the Cox shared frailty model are obtained in the usual way,
and the definition of baseline extends to include » = (. For example, working with
cur kidney data, we can obtain an estimate of the baseline survivor function via the
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basesurv(} option to stcox, just as hefore. Before we do so, however, we first recenter
age so that baseline corresponds to something more meaningful.

. gensrate ageil = age - 40

. stcox aged0 gender, nohr shared(patient) basesurv(50}

tailure _d: fail

analysis time _t: time

Fitting comparison Cox model:
Estimating frailty variance:

Iteration ¢: log profile likel
Iteration 1: log profile likel
Iteration 2: log profila likel
Iteration 3:  log profile likel

Fitting final Cox model:

Iteration 0: log likelihood =
Iteration 1: log likelihood
Iteration 2: log likelihood
Iteration 3: log likelihood
Iteraticn 4: log likelihood
Refining estimates:

Iteration O: log likelihood =

LI |

Cox regression --
Breslow method for ties

ihood = -iB2.06713
ihoed = -181.9791
ihood = -181,97463
ibhood = -181,97453
-189.0559%
-183.72206
-181,9960%
-181.97455
-181.97453
-181,97453
Number of obs = 76

Gamma shared frailty Number of groups = as
Group variable: patient

No. of subjects = 76 Obz per group: min = 2
No. of failures = &8 avg = 2
Time at risk = 7424 max = 2
Wald chi2(2) = 11.68
Log likelihoed =  -181.97453 Prob > chi2 = 0.0029
_t Coef. Std. Err. z Prlz| [95% Conf. Interwvall
aged0 .0061828 012022 0.51 0.807 -.0173801 .0297451
gender -1.575678 4626528 -3.41  0.001 -2.482458  -.6685924

theta 4764457 2673108

Likelihood-ratic test of theta=(

: chibar2(01) =

§.27 Prob>=chibar2 = 0.006

Rote: Standard errors of regresaion parameters are conditional on theta.

Note that recentering age has no effect on the parameter estimates, but it does
produce a baseline survivor-function estimate (80) that corresponds to a 40-year-old
male patient with mean frailty, or equivalently a log-frailty of zero.

Because the estimation does not change, we know from the previous section that the
estimated log-frailties still range from —2.45 to 0.52. We can use this information to
produce a graph comparing the survival curves for 40-year-old males at the lowest level
of frailty, mean value of frailty (baseline), and at the highest level of frailty.

. gen 8_low = 50" exp(-2.45)
. gen S_high = S0"exp({0.52)
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. line S_low S50 S_high _t if _t<200, c(J J J) sort ytitle{"Surviver fumction"}

This produces Figure 9.9. Note that for these data, the least frail patients have survival
experiences that are far superior, even when compared to those with mean frailty. We
have also restricted the plot to range from time 0 to time 200, where most of the failures
oceur.

- -
e
§
. R lnITiTirmaea
0 80 ’.6,“ 150 a0
§_low -:-—- bassline surviver
S_high

Figure 9.9: Comparison of survival curves for various frailty values

Currently, stcurve has no facility for setting the frailty. Instead, all graphs produced
by stcurve are for » = 0. stcurve does, however, have an outfile() option for saving
the coordinates used to produce the graph, and these coordinates can be transformed
so that they correspond to other frailty vaiues. For example, if we wanted smoothed
baseline hazard plots for the same three frailty values used above, we could perform
the following, remembering to first re-estimate in order to obtain the baseline hazard
contributions:

. stcox aged0 gender, nohr shared(patient) basehc(h)
{output omitted)

. stcurve, hazard kernel{gaussian} outfile(basehaz)
nete: all pleots evaluated at frallty equal to one

. use basghaz, clear
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. dascribe
Contains data from basehaz.dta
oba: 101 Kidney data, McGilchrist and
Aigbert, Biometrics, 1951
vars: 2 27 Aug 2003 15:5%
size: 1,212 (89.9% of memory free)
storage display value
variable name type format label variable label
hazl float %3.0g Smoothed hazard function
_t float %S.0g _t
Sorted by:

stcurve saved a dataset containing variable t {time) and hazl, the cstimated (after
smoothing) hazard function. We have loaded these data into memory, and so now alil
we have left to do is to generate the other two hazards and then graph all three against
_t.

. label variable hazi "mean frailty hazard®
. gan haz_low = hazl+exp(-2.46}
. gon haz_high = hazivaxp(0.62}

. line haz_low haz] haz high _t if _t<200, yscale{(log) sort
> ytitle(“"Smoothed hazard sstimate")

This produces Figure 9.10. Note that the comparison of hazards for the frailty extremes
matches that for the survivor function; the least frail individuals are quite immune to

infection.
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Figure 9.10: Comparison of hazards for varicus frailty values
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stcox is extremely versatile, and you can fit many different models by controlling the
covariate list that you supply to stcox. Recall the form of the Clox model,

h{t|x) = ho(t) exp(x3,)

and note that all the “modeling” that takes place in the Cox model is inherent to the
linear predictor x3, = Bz + fozy + -+ + By, for k covariates.

10.1 Indicator variables

One type of variable used in modeling is the indicator variable; that is, a variable equal to
O or 1, where a value of 1 indicates that a certain condition has been met, For exaniple,
in our hip-fracture data we parameterize the effect of wearing the hip-protection device
nsing the indicator variable protect. We also measure the effect of gender by using the
indicator variable mala.

If, for example, we fit a standard Cox model with protect and male as covariates,

- uge hitp://uww.stata-press.com/data/cgg/hip3
(hip fracture study)
. BLcox protect mals
failure _d: fracture
analysis time _t: timel
id: id

Iteration O: log likelihood = -150.850156

{output omitted)
Iteration 4: log likelihood = -124.38469
Refining estimates:
Iteration 0: log likelihoed = -124,3946%

Cox regression -- Breslow methed for ties
No. of subjects = 148 Number of obs = 208
No. of failures = 37
Time at risk = 1703
LR chi2(2) = 52.91
Log likelikood =  -124.39469 Prob > chi2 = 0.0000
-t
-d | Haz. Ratiec Std. Err. z Pzl [95% Conf. Intervall
protect .1315b411 ,051549 -5.18 G. 000 .0610222 -28358534
male .2523232 1178974 -2.95 0.003 .10098 6304912
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we might wonder what would happen if we coded gender in the reverse way; i.e., 1 for
females and 0 for males:

. gan female = !male
. Btcox protect female

failure _d: fracturs
analyais time _t: timel

id: id
Iteration 0 log likelihcad = -150.85016
Iteration i: log likelihcod = -129,06654
Iteration 2: log likeliheod = -125.53679
Iteration 3: log likelihood = -124.3988
Iteration 4: log likelihood = -124,39469

Refining estimates:
Iteration O: log likelihood = -124.39469

Cox regression -- Breslow method for ties
Ho. of eubjects = 143 Number of obs = 206
Ho. of failures = 37
Tima at risk - 1703
LR chi2(2) = 52.91
Log likelihocod = -124.35469 Prob > chi2 = 0.0000
_t | Haz. Ratio 5td. Err. z P>|z] [95% Conf. Intervall
protect .1316411 .051549 -5.18 0.000 0610222 . 2836634
female 3.963172 1.851783 2.96 0,003 1.586065 9.902954

The estimated hazard ratio for protect remains unchanged {which is comforting). The
hazard ratio for male in the first model was 0.2523, meaning that all else equal {the
same value of protect in this case), males were estimated to face 0.2523 of the hazard of
females. The estimated hazard ratio for female in the second model is 3.963, meaning
that we estimate females to face 3.963 of the hazard of males. Since 1/0.2523 = 3.96,
the ultimate conclusion doesn’t change.

If we instead look at the regression coefficients, we first obtained a coefficient for
male of In(0.2523) = —1.38. For female, we obtained In(3.963) = 1.38, meaning that
the magnitude of the shift in the linear predictor is the same regardless of how we code
the variable.

10.2 Categorical variables

A categorical variable is a variable in which different values represent membership in
different groups. Categorical variables usually take on values 1, 2, ..., but there is
nothing special about those values, and a categorical variable could just as well take on
0,1,...,0r 5 9.2 113, .... An indicator variable is just a special case of a categorical
variable: it is a categorical variable that has two groups, and the two groups are labeled
0 and 1.
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The important difference between indicator and categorical variables is that you do
not include categorical variables directly in your model, or at least you should not if
the categorical variable contains more than two unique values. Consider a categorical
variable race where 1 = white, 2 = black, and 3 = hispanic. If you were to fit some
model,

. stgcex ... race ...

you would be constraining the effect of being hispanic to be twice the effect of being
black. There would be no justifying that since the coding 1 = white, 2 = black,
3 = hispanic was arbitrary, and were you to use a different coding, you would be
constraining some other relationship. A categorical variable that takes on m distinct
values thus must be converted into m — 1 indicator variables:

. gen black = races=s
. gen hispanic = race==3
. Btcox ... black hispanic ...

An alternative to creating the variables yourself is to use the xi command:
. %i; stcox ... i.race ...
Type help xi for more information on the use of xi.

In the example above, which uses the categorical variable race, we had three distinct
groups (races) and included indicator variables for two of them (black and hispanic).
Which two groups we choose makes no substantive difference. Let’s pretend that in the
above estimation we obtained the following results:

-

Variable  exp(d)
black 1.11
hispanic 1.22

The interpretation would be that hispanics face a 22% greater hazard than whites and
that blacks face an 11% greater hazard than whites. Had we instead fit a model on
white and hispanic, we would have obtained

Variable exp(a)
white 0.607
hispanic 0.741

meaning that whites face 60.7% of the hazard that blacks (the omitted variable) face
and that hispanics face 74.1% of that same hazard. These results are consistent. For
instance, how do hispanics compare to whites? They face .741/.607 = 1.22 of the hazard
faced by whites, and this corresponds exactly to what we estimated when we included
the variables black and hispanic in the first analysis.

Which group you choose to omit makes no difference, but it does affect how results
are reported. Comparisons will be made to the omitted group. Regardless of how
you estimate, you can always obtain the other comparisons following the technique we
demonstrated above.
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In the example we have shown, the categorical variable has no inherent order; it
was arbitrary that we coded 1 = white, 2 = black, and 3 = hispanic. Some categorical
variables do have a natural order. For exampie, you may have a variable that is coded
1 = mild, 2 = average, and 3 = severe. Such variables are cailed ordinal variables. Even
so, remember that the particular numbers assigned to the ordering are arbitrary (not
in their ordinality, but in their relative magnitude}, and it would be inappropriate to
merely include the variable in the model. Ts “severe” twice that of “average” or four
times “average”? The coefficients you obtain on the corresponding indicator variables
will answer that question.

10.3 Continuous variables

Continuous variables refer to variables that are measured on a weil-defined, cardinal
scale, such as age in years. What distingnishes continuous covariates from indicator
and categorical variables is that continuous covariates are measured on an interval scale.
That is, the distance between any two values of the variable is meaningful. This is not
the case for indicator and categorical variables. We might have an indicator variable that
assigns values 0 and 1 to each of the sexes, but the difference ] — 0 =1 has no particular
meaning. Or we might have a categorical variable coded 1 = mild, 2 = average, and
3 = severe, but “severe”—“mild”= 3 — 1 = 2 has no particular meaning, On the other
hand, the difference between two age values is meaningful.

Continuous variables can be directly included in your madel; e.g.,
- stcox ... age ...

but doing so does not necessarily mean that you have correctly accounted for the effect
of the variable. Including age by itself maans that you are constraining each additional
vear of age to affect the hazard by a multiplicative constant that is independent of
the level of age. It is not difficult to imagine failure processes where the effect of age
increases with age {or diminishes with age). In such cases, it is popular to estimate the
effect as quadratic in age:

- Een age2 = age"2

+ 8tcox ... age age2 ...

This usually works fairly well, but caution is required. Quadratic terms have a
minimum or a maximum, and if the extremum is is in the range of the data, then you
have just estimated that the effect of the variable, as it increases, increases and then
decreases, or decreases and then increases. That might be reasonable for some problems,
or it might simply be an artifact of using the quadratic to approximate what you simply
believe to be a nonlinear but strictly increasing or decreasing effect.

This can be checked, and the procedure is relatively straightforward once you re-
member the quadratic formula. To demonstrate, we perform the following analysis, and
display regression coefficients instead of hazard ratios {option nohr):
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- use http://www._stata-press.com/data/cgg/hip?
(hip fracture study)

. gen agel = age~2
. stCcoX protect age age2, nohr

failure _d: fracture
analysis time _t: timel
id: id
Iteration O log likelihcod = -98.571264
Tteration 1: log likelihood = -82.020427
Iteration 2 log likelihood = -81,84397
Iteration 3: log likelihood = -81.843652
Refining estimates:
Tteratien O: log likelihood = -81,843652

Cox ragression -- Breslow method for ties
Ho. of subjects = 48 Number of obs = 106
Ho. of failures = 31
Time at risk = 714
LR c¢hi2{3) = 33.46
Log likelihood =  -Bl.843652 Prob > chi2 = 0.0600
-t
_d Coef. Std. Err. z Prlzi [95% Conf. Intervall
protect ~2,336337  .4£40283 -5.03 0.000 -3.245816 -1.426858
age -.9093282  .8847323 -1.03 0.304 -2.843372 .B8247153
agal 0070519 .0061416 1.15  0.281 -.0049864 .0190891

Note that had we forgotten to specify nohr, we could just replay the results in this
metric {without refitting the model) by typing stcox, nohr.

Define b to be the coefficient for age, a to be the coefficient for age2, and « = age.
The quadratic function az? + bx Las maximum or minimum at = = —b/2a, at which
point the function changes direction. From the above model we estimate g = 0.0070519
and b = —0.8093282, and thus we estimate —b/2a to be 64.5. Up until age 64.5, the
rclative hazard falls, and after that, it increases at an increasing rate. What is the range
of age in our data?

. summarize age
Variable | Obs Mean Std. Dev. Min Max

age ’ 106 70.46226  5.46T70BY 62 82

We estimated a turning point at 64.5 within the range of age. Since it is not realistic ta
assume that the effect of age is ever to reduce the chances of a broken hip, our estimation
results are problematic.

In the case we have just shown, we would just drop age? from the model, noting
that the Wald test given in the ontput shows the effect of age2 to be insignificant given
the other covariates, and also noting that age and age2 are jointly significant:
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. taat age agel

(1) age =20
(2) age2 =0

chi2( 2) = 10.63
Prob > chi2 = . 0062

However, for purposes of this demonstration, let us put aside that easy solution and
pretend that we really did have significant coefficients with an artifact that we do not
believe.

There exist many solutions to this problem, and here we explore two of them. In
our first solution, we note that it is only between ages 62 and 64.5 where we have a
problem. It might be reasonable to say that there is no effect of age up until age 65, at
which point age has a quadratic effect. We could try

. gen age6t = cond{mge»66, age-E5, 0)

. gen age65_2 = agef572

- 8tcox protect ageb6 ageSb_2
and we invite you, the reader, to try that solution—-it produces very reasonable results.
What we did was to create the variable age65, which is defined as 0 for ages below 65
and as age minus 65 for ages above 65.

Our second solution would be to constrain age to have a linear effect up until age
65 and then a quadratic effect after that. In that case,

. gen age2gtBt = cond(age>65, age-65, 0)°2
. Stcox protect age ageldgt6h

This produces even more reasonable results.

10.4 Interactions

The job of the analyst using Cox regression is to choose a parameterization of x3, that
fairly represents the process at work. It is not sufficient to say that the outcome is a
function of variables A, B3, and €, and then parameterize x3, = 844 + 8B + AcC.

For instance, the effect of A may be constant {as we have it), or it may increase or
diminish with the level of A, and in the latter, we must allow for that in our parameter-
ization, perhaps by approximating the effect by including A% in the model. Similarly,
the effect of A may increase or diminish with the level of another factor, say, B, and
in such cases, it is common to approximate that by inclusion of the terms such as AB;
i.e., the interaction of A and B.

In a Cox model, the linear predictor x3, is the logarithm of the relative hazard
exp(x3,) since the baseline hazard function is multiplicatively shifted based on this
value. As such, in what follows, we use the notation LRH (log relative hazard) to denote
the linear predictor.
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Returning to our example, if we wanted to entertain the possibility tha B effect of
wearing a hip-protection device might increase or decrease with age, we . i include
the term protect+age in the model: ; )
. gen plage = protect*age
. stcox protect age plage
The sign of the coefficient for the variable pXage will tell whether the effcc gfprotact
decreases or increases with age, since the Cox model fit by the above o« &ponds to
the log relative hazard
LRH = 3iprotect + [Jrage + G3protect * age
which implies that
JLRH
A = P + Baage
Jprotect P+ Bsag
If 33 > 0, the effect of protect increases with age; if G35 < 0, it di es; and

if 33 = 0, the effect of protect is constant. If you fit this tnodel usir hip2.dta,
we would estimate 83 = 0.036 with 95% confidence interval (-0.11,0.18 5
confidence interval includes zero, we cannot reject the hypothesis (at the 5 18vel) that
there is no interaction effect,

Continuous variables can be interacted with continuous variables, conr 1us vari-
ables with indicator variables, and indicator variables with other indicat ¥
Consider an indicator variable one_if_female and an indicator variable on:
The interaction one_if female*one_ if over65 takes on two values, 0 »
means that the subject is both female and over 65.

It is not uncommon to read that interaction effects should only be inc déd in the
model when the corresponding main effects arc also included, but ther i nothing
wrong with including interaction effects by themselves. In some particu -$broblem,
being female and over 65 may be important, while either fact alone could | o}
no importance. The goal of the researcher is to parameterize what is reax  ably likely
to be true for the data for the problem at hand and not merely to follow a - a8

In developing parameterizations and in interpreting parameterizations - 'oped by
others, we find it easiest to think in terms of derivatives—in terms of chang
the hypothetical parameterization

LRH = Bweight + faage + ﬁgage2 + Faprotect + F;female * prote.

The easiest way to interpret this parameterization is to consider each of it-
derivatives. What is the effect of weight in this model? The derivative

with respect to weight is

ahponent
fpe above

JLRH

Oweight =h

and so the effect of weight is constant.
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What is the effect of age in this model? It is

JLRH
——— = 2 +203age

Dage
meaning that the effect is not constant but changes with age, either decreasing (33 < 0)
or increasing (83 > ).
The effect of protect in this model is

JLRH

W = 34 + OGsfemale

meaning that protect has the effect 54 for males and 3, + F5 for females. If 85 = 0,
the effect for males and females is the same.

The effect of female is
JLRH
Ofemale

meaning that there is only an effect if protect==1; males and females are otherwise
considered to be identical. That is odd but perhaps not unreasonable for some problems.

= fsprotect

One can build models by reversing this process. For instance, we start by thinking
how the variables weight, age, protect, and female affect the outcome. From that,
we can build a specification of LRH by

(1) Thinking carefully about each variable separately and writing down how we think
a change in the variable affects the ontcome.

(2) Multiplying cach of the formulas developed in (1) by its corresponding variable.
(3) Adding the resulting terms together and simplifying.

Let us demonstrate this process. We begin by stepping through each of the variables
(weight, age, protect, female) one at a time and considering how changes in each affect
tlie outcome:

(1) What is the effect of weight? We think it is constant and call it .

(2) What is the effect of age? We think the effect increases with age and express it
as oy + azage.

(3) What is the effect of protect? We think protect has one comstant effect for
males and another for females, so the effect is oy + azfemale.

(4) What is the effect of female? We do not think there is one, other than what we
have already considered. If we wanted to be consistent about it, an implication of
(3) is that the effect must be asfemale, but we need not worry ahout consistency
here. Each variable may be considered in isolation, and later, when we assem-
ble the results, inconsistencies will work themselves out. The effect of female,
therefore, is zero.
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At this point, you must think carefully about each variable in isolation, but vou can
be sloppy in your thinking between variables, Do not worry about. consistency—the
next step will resolve that. You can write down that there is one effect at step (3) and
then forget that you did that in step (4), as we did, or you can include the same effect
more than once; it will not matter.

So, that is the first step. Write down all the derivatives without worrying about
consistency. At this point we have

weight: oy
age: o+ azage
protect: ¢4 + asfemale

female: O

Importantly, in addition to these derivatives, we have a story to go along with each
because we have thought carefully about them. Each of the above are marginal effects,
or said differently, they are derivatives, or they are the predicted effects of a change in
the variable, so the next step is to integrate each with respect to its variable. Actually,
multiplication by the variable will be good enough for our purposes. That is not quite
equivalent to integration, yet, the difference is consummate to the inclusion of the correct
constant term, which the Cox model just subsumes into the baseline hazard anyway.

Therefore, multiplying each of our derivatives by the variable of interest and sum-
ming, we get

LRH = ayweight + (a2 + azage)age + (g + asfemale)protect + 0
which simplifies to

LRH = a)weight + apage + a3ageg + cyaprotect + asprotect * female

There is our model. If you go through this process with your own model, vou might
end up with a term such as (az + «3)weight, but if so, that does not matter. Just
treat (az + aa) as one separate coefficient when you fit the model. When you interpret
the results, this one coefficient represents the cumulative effect of the two terms arose
because you inconsistently wrote the same effect twice.

The important point of this is that models specified by LRH are not a random
assortment of terms manufactured according to some predetermined set of rules, such
as, include this if you include that, or do not include this unless you include that.
Models are developed by carcfully and substantively thinking about the problem, and
thinking in terms of derivatives with respect to the component variables in your data is
a useful way to proceed.
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10.5 Time-varying variables

Time-varying covariates are handled automatically by Stata’s st family of commmands,
including atcox. If you have data of the form

id  _t0 .t age calcium protect fracture
12 0 & 64 11.77 4] 0
12 5 8 64 11.34 0 1

and you fit the model
. Btcox protect age calcium

the covariate calcium will take on the value 11.77 for subject 12 during the period {0,5]
and the value 11.34 during (5,8].

Thus, the only trick to using time-varying covariates is understanding what they
mean and concocting the time-varying covariates that you want.

In terms of meaning, just understand that the hazard of the risk changes the instant
the variable changes values; there is no anticipation of the change, nor is there any
delay in the change taking effect. For instance, if you are an economist analyzing time
to employment for the unemployed, you might theorize that whether the person is
receiving unemployment payments would affect the chances of accepting employment.
In that case, you might include a time-varying covariate receiving. benefits, and that
covariate would change from 1 to 0 when the benefits ran out. Let us further assume
that the estimated coefficient on receiving benefits is negative. The instant benefits
stop being paid, the hazard of employment increases. There would be nothing in the
model that would say that the hazard of employment increases before the benefits ran
out—in anticipation of that event—unless you included some other variable in your
model.

Alternatively, imagine you are testing generators in overload situations. You run a
generator under its approved load for a while and then increase the load. You have a
time-varying covariate recording load in kvaAs. In that case, you would be asserting that
the instant the load increased, the hazard of failure increased, too. There would be no
delay, even though failure might be caused by overheated bearings and heat takes time
to accumulate.

In most situations, researchers ignore anticipation or delay effects, assuming they do
not amount to much. That is fine as long as care is taken to ensure that any possible
delay in the effect is insignificant.

Relatedly, it is useful conceptually to distinguish between time-varying covariates
and time-varying coefficients, even though the latter can be estimated using the former.
With time-varying covariates {also known as time-dependent covariates), the marginal
effect remains the same but the variable changes, so the aggregate effect changes. With
time-varying coefficients {also known as time-dependent coefficients), the variable re-
mains the same but the marginal effect changes, so the aggregate effect still changes.

A
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For example, suppose that you hypothesize that the effect of some covariate x is 3,

up to analysis time ¢t = 5 and 31 + (3, thereafter. You can fit such a model by specifying
LRH =) + 3 1(t > 5)x

where I{) is the indicator function equal to one if the condition is true (¢t > 5 in this
case) and zerc otherwise. If your data looked like

id _t0 _t x b 274453 d
1 0 3 22 ] t
2 0 4 i7 0 0
3 0 5 23 0 0
3 5 12 23 23 1
4 ] 5 11 o 0
4 5 21 11 11 0

you could type
. 8tcox x xtgth

and be done with it. That is, each subject who is known to have survived beyond t = 5
has a record for £ < 5 and a record thereafter, so the values of the variable xtgt5 can
be recorded. Probably, however, your data look like

ia  _t0 _t x _d
1 0 3 22 1
2 0 4 17 0
3 0 12 23 1
4 0 21 11 0

in which case, fitting a Cox model with time-varying covariates would require a little
work, which we discuss next.

10.5.1 Using stcox, tvc() texp()

Consider the dataset in its more common form above. It is fairly easy to fit the Cox
mode] with the time-varying covariate

LRH = Six + G2I(t > 5)x

without having to concoct a new (expanded) dataset with the generated interaction
variable xtgt5. The interaction term [(t > 5)x is of the form

variable_in_my_data x some_function_of _analysis_time

where variable_in_my_data is x and some_function_of_analysis_time is I{t > 5). Since
our interaction takes this specific form, we can just type

. stcox x, tvel(x) texp(_t>5)
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The first x in the variable list for stcox represents the main effect term 8;x. The option
tve (x) specifies thal I want x to be interacted with seme function of analysis time, and
the option texp(_t>5) specifies the function of time ta be used {note that _t represents
analysis time hore, since this is how stset defines it).

That the function _t > 5 is an indicator with only one change point masks a lot of
what can be done using tvc{) and texp{). Let us consider a more complex example:

Consider a more complete version of our hip-fracture data with an additional vari-
able, init _drug level, which gives the initial dosage level for a new experimental
bone-fortifying drug.

. use http://www.stata-press.com/data/cgg/hipd, clear
{(bip fracture study)

. list id _t0 _t _d init_drug level in 1/10

id _t¢ _t _4 init_d-1

1. 1 0 1 1 50
2, 2 0 1 1 S¢
3. 3 0 2 1 50
4. 4 0 3 1 50
5. B 0 4 1 100
6. & 0 4 1 50
7. 7 0 5 1 100
8. 8 0 5 1 50
9. g 0 5 o 50
10. 8 & 8 1 50

Note that the initial dosage of the drug comes in one of twe levels, either 50mg or
10ng. To analyze the effect of this drug, we could easily fit the Cox model with

LRH = fiprotect + Bzinit drug level
using

. 8teox protect init.drug.level

but we would be assuming that the relative hazard between those with an initial dosage
of 50mg and those with an initial dosage of 100mg would be constant over time. This
would be fine if we were willing to assume that the hazard function for the duration
of the whole study were completely determined by the initial dosage, but it is perhaps
more reascnable to think that the hazard function changes with the current level of the
drug in the patient’s bloodstream, which we know to decay {nonlinearly) as time passes.

Let’s instead pretend that the drug is administered only once upon entry to the
study, and that its level in the bloodstream decays at an exponential rate such that the
current level of the drug is equal to init drug level x exp{—0.35t). For example, at
t = 2, the current drug level would be exp(—0.7) = 0.5 times its original level (in other
words, 2 days is the half-life of the drug). We wish to fit the Cox model with protact
and the current (time-varying) drug level as covariates, or equivalently,
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LRH = fyprotect + Srinit_drug-level exp{—0.35t)

This is accomplished by

. stcox protect, tvc(imit_drug_level) texp{exp(-0.35%_t)}

failure _

analyeis time _

i

Iteration O: log
Iteration 1: log
Tteration 2: log
Iteration 3: log
Itaration 4: log

d: fracture

Refining estimates:

Tteration O: log

Cox regreasion --

t: timel
d: id
likelihood = -98,571264
likelihood = -83.895138
likelihood = -B3.241951
likelihood = -83.214617
likelihood = -83.214437
likelihood = -B3.214437

Breslow method for ties

No. of subjects = 48 Number of obs = 106
Bo. of failures = 31
Time at risk = 714
LR chi2(2) - a0.T1
Log likelihoed =  ~83.214437 Frob > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>lz| [98Y Conf. Intervall
rh
protect 1183196 .0518521 -4.87 0.000 .060122 .2793091
t
ipit_drug_-1 .8848298 06017886 -1.80 0.072 . 77440562 1.011

Kote: Second equation coutains variables that continuously vary with respect to

time; variables are interacted with current values of exp{(-0.35%_t).
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Note that now our estimated hazard ratios are now split into two categories: those
for constant-with-time variables {rh) and those for time-varying variables (t), and we
are reminded at the bottom of the ontput which function of analysis time was used to
create the time-varying covariate. The hazard ratio 0.8848 is now interpreted as those
with higher drug levels in their bloodstreams have a lower risk of having a hip fracture,

10.5.2 Using stsplit

Recall our simpler example from the beginning of Section 10.5, where our data look like

_t

i

LR =T
(==l == =]
R s W oot

|

x d
22 1
17 o]
23 1
11 [
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and we were fitting a Cox model with
LRH = S1x + BaI(f > B)x

In the previous section, we mentioned that using stcox, tvc(x) texp(_t>5) avoided
having to concoct the expanded dataset

id _td I x xtgth d
i 0 3 22 0 1
2 0 4 17 0 o]
3 o 5 23 0 o
3 & 12 23 23 1
4 o 5 11 o ¢
4 5 21 1t 11 ]

and fitting the same model with stcox x xtgt5.

Although not having to expand the data proves convenient, it is worth learning how
to expand a dataset so that time-varying covariates may be introduced. Suppose that
we instead wished to fit a Cox model using

LRH = fix + foI(t > 5)x + Bal(t > 10)x

so that the effect of x is 8y over (0,5], 81+ A2 over (5,10], and 8 + 35 + 3 over (10, cc).
One limitation of the stcox, tve() texp() is that only one function of analysis time
may be specified, and here we have two, I(t > 5) and /{t > 10).

Another limitation of stcox, tve() texp() is that it is unavailable if the exact
marginal (exactm) or exact partial method {(exactp) is used for treating ties. For these
reasons, it is important to learn how to manually replicate the calculations performed
by the convenience command stcox, tve() texp() so that they may be generalized to
cases where the convenience command is not available.

Toward this goal, Stata has the powerful stsplit command. For a simple illustration
of steplit, let’s return to our model,

LRH = ix + GoI{t > 5)x

and pretend that estimation was not possible via stcox, tve() texp(). stsplit takes
data such as

id _t0 _t x -d
H [+ 3 22 1
2 1] 4 17 a
a 0 12 23 1
4 a 21 11 a

and if you type
. stsplit new, at(5)

the data will be divided at analysis time ¢ = 5, and a new variable new will he created
so that new==0 for t <= 5 and new==5 for ¢ > 5:
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. 1list id _t0 _t x _d

id  _t0 t x 4

1. 1 0 3 22 1
2. 2 0 4 17 0
3. 3 0 12 23 1
4. 4 o 21 11 0

. staplit new, at(B)
(2 observations (episodes) created)

. list id _t0 _t x _d new, sep(Q)

id _t0 _t X _d new
1. 1 0 3 22 i o
2. 2 0 4 17 0 o
3. 3 o B 23 0 o
4, 3 5 12 23 1 5
5. 4 v E 11 0 0
6. 4 5 21 11 0 5

stsplit automatically fills in the time and failure variables appropriately on the new
records. Once the data have been split on £ = 5, creating the xtgt5 variable and fitting
the model is easy,

. gen xtgtSs = x*(new==5)}
. Btcox x xtgth

or we could type

. gen xtgth = x*{_t>5)

. stcox x xtgth
Whether we use the new variable stsplit created for us or the original .t makes no
difference.

Although we illustrate stsplit on a simple dataset, the original data with which
we start could be inordinately complicated. The original might already have multiple
records per subject, and some subjects might already have records split at t = 5 and
some not. That will not cause stsplit any difficulty.

staplit can split at multiple times simultaneously. You could type
. stsplit cat, at(5 10 25 100}

and stsplit would split the appropriate records at the indicated times. Note that the
split points do not have to be equally spaced. For each subject, the new variable cat
will contain 0 over the interval (0,5], 5 over (5,10], 10 over (10,25], 25 over (25, 100],
and 100 for records aver the interval (100,2¢). Any valid numlist may be used with
stsplit’s at () option; see help numlist.
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O Technical Note

stjoin is the inverse of stsplit, and it will safely rejoin split records; “safely”
means that stjoin will verify that, in the rejoining, there will be no loss of information.
stjoin does this by making sure no variables differ {other than those specifying the
time span) on any records it considers joining. For instance, looking through the data,
stjoin would join these two records,

id 0t _d x1 12

57 5 7 0 3 8

57 7 8 0 3 ]
to produce

id o _t _d x1 x2

57 5 8 0 3 8

But would not have joined the records if either x1 or x2 varied over the two records.

Thus, to use stjoin after stsplit, you must drop the new variable that stsplit
created because it will differ over the now split records for a particular subject.

You can use stjoin anytime, not just after stsplit. It is always safe to type
“stjoin”.
a
When the time-varying covariates vary continuously with time, staplit, in an al-
ternative syntax, proves even more uscful. Returning to our hip-fracture example with
time-varying covariates model,

LRH = fyprotect + fzinit _drug level exp(—0.35¢)

we can use stsplit to manually replicate what was done by

. stcox protect, tvc{init_drug.level) texp{exp(-0.35*_t))

Recall that Cox regression only operates on times when failures actually occur. stsplit
has an option that will split your records at all observed fatlure times (note that for this
particular use of stsplit, no new variable is specified).

. use http://wwu.stata-press.com/courses/nc631/hipd, clear
(hip fracture study)
. staplit, at(failures)
(21 failure times)
(452 cbservations (episcdes} created)
. gen current_drug_level = init_drug level+exp(-0.36«_t}
. 8teox protect current_drug_level
failure _d: {fracture

analysis time _t: timel
id: id

Tteration O: log likelihood = -98.5712G4
Iteration 1: log likelihood = -83.896138
Iteratijon 2: log likelihoed = -83.24195%1
Iteration 3: log likelihood = -83.214617
Iteration 4: log likelihood = -83.214437
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Refining estimates:
Iteration O: log likelihood = -83.214437

Cox regrassion -- Breslow methed for ties

Ko. of subjacts = 48 Number of obz = S58
No. of failures = 31
Time at risk - 714

LR chi2(2) = 30.71

Log likelihood =  -83.214437 Prob > chi2 = 0.0000

_t

.d | Haz. Ratis  5td. Err. z P>zl [95% Conf. Interwval]

protect . 1183196 .0518521 -4.87 0.000 .0B0122 L 2793081

current_dr-1 . 8848208 Q601788 -1.80 0.072 . 7744052 1.011

Except for some stylistic changes in the output, we have the same results as previously
reported. The disadvantages to performing the analysis this way are (a) it took more
effort on our part and {b) we had to expand our dataset from 106 observations to 558
observations. Such expansion is not always feasible (think of very large datasets with
lots of failure times). The advantages of expanding the data are {(a) we are not limited
to how many functions of analysis time we can use in our Cox models and (b) we can
estimate using any method to handle ties and are not limited to the breslow or efron
methods.

stsplit, at{failures) is indeed a powerful tool since it uses the minimum amount
of record splitting possible while still enabling your Cox model to fully capture the
continuously changing nature of your time-varying covariate. When you have large
datasets, this minimalistic approach to record splitéing may prove invaluable.

In any case, just remember that when stcox, tve() texp(} does not apply, use
stsplit, at(failures).

Q Technical Note

stsplit has another neat feature. Typing
. stsplit, at{failures) riskset{rewvarname)

will not only split the records at every observed failure time but will also create the new
variable newvername, which uniquely identifies the risk sets. For every failure time,
there is a group of subjects who were at risk of failure, and newvername describes this

grouping,
Once we have the risk sets organized into groups, we can (for example} use this to

verify something we hinted at in Section 1.2, namely, that Cox regression is really just
a coliection of conditional logistic regressions, one taking place at each failure time.
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We invite you to try the following:

. use http://www.stata-press.com/data/cgg/hip2, clear
. stsplit, at(failures) riskset(riskid)

. Stcox age protact, exactp nohr

. clogit _4 age protect, group{(riskid)}

and verify that you get equivalent regression results. Note that since we do have ties, we
had to tell steox to handle them the discrete way--the same way a conditional logistic

model would—using option exactp.
a




11 The Cox model: Diagnostics

Despite its semiparametric nature, the Cox model is no different from an ordinary
least squares model in that there exist a multitude of diagnostics that will check for
model misspecification, outliers, influential points, etc. All the usual notions of what
constitutes a “well-fitting” model are also true for Cox models; the difference is in the
details.

11.1 Testing the proportional hazards assumption

Despite the suggestive name “testing the proportional hazards assumption”, these tests
are really just model] specification tests that verify that you have adequately parame-
terized the model and that you have chosen a good specification for x8,. It just so
happens that with Cox models, specification tests often go under the name “tests of the
proportional hazards assumption”.

As with specification tests for other models, there exist many ways to test the pro-
portional hazards assumption, and passing one test does not necessarily mean that
others would be passed also. There are many ways that you can misspecify a model.

11.1.1 Tests based on re-estimation

The way specification tests generally work is that one searches for variables to add
to the model. Under the assumption that the model is correctly specified, these added
variables will add little or no explanatory power, and so one tests that these variables are
“insignificant”. Even tests of the proportional hazards assumption follow that scheme.

The first test that we strongly recommend—and we recommend this test for all
models, not just Cox models and not just survival models,—is called a link test. This
test is easy to do and is remarkably powerful. What vou do is type

. Btcox ... /e fit your Cox model +/
. linktest

which is really just shorthand for

. Btcox ...
. predict &, xb /* cbtain linaar predictor =/
. gen 82 = 572

. stcox s 82
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The point of the link test is to verify that the coefficient on the squared linear predictor
(82) is insignificant. The basis for this test is that one first estimates 3, from the
standard Cox model and then estimates 5; and 3; from a second round model

LRH = £ (x8,) + Fa(xB,)?

Under the assumption that x3_ is the correct specification, 8, = 1 and 3 = 0
Thus, one tests that 8: = 0,

This test is reasonably powerful for errors in specifying x3_ under the assumption
that x at least has the right variables in it, or more correctly, that the test is weak
in terms of detecting the presence of omitted variables. If you fail this test, you need
to go back and reconsider the specifications of the effects (derivatives) for each of the
variables.

In terms of directly going after the proportional hazards assumption, a popular way
is to interact analysis time with the covariates and verify that the effects of these inter-
acted variables are not different from zero because the proportional hazards assumption
states that the effects do not change with time except in ways that you have already
parameterized. Or, more generally, if you have the correct specification, the effect will
not change with time, and moreover, any variable you can think to add will have no
explanatory power.

There are many ways to proceed. You could, as with the link test, start with the
predicted x3_ from a first round model and estimate

LRH = 31 (x3,) + 5 (Xax)t

and test that 3, == 0, or you could refit the entire model in one swoop and include many
interactions,

LRH = X,GI]_ + xﬁ_,rgt

and test 3., = 0. However, by far the most popular method is to fit separately one
model per covariate and then perform separate tests of each,

e it the model LRH = x3_ + 3;(zt) and test 8; =0

o Fit the model LRH = x3, + fa(x2t) and test 3 =0

and so on. If you are going to follow this approach, and if you have many covariates,
we recommend that you werry ahout the effect of performing so many tests as if each
were the only test you were performing. Some sort of adjustment, such as a Bonferroni
adjustment, is called for. In the Bonferroni adjustment, if you are testing at the 0.05
level and performing k tests, you use 0.05/k as the critical level for each.

Alternatively, vou could instead simply include all the covariates, interacted with
-t, at once. We have been fitting a model on age and protsct, and so we could type
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. use http://wwy.stata-press.com/data/cgg/hip2, clear
. Stcox protect age, tvc(age protect) texp{.t)
. test [t]

If you instead want to follow the individual-regression approach, you would type

. steox protect age, tvc(age) texp(_t)
. stcox protect age, tvec(protect) texp(_t)

Doing that, you will discover that neither term significantly interacts with time (even
without a Bonferroni adjustment.)

There are two things to note at this point: (1) We could have omitted the texp(_t)
option in the above since this is the default function of analysis time used by stcox,
tve(), and {2) we handled tied failures using the default Breslow approximation. Had
we instead wanted to use the marginal or partial methods for ties, we would need to
stsplit our records at all observed failure times and generate the interactions ourselves;
see Section 10.5.2.

In the previous discussion, we stated that a popular test of the proportional hazards
assumption is to interact analysis time with the covariates (individually) and to verify
that the interacted variables have no significant effect. Actually, any function of analysis
time may be interacted with the covariates, and not all variables need to be interacted
with the same function of time. It is all a matter of personal taste, and researchers
often use In(t) instead of ¢ in the interactions. Doing this in Stata is easy enough-—just
change the specification of texp(). For example,

. use http://www.stata-press.com/data/hip2, clear
. stcox age protect, tvclage) texp{ln(_t)}

Iu any case, such tests have been found to be sensitive to the choiece of function, and
there are no clear guidelines for choosing functions. A more complete approach would
be to try £, Inf{t} and then any other functions of time that occur to you.

A more flexible method, however, is to let the function of time be a step function
(of a few steps) and let the magnitudes of the steps be determined by the data:

. use http://www.stata-press.com/data/cgg/hip2, clear
(hip fracture study)

. Btsplit cat, at(5 8 15)
(30 cbservations (episocdes} created)

. gen ape2 = ape*(cat==5)

. gen apgel = age*{cat=aB)

. gen aged = age*(cat==16)

. 8tcox protect age age2-aged, noshow

Iteration 0: log likelihood = -98.571254
Iteration i: log likelihood = -81.803708
Iteration 2: log likelihood = -81.511169
Iteraticn 3: log likelihood = -81.5101

Refining estimates:
Iteration 0: log likelihood = ~81.5101



178 Chapter 11. The Cox model: Diagnostics

Cox ragression -- Breslow method for ties
No. of subjects = 48 Hunber of obs = 136
No. of failures = 31
Time ar risk = 714
1R chi2(B6) = 34,12
Log likelihood = -81.5101 Prob » chi2 = 0.0000
.t | Haz. Ratio  Std. Err. z P>z [95% Conf. Intervall
protect .1096836  .0496909 -4.88 (.000 .0461351 . 2665844
age 1.17704 0789268 2.43  0.015 1.032081 1.34236
age2 L937T107  .1024538 -0.58 0,552 . 7663579 1.16105
aged .BETT2TT  .0911832 -1.35 0.177 JT062149 1.066178
aged .5477089  .0948464 -0.54 0.592 .7789111 1.153087

. teatparm age2-aged

(1) age2 =0
{(2) age3 =0
{3) aged = O

chi2( 3) = 1.83
Prob > chi2 = 0.6079

This, we argue, is a better test. Time is aliowed to have whatever effect it wants,
although the cost is that the time function is only crudely defined over broad ranges of
the data, meaning we misfit those broad ranges. In the context of what we are testing,
however, that cost should be minimal. We do not need to find the best model, we just
need to know if there is evidence as to the existence of another model that is better
than our current cne.

To summarize, the hasis of specification tests is the consideration of models of the
form

LRH = X; 3, + B2q;

where g; is something else. Under the assumption that x3, is the correct specification,
B2 will be zero, and you can test for that. Since the choice of g; is entirely up to the
user, this forms a very large class of tests.

11.1.2 Test based on Schoenfeld residuals

Another way of checking the proportional hazards assumption {which is to say, specifi-
cation) is based on analysis of residuals. This is not unlike re-estimation. The idea is
to retrieve the residuals, fit a smooth function of time to them, and then test whether
there is a relationship. Stata’s stphtest command does this and is based on the gen-
eralization by Grambsch and Therneau (1994). They showed that many of the popular
tests for proportional hazards are in fact a test of nonzero slope in a generalized linear
regression of the scaled Schoenfeld {1982) residuals on functions of time.
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In its simplest form, when there are no tied failure times, the Schoenfeld residual
for covariate 7, u = 1,...,p, and for observation 7 cbserved to fail is

2ich, Tui OXP(X:0, )
Zeeﬁj exp(x;03,)

That is, 7,; is the difference between the covariate value for the failed observation
and the weighted average of the covariate values (weighted according to the estimated
relative hazard from a Cox model) over all those subjects at risk of failure when sub ject
3§ failed.

Tuj = Tuj —

Let us momentarily allow that the coefficient on ., does vary with time (in contra-
diction of the proportional hazards assumption), so that 3, is actually

ﬁu(t) = B + ng(t)

where ¢; is just some coeficient and g(t) is some function of time. Under the propor-
tional hazards assumption, g; = 0. Grambsch and Therneau (1984) provide a method
of scaling the Schoenfeld residual to form r, and the scaling provides that

E(T:j + ﬁu) = r8|-l (t)

Consequently, a graph of 7 ; versus ¢; (or some function of ¢;) provides an assessment
of the proportional hazards assumption. Under the null hypothesis of propartional
hazards, we expect the curve to have zero slope. In fact, r},; versus t; is fairly rough,
so it is common to add to the graph some sort of smooth curve through the points
and to base one's judgment on that. You can base your judgment on the graph or on a
formal statistical test of H, : ¢; = 0, the common test being based on a linear regression
estimate of r; on ¢; or g(¢;}). In the testing framework, the choice of g() is important.
When you look at a graph, checking for a nonzero slope by inspection is sufficient. If
you plan on performing the test after looking at a graph, choose a form of g() that
transforms the relationship to a linear one, and then the test based on linear regression
can detect a nonzero slope, given that the relationship is linear.

Stata’s stphtest automates this process, and graphs and tests for individual covari-
ates and globally the null hypothesis of zero slope. This test is equivalent to testing
that the log hazard ratio function is constant over time. Thus, rejection of the null
hypothesis indicates a deviation from the proportional hazards assumption. By default,
stphtest sets g(t} = ¢, but you can change this by specifying the time () option; see
help stphtest for details.

stphtest works after you have fit your model using stcox, but to use stphtest,
you must specify both the schoenfeld() and scaledsch() options at the time you
estimate using stcox. These options save the Schoenfeld and scaled Schoenfeld residuals
(respectively), which are quantities required by stphtest. Actually, you need to specify
schoenfeld() to perform the global test and scaledsch() if you want the variable-by-
variable tests.
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. use http://wuw.stata-press.com/data/cgg/hip2
. Btcox protect age, schoenfeld{scht) scaledsch(sca*)

{output omitted )

The effect of the above, in addition to fitting the model, is to create four new variables in
the dataset: schl and sch? are created by schoenfeld(sch*) and store the Schoenfeld
residuals for variables protect and age, respectively; the variables scal and sca2 are
created by scaledsch(sc#*), and store the scaled Schoenfeld residuals. You could have
given any new variable names you wanted, but it is convenient to provide these options
with a stub (sch#, for example) and to let Stata number the variables for you.

Having estimated the Schoenfeld and scaled Schoenfeld residuals, we may now use
stphtest. The detail option reports the variable-by-variables tests along with the
overall test:

. stphtest, detail
Test of proportional hazards assumption

Time: Time

rho chi2 df Prob>chi?2
protect 0.00889 0.00 1 0.9627
age -0.11619 0.43 i 0.5140
global test 0.44 2 0.8043

We find no evidence that our specification violates the proportional hazards assumption.
Had we typed just stphtest, only the global (combined) test is reported:

. stphtest
Test of propertional hazards assumption
Time: Time

chi? df Frob>chil

global test 0.44 2 0.8043

Note that for this test we would only need the schoenfeld{) option when we fit the
model.

In addition, we can see each of the graphs by specifying stphtest’s plot () option,
. stphteat, plot(age)

which produces Figure 11.1. We could also see the graph for the other covariate in
our model using stphtest, plot(protect). Examining these graphs will help you to
choose a transform of ¢ that makes the curve roughly linear. This transforin may then
by used by stphtest to perform a formal statistical test.
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Figure 11.1: Test of the proportional hazards assumption for age

O Technical Note

The Grambsch and Therneau tests of the proportional hazards assumption as imple-
mented in Stata assume homogeneity of variance across risk sets. This allows the use of
the estimated overall {pooled) variance—covariance matrix in the equations. Although
these tests have been shown to be fairly rebust to departures from this assumption, care
must be exercised where this assumption may not hold, particularly when used with
a stratified Cox model. In such cases, we recomumend that the proportional hazards

assumption be checked scparately for each stratum.
0

11.1.3 Graphical methods

Of the many graphical methods proposed throughout the literature for assessing the
proportionality of hazards, two are available in Stata: the commands stphplot and
stcoxkm. DBoth are intended for use with discrete covariates. For a good introduction
and review of graphical methods, see Hess {1995} and Garrett (1997) .

stphplot plats an estimate of — In[—In{S(t)}] versus In(t) for each level of the
covariate in question, where S(t} is the Kaplan-Meler estimate of the survivor function.
For proportional hazards, h(t|x) = hg(t) exp(x3,), and thus

S(t]x) = So(t)*P:A=)

which implies that
— In[— n{S{t|x)}] = — In[— In{Su(#)}] — x3,
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Under the proportional hazards assumption, the plotted curves should thus be parallel.
For example,

. use http://wuw.stata-press.com/data/cge/hip2, clear
{hip fracture study)

. stphplet, by{protaect)
failure _d: fracture

analysie time :t: timel
id: id
which produces Figure 11.2. We see that the curves are roughly parallel, providing
evidence in favor of the proportional hazards assumption for the effect of wearing the
hip-protection device.
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Figure 11.2: Test of proportional hazards assumption for protect

There is nothing magical being done by stphplot that we could not do ourselves.
Basically, stphplot calculates a Kaplan-Meier curve S(t) for each level of the variable
specified in by(}, calculates for each curve the transformation —In{—In{5(t)}], and
plots these curves with In(t) on the z-axis.

The model for the hip-protection device we have been considering is
LRH = Jiprotect + foage

Figure 11.2 does not address the question of whether the effect of protect is constant
conditional on age being in the model. stphplot works differently from stphtest in
that it does not make use of the stcox model that we might have previously fit. We
can obtain the graph for protect conditional on age being in the model by

. stphplet, strata(protect) adjust{age)
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which produces Figure 11.3.
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Figure 11.3: Test of proportional hazards assumption for protect, given age

In general, you should specify whatever other variables are in your model in the
adjust{) option. Specifying adjust () tells Stata not to estimate the survivor function
using Kaplan—Meier, but instead to estimate it using stcex, and this is dene so that
we can introduce other variables into the model. In any case, the procedure followed by
stphplot, adjust() strata() is as follows:

1. Fit a Cox model on the adjust{) variables as covariates and on the strata(}
variable as a stratification variable. In this example, the command stcox age,
strata{protect) is executed. Thus, the baseline hazard is allowed to be different
for different values of protect, and it is left to the user to decide whether the
hazards are really proportional.

2. Obtain the baseline survivor functions for each of the strata directly from stcox,
and then calculate — In{— In{S(#)}] for each.

3. Plot the transformed (stratified) survivor curves on the same graph, with In(t} on
the x-axis.

Another method of graphically assessing proportional hazards is to compare sep-
arately estimated Kaplan—Meier curves (which are model agnostic) with estimates of
Sp(t}P*Bz) from a Cox model, which does impose the model assumption of propor-
tional hazards. stcoxkm does this,

. stcoxkm, by{protect)

which produces Figure 11.4.
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Figure 11.4: Comparison of Kaplan-Meier and Cox survivor functions

The way this graph is implemented in Stata, however, does not allow its use with
other covariates in the model. Actually, the way this assessment has been developed in
the literature does not allow its use when other covariates are included in the model,
but generalizing it to that would be easy enough. Rather than using the Kaplan—Meier
estimates to compare against, you could use the baseline survivor curve from a stratified
Cox model.

11.2 Residuals

Although the uses of residuals vary and depend on the data and user preferences, some
suggested traditional uses are as follows:

1. Cox-Srell residuals are useful in assessing overall model fit.

2. Martingale residuals are useful in determining the functional form of the covariates
to be included in the model.

3. Schoenfeld residuals (both scaled and unscaled}, score residuals, and efficient score
residuals are useful for checking and testing the proportional hazard assumption,
examining leverage points, and identifying outliers.

4. Deviance residuals are useful in examining model accuracy and identifying outliers.
Efficient score residuals, martingale residuals, Schoenfeld residuals, and sealed Scho-

enfeld residuals are obtained when we fit the Cox proportional hazard mode! via options
to stcox. Cox-Snell and deviance residuals are obtained after estimation using predict.

A
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When there are multiple observations per subject, cumulative martingale and cumula-
tive Cox-Snell residuals are obtained after estimation using predict, and accumulation
takes place over each subject’s set of records.

Reye's syndrome data

We illustrate some of the possible applications of residnals using a study of 150 children
diagnosed with Reye's syndrome.

Reye's syndrome is a rare disease, usually affecting children under the age of fifteen
who are recovering from an upper respiratory illness, chicken pox, or flu. The condition
causes severe brain swelling and inflammation of the liver. This acute illness requires
immediate and aggressive medical attention. The carlier the disease is diagnosed, the
better the chances of a successful recovery. Treatment protocols include drugs to contral
the brain swelling and intravenous fluids to restore normal bloed chemistry.

For this study of a new medication to control the brain swelling, and thus to prevent
death, 150 Reye’s syndrome patients were randomly allocated at the time of hospital
presentation to either the standard high-dose barbiturate treatment protocal or to a
treatment protocol that included the new experimental drug. The time from treatment
allocation to death or the end of follow-up was recorded in days. Here are a few of the
records.

. use http://www.stata-prees.com/data/cgg/reyes, clear
(Reye’s syndrome data)

. list id days daad treat age sex ftliver ammonia sgot in 1/6, noobs sep(0)

id days dead treat age sex ftliver ammonia  sgot
1 g 1 1 13 1 1 14.3 300
2 82 1 ¢ 13 1 0 .9 287
3 19 1 ] 16 1 1 1.2 288
g 46 0 1 156 1 & .6 286
T 33 0 1 i3 1 0 .8 270
g 44 1 0 10 1 0 3 280

The variable treat equals { for patients on the standard protocel and 1 for patients on
the experimental protocol. The variable days indicates the number of follow-up days
from treatment allocation to death (death==1) or to censoring (death==0). In addition
to age and sex, several laboratory measurements including blood ammonia level and
serum sgot were performed at the time of initial hospitalization. All patients involved
also underwent a liver biopsy to assess the presence of fatty liver disease (ftliver)
within 24 hours of treatment allocation. Note that all covariates in this study are fixed.

We are interested in determining whether the new experimental treatment is more
effective in prolonging the life expectancy of these children. We begin addressing this
guestion by stseting our dataset and fitting a Cox proportional hazards model with
the treatment variable only.
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- #tset days, id(id) failure(dead)
{output omitted )
. Btcox treat, efron

failure _d: dead
analysis time _t: days
id: id

Iteration 0: log likelihood = -253,30166
Iteration 1: log likelihood = -252.86308
Iteration 2: log likelihood = -252.86284
Refining estimates:

Iteration 0: log likelihood = -3252.86284

Cox regression -- Efron method for ties
No. of =ubjects = 150 Number of obs = 160
No. of failures = &8
Time at risk = 4571
LR chi2(1) = 2.08
Log likelihood = -252.88284 Prob > chiZ2 - 0.1495
=t
-d ] Haz. Ratio Std, Err, z P>|z| [85% Conf. Intervall
treat .6814905 1831707 -1.43 0.184 4024151 1.154105

We observe that although there is some indication that the new treatment reduces
the risk of dying when compared to the standard treatmment (hazard ratio=0.68), there
is not strong evidence suggesting that the new therapy is superior to the standard
treatment. We could have arrived at a similar conclusion had we performed a log-rank
test by typing sts test treat.

11.2.1 Determining functional form

Previous studies on children with Reye’s syndrome have identified elevated ammonia
and sgot levels along with the presence of fatty liver disease (ftliver) as important
predictors of final cutcome. Thus, in our analysis we would like to compare the two
treatment protocols while adjusting for the effects of these covariates.

What is the best functional form to use for each covariate? We can use martingale
residuals to help answer this question. Martingale residuals are obtained by specifying
the mgale() option when fitting the Cox model. These residuals can be interpreted
simply as the difference between the observed number of failures in the data and the
number of failures predicted by the model.

Martingale residuals are also helpful in determining the proper functional form of
the covariates to be included in the model. That is, should we include in the model the
variable age direetly, or should we perkaps include In(age) or some of other function of
age?
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Let M; be the martingale residual of the fth observation obtained when no covariates
are included in the model. Assume a true relative hazard model of the form

h{t]x;) = ho(t) exp{ f(x:)}

where x; is the covariate vector for the 4th subject and f() is some function. It may
then be shown that M; is approximately kf(x;), where & is a constant that depends
on the number of censored observations. The above implies the existence of a linear
relationship between f(x;) and M;. When used with a single predictor x, consequently
a smooth plot of martingale residuals versus x may provide a visual indication of the
transformation needed, if any, to obtain a proper functional form for z. The goal is to
determine a transformation that will result in an approximately straight curve.

Returning to our data, we apply this method to determine the functional form for
the ammonia variable. We begin by fitting a Cox model without covariates and obtaining
the martingale residuals using the mgale(newvarname) option. We handle ties using
Efron’s method (for no real reason other than variety.) Recall that it is necessary to
use the estimate option when fitting null models.

. stcox, mgale(mg) efron estimate
failure .d: dead
analysis time _t: days
id: id
Iteration 0: log likelihood = -263.50166
Refining estimates:
Iteration O: log likelibeed = -2063.80166

Cox regression -- Efron method for ties

No. of subjects = 150 Number of obs = 150
ke, of failures = 58
Time at risk = 4571
LR chiZ2(0) = 0.00
Log likelihood =  -253.90166 Prob > chi? = .
_t
d | Baz. Ratio 8td. Err. z P>zl [85% Conf. Intervall

The newly created variable, mg, contains the values of the martingale residuals from this
null model. We can now plot each variable whose functional form we are interested in
determining against mg. We use the lowess command to obtain the graph along with &
running mean smoother in order to ease interpretation. Alternatively, a lowess or other
smoother could be used. We type

. loweas mg ammonia

which produces Figure 11.5.
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Figure 11.5: Finding the functional form for ammonia

We see that the resulting smooth plot is not linear at lawer values of ammonia. In this
case, a simple log transformation of the variable will yield a more linear result. We type

. gen lamm=ln{ammonia}

. lowess mg lamm

which produces Figure 11.6.
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Figure 11.6: Using the log transformation

This yields an approximately linear smooth and leads us to believe that the log trans-
formed ammonia variable is better for inclusion in the model.

el ..
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We now fit the Cox model with the treatment and lamm covariates.

. stcox treat lamm, efron noshow

Iteration 0: log likelihood = -253.90166
Iteration 1: log likelihood = -222.27086
Iteration 2: log likelihood = -221.77893
Iteration 3: log likelihood = -221.77886

Refining estimates:
Iteration 0: log likelihood = -221.7788B5

Cox regression -- Efron method for ties
No. of subjects = 150 Number of obs = 150
No. of failures = 58
Time at risk = 4971
LR chi2(2) = 64.26
Log likelihood =  -221.77885 Prob > chi2 = 0.0000
-t
_d | Haz. Ratio 5td. Err. z Prlz| fos¥ Conf. Interwvall
treat 5943764  .1656545 -1.87  0.082 .3442144 1.026347
lamm 2.548743  .3201795 7.44 0,000 1.99064 3.26838

We see that {as shown by other studies) increased levels of blood ammonia are strongly
associated with increases in the hazard of dying. More importantly, however, we sce
that if we adjust by this important covariate, the treatiment effect becomes significant. at
the 10%, level. This indicates a lack of homogeneity of patients assigned to the treatment
modalities. We can observe this heterogeneity by tabulating the mean ammonia level
by treatment level and performing a ¢-test.

. ttest ammonia, by(treat) uneq
Two-sample t test with unequal variances

Group Obs Mean Std. Err. 8td. Dev. [95% Conf. Intervall

0 71 2.683098 .382177 3.304542 1.900026 3.465271

1 79 5.143038 .7920279 7.039698 3.566231 6.719844
combined 150 3.973667 4661303 5.708907 3.067587 4.899746
diff -2.450939 .B838042 -4.210858  -.709020%1

Satterthwaite’s degrees of freedom: 113,345
He: mean{0) - mean{l) = diff = 0

Ha: diff < 0 Ha: diff !'= 0 Ha: diff > @
t = -2,7834 t = -2.7834 t = 22,7834
P <t= 0.0032 P> Itl = 0.0063 P>t = 0.99868

We find that on average, patients with lower ammonia levels ended up on the stan-
dard treatment, while those with higher ammonia levels, and therefore with a worse
prognosis, were assigned to the experimental group. The fact that this imbalance exists
can be significant in assessing the validity of this study and of the treatment allocation
protocol,
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We used this same method for examining the functional forms of the other covariates,
and found it unnecessary to transform the other covariates. We chose, however, to
center sgot at its mean so that the baseline hazard corresponds to treat==0, lamm==0,
ftliver==0, and sgot equal to its mean value. This last part we did by typing

. quietly summarize sgot

- replace egot = sgot ~ r(mean)
(160 real changes mada}

Finally, we fit a Cox model using treat, lamm, sgot (now with 0 corresponding to its
mean level), and ftliver.

- 8tcox treat lamm sgot ftliver, efron

failure _d: dead
analysis time _t: days
id: id
Iteration 0: log likelihood = -253.90166
Tteration 1: log likelibeod = ~219.18093
Iteration 2: log likelihsod = -215.1653
Iteration 3: log likelihood = -215.14835
Refining estimates:
Iteration 0: log likelihood = -21E.14935

Cox regression —-- Efron method for ties
No. of subjects = 150 Number of ocbs = 150
No. of failures = BB
Time at risk = 48971
LR chiZz(4) = 77.50
Log likelihood = -215,14935 Preob > chi? = 0.0000
.t
-d | Haz. Ratic Std. Err. z P>z [95% Conf. Intervall
treat . 4899586 . 1439631 =2.43 0.015 \ 2754567 .8714962
lamm 2.194971 . 2831686 6.09 0.000 1.704578 2.826444
sgot 1.048024 ,0183381 2.74 (Q.006 1.013689 1.085689
ftliver 2.14807 .B831377 2.37 ©0.018 1.141257 4.043091

We observe that after adjusting for ammonia, serum concentration, and the presence of
fatty liver disease, the new therapy reduces the risk of death by 51%.

11.2.2 Goodness of fit

We now turn our attention to the evaluation of the overall model fit using Cox—S8nell
(Cox and Snell 1968) residuals. It has been shown that if the Cox regression model fits
the data, then the true cumulative hazard function conditional on the covariate vector
has an exponential distribution with a hazard rate of 1.

The Cox-8nell residual for the jth observation is defined as

C8r; = Hylt;)exp(x;8,) (11.1)
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where both ﬁg() and Bx are obtained from the Cox model fit. If the model fits the data
well, then the Cox—Snell residuals should have a standard exponential distribution with
hazard function equal to one for all ¢, and thus the cumulative hazard of the Cox—Snell
residuals should be a straight 45° line. We can verify the model fit by estimating the
empirical Nelson-Aalen cumulative hazard function, with the Cox—Snell residuals as the
time variable along with the data's original censoring variable.

We will fit two models. In the first modet, we include the covariates treat and
ammonia, and in the second model, we will substitute lamm for ammonia.

In Stata, Cox-Snell residuals are computed from the martingale residuals. Thus,
when we fit the model using stcox, we save the martingale residuals and then use
predict to cbtain the Cox-Snell residuals. If we forget to save the martingale residuals
at estimation, predict will refuse to calculate Cox—S8nell residuals.

. use http://www.stata-press.com/data/cgg/reyes, clear
(Reye’s syndrome data)
. stcox treat ammonia, efron mgale{mg)}
failure _d: dead
analysis time _t: days
id; id

Iteration O log likelihood = -253.901685
Iteration 1: log likelihood = -230.10661
Iteration 2 log likelihood = -227.58788

Iteration 3: log likelihood = -227.68783
Refining estimates:
Iteration 0: log likelihood = -227.58783

Cox regressicn —- Efron method for ties
No. of subjects = 150 Number of obs = 150
No. of failures = 58
Time at risk = 4971
LR chi2{2) = 62.63
Log likelihoed =  -227.58783 Prob > chi2 = 0.0000
_t
_d | Haz. Hatic Std. Err. z P>|z| [95% Conf. Interval]
treat 4295976 . 1300496 -2.79  0.005 .2373463 JTTTS73
ammonia 1.171981 ,0233525 7.6 0.000 1.127094 1.21B8657

Now we use predict to compute the Cox-Snell residuals and then stset the data using
the Cox Snell residuals as the time variable and our original failure variable, dead, as
the failure indicator.

{Continued on next page)
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. predict cs, capell
. atset ca, fail(dead)

failure event: dead != 0 & dead < .
obs. time interval: {0, cal
exit on or before: failurae

160G +total cobs.
¢ exclusions

150 obs. remaining, representing
68 failures in single record/single failure data
58 total analysis time at risk, at risk from t = 0
earljest observed entry t = 0
last observed exit t = 2.902519

We can now use sts generate to generate the Nelson—Aalen cumulative hazard function
and plot it against the Cox—S8nell residuals,

. 8ta gan H = na
. line H c8 cs, sort ytitle{"") legend{cols(1))

which produces Figure 11.7.

Fa
P,

2
partial Cox-Snell rosiduel

Melson-Aalen cumulative hazard
————— partiak Cox-Snell residual

Figure 11.7: Cumulative hazard of Cox—Snel! residuals (ammonia)

Note that in the line command we specified cs twice so as to get a 45° reference line.
Comparing the jagged line to the reference line, we observe what could be considered a
concerning lack of fit,

We repeat the above steps for the second model,

. use http://www.stata-press.com/data/cgg/reyes, clear
. gen lamm = In{ammcnia)}
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. stcox treat lamm, efron mgale(mg)

. predict c=, csnell

. gteet cs, fail{dead)

. 8ts gen H = na

. lipe H cs c¢s, sort ytitle("") legend{cols{1))

which produces Figure 11.8.

e
L

2
partial Gox-Snell residual

Melson-Aalen curnulative hazard
_____ partial Cox-Snail residual

Figure 11.8: Cumulative hazard of Cox—Snell residuals {1amm)

When we use lamm=1n(ammonia) instead of ammonia in our model, the model does not
fit the data too badly.

1 Technical Note

Note that when plotting the Nelson-Aalen cumulative hazard estimator for Cox—
Snell residuals, even if we have a well-fitting Cox model, some variability about the 45°
line is still expected, particularly in the right-hand tail. This is due to the reduced
effective sample caused by prior failures and censoring.

a

11.2.3 Outliers and influential points

In evaluating the adequacy of the fitted model, it is important to determine if any one or
any group of observations has a disproportionate influence on the estimated parameters.
This is known as influence or leverage analysis, The preferred method of performing
influence or leverage analysis is to compare the estimated parameter 3. obtained from

the full data with the estimated parameters E}f:) abtained by fitting the model to the

. . . . - ={4) |
n — 1 observations remaining after the ith observation is removed. If B, — B, is close
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to zero, then the ith observation has little influence on the estimate. The process is
repeated for all observations included in the original model.

To compute these differences for a dataset with n observations, we would have to
execute stcox 1+ 1 times, which could be impractical for large datasets. In such cases,

. . . = (i) . .
an approximation to the difference 3, — ,B: based on the eflicient score residuals can
be calculated as

DV(B.)

where V(BI) is the variance—covariance matrix of BJ and IJ is the matrix of efficient

. . - () .
score residuals. The difference 8, — ﬁ; is commonly referred to as “dfbeta” in the
literature.

Stata saves efficient score residuals in variables generated at the time of estimation
when you specify option esr(newvarnames). One efficient score residual variable is
created for each regressor in the model; the first new variable corresponds to the first
regressor, the second to the second, and so on. Therefore, if you want all the efficient
score residuals, then you must either explicitly specify one new variable name for each
regressor in your model or specify esr(stub), where stub is a name of your choosing.
Stata then creates the variables stubl, stub2, etc.

O Technical Note

Be careful when asking for efficient score residuals. Note that stcox may drop
variables from the model due to collinearity. This is a desirable feature, yet a side-effect
is that the score residual variables {and also the Schoenfeld residual variables and the
scaled Schoenfeld residual variables) may not align with the regressors in the way you
expect. Say that you fit a model by typing

. Btcox x1 x2 x3, ear(rl r2 r3)

Usually r1 will contain the residual associated with x1, r2 the residual associated with
x2, and r3 the residual associated with x3. But assume that x2 is dropped due to
collinearity. In that case, r1 will correspond to x1, as before, but r2 will correspond to
x3 (and r3 will contain 0). This happens because, after omitting the collinear variables,
there are only two variables in the model: x1 and x3.

a

Returning to the Reye's syndrome data, we can obtain the efficient score residuals
by typing

- uge hitp://www.stata-press.com/data/cgg/reyes, clear
. gen lamm = ln{ammonia)

.+ guietly summarize sgot

- replace sgot = sgot - r{mean)

. 8tcox treat lamm sgot ftliver, efron esr(ear*)

This command creates four new variables: asri1, esr2, esr3, and esr4, corresponding
to the four covariates in the model. We next use the matrix command mkmat to create a
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matrix of the efficient score residuals, obtain the variance—covariance matrix, and then
multiply the two matrices:

. mimat esrl esr? esr3 esrd, matrix{esr)
. mat V= al¥)

. mat Inf =
. svmat Inf

esT*Y

, names(s)

The last command saves the estimates of az - BS) in the variables s1, a2, 83, and s4,
We then label these new variables, just so that we do not forget their contents:

. label var
. label var
. label var
. label var

In any case, a graph of any

81 "dfbeta -
82 "dfbeta
83 "dfbeta -
a4 "dfbeta -

treat”
lamm"
agot”
ftliver"

of those variables versus time or chservation numbers can

be used to identify observations with disproportionate influence; for example,

. scatter a3 _t, yline(d) mlab{id) s(i)

which produces Figure 11.9.
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Figure 11.9:

Dfbeta(sgot) for Reye’s syndrome data






12 Parametric models

12.1 Motivation

Compared to the Cox model, parametric models are very different in the way they exploit
the information contained in the data. As an extreme case, consider the following data:

. use http://wwv.stata-press.com/data/cgg/odd, clear
. list id _t0 _t female _d

id _t0 t female _d

1. 1 0 2 0 1
2. 2 3 5 1 0
3. 3 & 8 0 1
4. 4 g 10 1 H

In these data, there are no overlaps in cur observations of the subjects:

idml | m————X

id=2 | ——0

id=3 | ———=

id=4 | X
I I i i I i i t I 1 >t
] 1 2 3 4 5 6 ¥ 8 g 10

In the above diagram, ¢ is analysis time, not calendar time. We observed subject 1 from
(0, 2], at which point the subject fails; we observe subject 2 from (3, 5], at which point
the subject is censored; and so on. What makes these data so odd is the fact that at any
particular analysis time we chserve at most one subject because most of our subjecis
arrived late to our study.

In any case, given these very odd data, the risk groups so important to semipara-
metric analysis are

1. Failure at time ¢t = 2: Risk group contains only subject id==1.
Pr{id == 1 fails|one failure} = 1.

2. Failure at time t = 8 Risk group contains oaly subject id==3,
Pr(id == 3 failsjone failure) = 1.

3. Failure at time ¢t = 10: Risk group contains only subject id==4.
Pr(id == 4 failsjone failure) = 1.
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and the conditional probability of observing what we did is one, regardless of any pa-
rameter we might want to estimate, because the probability that “our” subject fails |
given one subject fails is 1 if “our” subject is the only one at risk at that time. We
could not, for instance, fit a Cox mode! on female:

. Bteox female

failure _d: daad
analysis time _t: timel

Iteration 0: log likelihoed = 0
Refining estimates:
Iteration 0:  log likelihoed = 0
Cox regression -- nc ties
Ne. of eubjects = 4 Number of obs = 4
Ne. of failures = 3
Time at risk = 7
LR chi2{1} = 0.00
Log likelihood = 0 Prob > chil = 1.0000
_t
_d | Haz. Ratic Std. Err. z F>|z| {95% Conf. Interval}
female 1

Moreover, we could not even obtain a Kaplan-Meier estimate of the overall survivor
function:

. Bts list

failure _d: dead
analysis time _t: timel

Bag. Net Surviver Std.
Time Tetal Fail Lost Function Error [85% Conf. Int.)

L0000
L0000
L0000
L0000
0000
L0000
L0000

O 000tk
L= R = B TR =
Ll =~ B i = BN
1
-
[ B B = B R e

—

This extreme dataset has no information that nonparametric and semiparametric
methods can exploit, namely, there is never more than one subject at risk at any par-
ticular time, which makes comparing subjects within risk sets difficult. Yet, parametric
methods have no difficulty with these data:
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. streg female, dist{exponential}
failure _d: dead

analysie time _t: timel

Iteration O0: log likelihood = -.46671977
Iteration 1: log likelihood = -.41031745
Iteration 2: log likelihood = -.40873293
Iteration 3: log likelihood = -,40573283
Expenential regression -- log relative-hazard form
No. of subjects = 4 Bumber of obs = 4
No. of failures = 3
Time at risk = 7
LR chi2{1) = ¢.11
Log likelihood =  —,40973283 Prob > chil2 = 0,7357
_t | Haz. Ratio Std. Err. z P>lzi [98% Conf. Interval]
female 6666667 8164566 -0.33 0.741 ,0604511 7.382135

We began with this odd example not because it demonstrates the superiority of
parametric methods; in fact, parametric methods do have their disadvantages. We used
this example only to emphasize the very different way parametric methods exploit the
information in the data to obtain estimates of the parameters.

Nonparametric and semiparametric metheds compare subjects at the times when
failures happen to occur, and to emphasize that, we have carefully concocted an example
where no such comparison is possible.

Parametric methods, on the other hand, do not base their results on such com-
parisons. Rather, for each record in the data spanning (g;,¢; ], parametric estimation
schemes use probabilities that depict what occurs over the whole interval, given what is
known about the subject during this time (x;). For example, if it is observed that the
subject was censored at time ¢, then the contribution to the likelihood for this record
is

S(ti1x;)
L; = 8(t;]te;, %) = ——2%
7 RN B Rt S(tﬂj |xj)

The implications of this difference in procedure are dramatic, but they are only
matters of efficienicy. For example, consider a survivor model where failure depends on
a (possibly time-varying) covariate z. Pretend that one of the subjects in the dataset
has the following « profile:
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x for subject 42

L +——X {(aubject fails at t3}

i > analyais time ¢
t3

L=
(24
At
ot
Ar—t

In semiparametric analysis (Cox regression), if no other subject fails between t1 and
t2, it simply does not matter that z blipped up for this subject because no comparisons
will be made in that interval using the temporarily higher value of z. In other words, in
this case, we would obtain the same Cox regression results if the blip in the time profile
for this subject did not exist; i.e., if x remained at its initial value throughout.

The blip in z, however, would be of importance in a parametric model, regardless
of whether other failures oceurred in the interval because the parametric model would
exploit all the information.

Cox regression is not making an error by ignoring the blip-—it is merely being in-
efficient. Suppose that higher values of = increase failure rates. Conditional on having
survived beyond time t2, the fact that the blip occurred becomes irrelevant in terms of
subsequent survival, The information in the blip is that it indeed oecurred and the sub-
Jject managed to survive it, which means that this subject provides evidence that higher
values of = really are not so bad. Cox regression would ignore that unless other failures
occurred in the interval, in which case somme amount of the information contained in
the interval would be exploited in improving the estimate of the effect of z. Parametric
methods would ignore no part of that information.

12.2 Classes of parametric models

Parametric models are written in variety of ways. As we stated in Chapter 1, linear
regression is an example of a survival model,

t;=x;8,+¢; & ~N(0,0%

Other models are written in the log-time metric (also known as the accelerated time
metric),

In(t;) =x;8, +¢ € ~ oddly, but not odd given the context

and others in the hazard metric,

h{t|x;) = ho(t) exp(x; 8.}, ho(t} = some functional form
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and, in fact, you can imagine parametric models written in other ways. Parametric
‘ models are written in the way natural to the parameterization. Some models may be
[ written in more than one way because they fit equally well into more than one style of

thinking. It is important to understand that, in that case, it is still the same model and
it is just being expressed differently. Stata can fit the following parametric models:

1. Time parameterization:

a. linear regression
regress, cureg, intreg

2. Log-time parameterization:

a. exponential
streg, dist(exponential) time

h. Weibull
! streg, dist(weibull) time

¢. log-normal
streg, dist{lognormal)

d. log-logistic
streg, dist(loglogistic)
e. gamma,
streg, dist{(gamma)
3. hazard parameterization:
a. exponential
streg, dist(exponential)

b. Weibull
streg, dist(weibull)

c. Gompertz
streg, dist(gompertz)

With the exception of the linear-regression time-parameterization models (which we
do not discuss further), parametric models in Stata are fit using the streg command,
and options control the ‘particular parameterization used. As with stcox, you must
stset your data prior to using streg. As stated previously, some models fit into more
than one parameterization, but even so, they are still the same model. '

12.2.1 Parametric proportional hazards models

Proportional hazards models are written

h(t|x;} = ho(t} exp(x;8,)
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and, in the Cox model, ho(t} was simply left unparameterized, and throngh conditioning
on failure times, estimates of 3, were obtained anyway. In the parametric approach,
a functional form for o(#) is specified. For example, if we assume hy(t) = exp(a), for
some a, then we have the exponential model. The baseline hazard is assumed constant
over time, and there is an extra parameter (a) to estimate. When we fit this model, we
are just estimating (a, 3,).

If we assume
ho(t) = pt*~! exp(a)

then we have the Weibull model. This model has two ancillary parameters, a and p.
When we fit this model, we are estimating {a, p, 8.,).

If we assume

ho(t) = exp(a) exp(yt}

then we obtain the Gompertz model, ancther model with two ancillary parameters, this
time a and ~. Estimated from that data is (a,<, 8%).

There are other possibilities, and, of course, you could make up your own. Whatever
function is chosen for ho(t) is supposed to parameterize adequately what the baseline
hazard really is.

In any case, all of these models produce results that are directly comparable to
those produced by Cox regression. In all these models, x3, is the log relative hazard
and the elements of 4, have the standard interpretation, meaning that exp(g;) is the
hazard ratio for the ith coefficient. In addition, parametric models produce estimates
of the ancillary parameters, and from that you can obtain the predicted baseline hazard
function fo(t) and any of the other related functions, such as the cumulative hazard,
survivor function, etc,

The (direct) comparability to Cox regression is probably the most appealing feature
of the parametric proportional hazards model. When you engage in this kind of para-
metric estimation, it is prudent to compare the estimated coefficients B, to those from
a Cox model fit, in order to verify that they are roughly similar. If they prove not to
be similar, then this is evidence of a misparameterized underlying baseline hazard.

Stata makes this comparison easy because, by default, streg reports hazard ratios
(exponentiated coeflicients) when fitting models in this metric. For example, in our
discussion of Cox regression we repeatedly examined the following model:

- use http://www.stata-press.com/data/cgg/hip2, clear
(hip fracture study)
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- Btcox protect age
failure _d: fracture

analysis time _t: timel
id: id

Iteration O: log likelihcod = -9B8.571254
Iteration i: log likelihood = -82.735029
Iteration 2: log likeliheod = -82.471037
Iteration 3: log likelibhcod = -B2,47025%

Refining estimates:
Iteration 0: log likelihood = -82.47025%

Cox regression —- Breslow method for ties
¥o. of subjecte = 48 Humber of obz = 106
No. of failures = 31
Time at risk = 714
LR chi2(2) = 32.20
Log likelihood =  -B2.470258 Prob > chi2 = G.0000
_t
I _d | Haz. Ratio  Std. Err. z Prizl| {55% Conf. Interval]
! protect .1046812 0476108 -4.97  0.000 . 043007 . 2547589
. age 1.110872  .0420078 2.78  0.005 1.031815 1.196434

If we now fit this same model using exponential regression {meaning that we assume
the baseline hazard hq(t) is constant), we would obtain

. streg protect age, dist(exponential)

failure _d: {fracture
analysis time _t: timel

id: id
Iteration 0: log likelihood = ~50.067085
Tteration 1: log likelihood = -54.034598
Iteration 2: log likelihood = —47.563588
Iteration 3: log likelibood = —47.534671
Iteration 4: log likelihood = -47.534656
Iteration 6: log likelihood = —47.534656
Exponantial regression -- log relative-hazard form
No. of subjects = 48 Number of ebs = 106
No. of failures = 31
Time at risk = 714
LR chi2(® = 26.06
Log likelihood =  -47.534866 Preb > chi2 = 0.0000
_t | Haz. Ratio Std. Err. z P>zl [95% Conf. Intervall
protect .1847118 . 0684054 -4.66 0.000 0853849 .3817025
age 1.084334 .0371696 2.38 0.0i8 1.013877 1.159688

Note how different is the estimated hazard ratio for protect in the two models: stcox
reports 0.105, streg reports 0.185. This inconsistency points out the inadequacy of
a model that assumes a constant baseline hazard, and in fact, when we previously
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considered this Cox model, we noted that the estimated cumulative hazard seemed to
be increasing at an increasing rate. All of which means that the assumption of constant
hazard is probably incorrect in this case, and we would obtain better estimates by
choosing a parameterization for hy{t) that would allow it to grow.

The Weibull model will do that, and using that distribution, we would ohtain

. atrag protect age, dist{weibull)

failure _d: fracture
analysis time _t: timsl

id: id

Fitting constant-only model:

Iteration 0: log likelihood = -60.06708BE
Iteration 1: log likelihood = -59,30148
Tteration 2: log likeliheood = -59.298481
Iteration 3: log likelihood = -55.298481
Fitting full model:
Iteration ©: log likelihood = -55.208481
Iteration I: log likelihood = -54.887563
Iteration 2: log likelihood = -42.123875
Iteration 3: leg likelihood = -41.993012
Iteration 4: log likelihood = -41.992704
Iteration S: log likelihood = -41.982704
Weibull regression -- log relative-hazard form
No. of subjects = 483 flumber of obs = 106
No. of failuree = 31
Time at risk = 714
LR chi2{(3) = 34.61
Log likelihocod = =-41.892704 Prob » chi2 = 0.0000
_t | Haz. Ratic S5td. Err. z Px|z| [95% Conf. Intervall
protect . 1099611 0448214 -5.42  0.000 .0494629 . 2444548
age 1.117186  .0423116 2,83 0.003 1.03726 1.203271
/ln_p .5188694 1375486 3.77  0.000 .2490831 . 7886556
P 1.680127  .2312671 1.282849 2.200436
1/p .5951931 0819275 . 4544553 .7795152

and we now obtain an estimate of the hazard ratio for protect of 0.110, which is more
in line with the Cox regression result,

If you are looking for a parameterization of kq(f) that has considerable flexibility
and has no restrictions on the shape of the hazard that you want to impose upon the
model, we suggest you stay with Cox regression. That is what Cox regression does, and
it does that very well. Parametric estimation is appropriate when you do have an idea
of what the baseline hazard looks like and you want to impose that idea in order to {1)
obtain the most efficient estimnates of 3, possible and (2) to obtain an estimate of hg{t)
subject to that constraint.
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We mentioned ahove that Stata makes comparing Cox to parametric estimation eas
because streg reports hazard ratios when fitting models that have a natyra] pmpor}:
tional hazards parameterization (exponential, Weibull, Gompertz). Parametric models
as we have suggested, sometimes have more than one parameterization. The Weibuli
moedel is an example of this, and a popular parameterization of the Weibull is that
which carries the accelerated time interpretation. Stata can also report results in this
alternate metric {(obtained by specifying the time option);

. gtreg protect age, dist(weibull) time
failure _d: fracture

analysis time _t: timsl
id: id

Fitting constant-only model:

Iteration @: log likelihood = -60.067085
Tteration 1: log likelihood = -59.30148
Iteration 2: log likelihood = -55.2984B1
Iteration 3: leg likelihood = -59,298481

Fitting full model:
Iteration ¢0: lop likelihood = -59.298481
Iteration 1: log likelihood = -54.B87563

log likelihood = -42.123875
= -41.8993012

1
Iteration 2:
Iteration 3: log likelihood
Iteration 4: log likelihood = -41.992704
Tteration 5: log likelihood = -41.992704

Weibull regression —- accelerated failure-time form
Ne. of subjects = 48 Number of obz = 106
No. of failures = 31
Time at risk = 714
LR chi2({2) = 34.61
Log likalihood =  -41.892704 Prob > chi2 - 0.0000
_t Coef. Std. Err. z P>lz] [95% Conf. Interval]
protact 1.3138%66  .2366229 §.56  0.000 .8601923 1.777737
age -.0659554  .0221171 -2.88  0.003 -.1083041  -.0226067
_cons 6.946524  1.575708 4.41  0.000 3.858192 10.03486
flo_p .5188684 . 1376486 3.77  0.000 24080831 . 7886556
P 1.680127  .2312671 1.282849 2.200436
1/p .5851931  .0819275 .4544553 .7795162

These results look nothing like the results reported by stcox, and there is no reason
that they should. These results are reported in a different metric, but it is merely a
different way of reporting the same information. In fact, the above coefficients may' be
transformed back into the proportional hazards metric using the relationship HR =
exp{—p34 FT’), where HR is a single hazard ratio reported in the proportional hazards
metric and 3477 is the corresponding regression coeflicient from an accelerated time
model.
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However, we do not expect you to remember that relationship, which is unique to
the Weibull. If a model can be cast in the proportional hazards metric, then streg
can report results in that metric, and those results are directly comparable to those
produced by steox. We mention this to emphasize that, even if you find it otherwise
desirable to view and think about these results in the accelerated time metric, you can
still compare the resulis reported in the hazard metric to those of stcox, and then,
after convincing yourself that these are reasonable results, return to the accelerated
time metric. The models are the same—they just look different.

O Technical Note

When fitting models that have both a proportional hazards and an accelerated time
parameterization, switching from one parameterization to the other requires refitting -
the entire mmodel. In other words, using streg in replay mode will not suffice. Although
both models are equivalent and transformation from one form to the other is possible
post-estimmation, there are many aspects of Stata’s post-estimation commands {such as
test, predict, ete.) that are tailored to one particular parameterization. As such,
re-estimation is required. View this as a shortcoming of Stata, not that the models are
different inn any substantive way.

a

Returning to our discussion of the proportional hazards metric, recall that stcox
by default reported hazard ratios (exponentiated coeflicients} but that, if vou specified
the nohr option, it would report the coefficients themsclves. streg works the same
way, and you can specify nohr when fitting the model or when you redisplay results.
For example, when we fit our exporential model in the proportional hazards metric,
by default we displayed hazard ratios. If we specify the nohr upon replay, we get the
coetlicients themselves:

. 8treg protect age, dist(exponential)
{output omitted }
. gtreg, nohr

Exponential regression -- log relative-hazard form
Mo. of subjects = 48 Number of ohs = 106
Ho. of failures = 31
Time at risk = 7i4
LR chi2(2) = 25.08
Log likelihood =  -47.534686 Prob > chi2 = 0.0000
_t Coef. 8td. Err. z P> |zi {95% Conf. Interval]
protect -1.688968  .3703357 -4.668 0.000 -2.414803 -.9631137
age .0809663  .0342787 2.38 0.018 .0137813 .1481614
_cons -7.892737  2.458841 -3.21 0.00t -12. 71188  ~3.073498

Note that when comparing this output to the previous one from exponential regression,
exp(—1.688958) = (.1847, the reported hazard ratio for protect.
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We see one thing, however, that is new: streg reported a coefficient for _cons,
something to which stcox has no counterpart. The coefficient on _cons has to do with
the estimation of hg(t}). In particular, the exponential model is

h(t|x;) = ho(t) exp(x;8,)
where ho(t} = exp({a), meaning that

hitlx;) = expla+x;8,)
= exp(fo + x;8,)

and that is where we get our intercept term _cons. The intercept in the exponential
model has to do with the level of the baselinc hazard function, and in this case, we
estimate hq(t}) = exp(—7.892737). This is a very small hazard, but remember, just as
with stcox, the baseline hazard is a reflection of the hazard when all covariates equal
zero. In particular, for our model age==0 is an absurd value. Just as with stcox, if you
want to normalize the baseline hazard to reflect the hazard for reasonable values of the
covariates, adjust the covariates so that the zeros are themselves reasonable:

. gen agaGQ = age-60
. streg protect agef0, dist(exponential) nohr noshow

Iteration O: log likelihood = -60.067085
Iteration log likelihood = -54.0345098
Iteration log likelihcod = —47.553588

1 =
2 =

Iteration 3: log likelihood = -47,.534671
4: =

Iteration 4: log likelihood = -47.534656
Iteration &: log likelihood = —47.534656
Exponential regression —- log relative-hazard form
No. of subjects = 48 Number of obs =. 106
No. of failures = 31
Time at risk = 714
LR chi2(2} = 25,08
Log likelihood =  -47.534Gb& Prob > chi2 - 0.0000
_t Coef. Std. Err. z P>lzi [96% Conf. Interval]
protect -1.688958 3703357 -4.86  0.000 -2.414803 -.9631137
aget0 .0809663  .0342787 2.36 0.018 .0137813 .1481514
_cons -3.034758  .4536734 -6.69  0.000 -3.923942 -2,14B67B

The baseline hazard is now a more reasonable exp(—3.034758) = 0.048 per month.

12.2.2 Accelerated failure-time models

Accelerated failure-time models, also known as accelerated time models or In{time)
models, follow the parameterization

In(t;) =x;8, +¢; €; ~ oddly, but not odd given the context
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The word “accelerated” is used in describing these models because, rather than assuming
that failure time ¢; is exponential, Weibull, or some other form, a distribution is instead
assumed for

75 = exp(—x;8,)t;

and exp(-x;#,) is called the acceleration parameter.

o if exp(—x;3,) = 1, then 7; = ¢;, and time passes at its “normal” rate.

e if exp{(—x;/3,} > 1, then time passes more quickly for the subject (time is accel-
erated), and so failure would be expected to occur saoner.

o if exp{—x;3,) < 1, then time passes more slowly for the subject (time is deceler-
ated), and so failure would be expected to accur later.

The derivation of these models is straightforward. If 7; = exp(—x;8,)t;, then t; =
exp(x;8.)7;, and

In(t;) = x;8, + In(r;) (12.1)

The random quantity In{7;) has a distribution determined by what is assutned about the
distribution of 7;, and in the usual nomenclature of these models, it is the distribution
of 7; that is specified. For example, in a log-normal model, 7; follows a log-normal
distribution, which implies that In(r;) follows a normal distribution, which makes {12.1)
analogous to linear regression.

Q Technical Note

In comparing our derivation of this model to that found elsewhere, you may find
that other sources report the result

In(t;) = —x; 8, + In(7;)

rather than (12.1), but that is only because they started with the assumption that Ti =
exp{x;{3;){; rather than r; = exp{—x,8,)t;. The sign flip is of no importance. If one
really thought in the accelerated time metric, it would indeed be more natural to follow
this alternate specification because in our developments, it is —A_ that corresponds to
how time is accelerated.

However, the use of (12.1) is justified on the grounds of predicted time. A positive
coefficient in B, serves to increase the expected value of In(time to failure). This is the
view we chose to accept at the outset, and thus we use 7; = exp(—x;3,)t;.

a

There is a second sense in which these models are “accelerated”. The effect of a
change in one of the x variables, measured in time units, increases with ¢. For example,
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pretend that 5, = 0.3, meaning that a one-unit increase in z; increases the expected
value of In() by 0.5. For a subject predicted to fail at ¢ = 1, this one unit increase would
delay the predicted time of failure to exp{In(1) + 0.5} = 1.65. For a subject predicted
to fail at ¢ = 5, this one-unit increase would delay the predicted time of failure to 8.24.
That is, the marginal effect of z; accelerates. For larger ¢, we expect a longer delay in
failure due to a one-unit increase in z;.

In the accelerated time metric, exponentiated coefficients have the interpretation of
time ratios for a one-unit change in the corresponding covariate. For a subject with
covariate values x = (), 22, ..., 24),

t; = exp{frix1 + Baa + o+ + Srzi)7;
If the subject had z, increased by 1, then
;= exp{F(z1+ 1)+ fFaxa+ - + Bre}ry

and the ratio of t} to t; is exp(;).

By default, streg, when used to fit AFT (accelerated failure time) models, reports
coeflicients and not exponentiated coefficients, but you can specify the tr option either
when you estimate or when you redisplay results to see results in terms of time ratios.
The default is surprising given that, by default, streg, when used to fit PH {proportiona)
hazards) models, reports exponentiated coefficients, but that is because most authors do
not even mention the time-ratio interpretation of exponentiated coefficients. However,
due to the ease of interpretation, specifying option tr and reporting time ratios is
recommended.

12.2.3 Comparing the two parameterizations

The PH (proportional hazards) metric is used mainly as an analog to Cox regression,
when the researcher wishes to gain insight into the actual risk process (the hazard
function) that causes failure and to gain insight into how the risk changes with the
values of covariates in the model. As with Cox regression, little attention is paid to the
actual failure times, and predictions of these failure times are seldom desired.

The AFT (accelerated failure time) metric, however, gives a more prominent role to
analysis time. Recall that the typical AFT model is of the form

In(t;) = x;8, + In(7y)

and by specifying a model in this form, one basically is asserting an interest in what
happens to E{ln{t;)x;} for different values of x;. With such an interest usually comes
a desire to predict either failure time or the logarithm of failure time, and there are
instances when such predictions can prove problematic.

One difficulty with predicting time to failure has to do with time-varying covariates.
Time-varying covariates cause no theoretical difficulty in accelerated time models, nor
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are they difficult to fit (in fact, Stata does all the work). The problem occurs when one

goes back to construct predictions.

Recall that in our hip-fracture data we have a time-varying covariate calcium. It
turned out not be significant in a Cox model, and the same turns out to be true if we
estimate using a Weibull model. However, if we omit age from the model, we can get
calcium to be significant in order to allow us to make ocur point about prediction with

Chapter 12. Parametric models

time-varying covariates. We begin by fitting the model:

. use http://www.stata-press.com/data/cgg/hip2, clear

{hip fracture study)

. streg protect calcium, tima dist(weibull)
failure _d: f{fracture
analysis time _t: timel
id: id
Fitting constant-only model:
Iteration O: log likelihood = -60.067085
Iteration 1: leg likelihood = -59.30148
Iteration 2: log likelihood = -59.298481
Iteration 3: log likelihood = -59.298481
Fitting full model:
Iteration O: log likelihood = -59.298481
Iteration 1: log likelihood = -54.764687
Tteration 2: log likelihcod = -42.840111
Iteration 3: leg likelihood = -42.728013
Iteration 4: log likelihood = -42.727796
Iteration 5 log likelihcod = -42.7277386
Waibull regression -- accelerated failure-time form
No. of subjects = 48 Number of obsa 106
Wao. of failures = 31
Time at risk = 714
LR chi2{(2) 33.14
Log likelihood = -42.727796 Prob > chi2 = 0.0000
_t Coef . Std. Err. z P>zl {95% Conf. Intervall]
protect 1.30091%9 L241717 £.38 0.000 LB271626 1.7746876
caleium .238073  .0904338 2.63  0.008 060826 4153199
_cous -.0700466  .9016468 -0.08 0.938 -1.837239 1.697146
/lon_p -4849596  .1383343 3.56  0.000 L2177481 752171
P 1.624109 2214228 1.243274 2.121601
i/p .6157221 . 0839444 L4713421 .804328

This model has been fit in the AFT metric. Thus, the mode] states that

In(t;} = —0.07 + L.30protect; + 0.24calcium; + In(7;}

The estimate § = 1.624 has to do with the distribution of In(7) and need not concern

us right now.
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T

|3

We now obtain the predicted times to failure {which we choose to be the conditional
mean given the covariates), something easy enough to do in Stata

. predict t_hat, mean time

Let's look at the predictions for subject id==10, one of our subjects who has time-
varying covariate calcium.

. list id _t0 _t protect calcium _d t_hat if id==10

id _t0 _t protect calcium _d t_hat
11, 10 0 5 0 9.69 0 8.384427
12. 10 ] i v 9.47 0  7.956587

Subject 10 was observed over the period (0,8} and then was censored; at tirme 0 and
5, we had measurements of calcium on her. The variable t_hat contains the predicted
{mean) failure times.

The interpretation of t_hat in the first observation is that if we had a subject who
had protect==0 and calcium==9.89, and those covariates were fixed, the predicted
tirne of failure would be 8.38. In the second observation, the prediction is that if we had
a subject who was under continual observation from time 0 forward, and if the subject
had fixed covariates protect==0 and calcium==9.47, then the predicted time of failure
would be 7.496.

Our poiut is that neither of those predictions really has to do with subjeet 10. To
obtain the predicted time to failure for a subject under continual observation whosc
value of calcium starts at 9.69 and then changes to 9.47 at ¢ = 5 is a truly miserable
calculation, and Stata bas no antomated way to calculate this for you. If you really
wanted it, here is what you would have to do:

1. Start by translating results back to the hazard metric.

2. Write down the hazard function At} for subject 10. It will be a function of the
estimated parameters, and it will have a discontinuity at time 5.

3. Integrate A({t) to obtain the cumulative hazard H{t).

4. Obtain the density function of ¢, f({t} = h(t)exp{—H(t)}.

5. Having f(¢), now obtain its expected value.
As we stated, it would be a lot of work. Even after you had that, you would have to
think carefully if that is what you want. Do yon really want to assume that calcium
changes from 9.69 to 9.47 at ¢ = 5, or would you also like to add that it continues to

decline, perhaps declining to 9.25 at time 10, and so on? Changing the future profile of
the variable will change the expected value.

Thus, time can be a difficult metric in which te interpret regression results. Note,
however, that the above difficulties are not the fault of the AFT metric—we would
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have the same problem with a PH model—it is just that AFT models tend to place
the emphasis on time, and with that emphasis, the above predictions become more
desirable.

For this reason, it is often preferable to think of AFT models not as linear models
on In{time}, but instead to use something analogous to the PH interpretation. Namely,
for an AFT model we can think in terms of survivor functions

S(thx) = Sofexp(—xB,)t}

That is, the probability of survival past time t for an individual with covariates x is
equivalent to the probability of survival past time exp(—x/3_)t for an individual at the
baseline (one with covariate values all equal to zero).

As stated earlier, some AFT models, namely the exponential and Weibull, have both
a hazard interpretation and an accelerated time interpretation. The other AFT models
that Stata can fit—log-normal, log-logistic, and gamma—have no natural PH interpre-
tation. This is not to deny that you could work out the hazard function corresponding
to these models, but that function would not be a simple function of the regression
coefficients and in no sense would be easy to interpret.

Ere——— |




13 A survey of parametric regression
models in Stata

The parametric regression models in Stata work like the Cox model in that they can
handle all the same problems, which is to say, time-varying covariates, delayed entry,
gaps, and right censoring. If your dataset is appropriate for use with stcox, it is ready
for use with streg.

Dataswise, there is one important difference that you will need to consider. In Cox
regression, the definition of origin()—the definition of when analysis time £ = 0—
plays 1o real role, whereas in parametric models, it car be (and usually is) of vital
importance.

The only role origin{) plays in stcox is that Stata applies the rule that subjects
are not and cannot be at risk prior to £ = 0. Putting that aside, the definition of the
origin really does not matter. That is, if you tock a dataset, ran stcox, and then added
50 to all time variables and revan the analysis, nothing would be changed. The only
role played by tine in the Cox madel is to determine who is to be compared to whom,
and the magnitude of the time variable matters not at all.

Try the same experiment with a parametric model—add 50 to the time variables- -
and results will change, unless you are fitting an exponential regression model. In
parametric models, time plays a real role, and the point at which analysis time ¢t = 0
determines when risk begins accumulating. Adding 50 to all the time variables changes
that accumulated risk in a nenproportional way. You need to think about when the
onset of risk really is.

Both the Cox model and parametric models are invariant to multiplicative transforims
of time, which is to say, it makes no difference whether you measure time in minutes,
hours, days, or vears. It actually is not a theoretical constraint on parametric models
that they be scale invariant, but all the standard models are because, were they not,
they would hardly be reasonable or useful.

The likelihood functions of the parametric models—regardless of the particular one
under consideration—all follow the same general form:

{S(t;1%8,. O} % {f (15%;8,,©)} (13.1)
Sfto;|x;8,,0} : .

where f{) is the density function of the assumed distribution, S{) is the corresponding
survivor function, and (to;,¢;.d;, x5} is the information on the jth observation. The

Li(8,,Q)=
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parameters (3, and © are estimated from the data: 3, are the coefficients on x, and
© are ancillary parameters, if any, required by the assumed distribution. For instance,
for the Weibull distribution & = (8, p}, where 3y is the scale parameter and p is the
shape parameter, and we choose f to denote the scale because, as we show later, for
this model the scale can also be thought of as an intercept term for the linear predictor

x3..

The triple (to4,t;,d;) summarizes the survival experience for the observation: the
subject was observed and known not to fail during the period to; < t < ¢;, and then at
t = t;, the subject either failed (d; = 1) or was censored {d; = 0}. Thus, the powers
(1--d;) and d; in (13.1) serve to select either S() or f{} as the numerator of the ratio. If
censored, S() is chosen, and that is the probahility that the subject survives from 0 to t;
without failure. If d; = 1, if the subject fails, f(} is chosen, and that is the “probability”
of failure at time t;. Either way, the numerator is divided by S(tg;ix;8,,©), which
is the probability of surviving up to time 254, and thus whichever is the numerator is
converted to a conditional probability or probability deusity for the time span under
consideration. When tg; = 0, S(tg;{x;8,,0) = 1.

Note that the terms of the likelihaod function are stated in terms of observations and
not subjects, which is to say that there may be more than one observation on a subject.
In simpie survival data, there is a ene-to-one correspondence between observations and
subjects and, in addition, ¢p; = 0. But in more complex cases, a subject may have
multiple obscrvations, as we have seen previously:

id
101

101
101

t

—“omoo
@~ et
ol
-0o0n

In this way, parametric models are generalized to allow time-varying covariates.

Equation (13.1) may be equivalently written as

S5(t41%;8,,0)

d;
S(toj|xja3¢:9){h(tjixjﬁx’e)} '

LJ(:B::: 8) =

which you can obtain by substitution using the formulas given in Chapter 2. This vari-
ation is as easily thought about. The first part, §(¢;]...}/5(20;]...), is the probability
of survival from to; until t;. The last part, (t|...)%, becomes h(t;|...) if the span
ends in failure (which is the corresponding risk of that event at time t;), or 1 if the span
ends in censoring.

All parametric likelihoods are of the above form, and the only difference among the
models is how S{) (and therefore f{) and h()) is chosen.

streg can fit any of six parametric models: exponential, Weibull, Gompertz, log-
normal, log-logistic, and generalized gamma.
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13.1 The exponential model

13.1.1 Exponential regression in the PH metric

The exponential model is the simplest of parametric survival models because it assurnes
that the baseline hazard is constant,

h(t|x;) = ho(t) exp(x;08,)
= exp(fo) exp(x;8,)
= exp{fs + x;8;)

for some constant 8;. We use the notation Fp to emphasize the fact that the constant
may also be thought of as an intercept term from the linear predictor. Using the well-
known relationships for the exponential model,

H(tjx;) = exp(Bo+x;0;)t
S(tlx;) = exp{—exp(f +x;0,)t} (13.2)

If you fit a model in this metric and display the regression coefficients instead of
hazard ratios, the intercept term _b[_cons] is the estimate of J5. To do this, specify
the nohr option either during estimation or upon replay:

. use http://www.stata-press.com/data/cgg/bip2, clear
(hip fracture study)
. streg aga protect, dist{exp) nohr

failure _d: £fracture

analysis time _t: timel

id: id
Iteration 0 log likelihood = -60.067086
Iteration 1: log likelihood = -54.034598
Iteration 2: leg likslihood = -47.553588
Iteration 3 log likelihood = -47.534671
Iteration 4 log likelihood = -47.634666€
Iteration 5: log likelihood = —47.534656
Expenential regression —- log relative-hazard form
No. of subjects = 48 Number of obs = 106
Ko, of failures = 31
Time at risk = 714
LR chi2(2) = 25.06
Log likelihoced =  -47,534656 Prob » chi?2 = 0.0000
-t Coaf. 8td. Err. z P>zl [98Y% Conf. Interval]
age .0809663  .0342787 2.36  0.018 0137813 1481514
protact -1.688958  .3703367 -4.66 0.000 -2.414803 -.9631137
_cons -7.892737  2.458841 -3.21  (.001 ~-12.71198 -3.073498

Translating the above to our mathematical notation,

Xja-f, = ~1.69protect; + 0.08age,
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and By = —7.89. Thus, our estimate of the baseline hazard is Eoft) = exp(—7.89) =
0.00037, and our estimate of the overall hazard is

h(t|x;} = 0.00037 exp(—1.69protect; + 0.08age,)

In the exponential model, hg(t) being constant means that the failure rate is inde-
pendent of time, and thus the failure process is said to lack memory. As such, you may
be tempted to view exponential regression as suitable for use only in the simplest of
cases,

That would be unfair, There is ancther sense in which the exponential model is
the basis of all other models. The baseline hazard hq(f) is constant, and given the
proportional hazards model,

h{t|x;) = ho(t) exp(x;5,)

the way in which the overall hazard varies with time is purely a function of how x3,
varies with time, if at all. The overall hazard need not be constant with time; it is
just that every little bit of how the hazard varies must be specified in x3_. If you fully
understand a process, you should be able to do that. When you do not fully understand
a pracess, you are forced to assign a role to time {the hazard increases with time, the
hazard decreases with time, etc.), and in that way, you hope, put to the side your
ignorance and still describe the part of the process you do understand.

It is a rare process that is fully understood, but your goal should be to understand
the process well enough that, some day, you could fit an exponential model. And it is
worth appreciating that, once you do fully understand a process, time plays no role.
Rather, you have a model in which it is the accumulation of this toxin or of a particular
kind of information or of something else that accounts for the apparent role of time,
and you can describe exactly how the toxin, knowledge, or whatever accumulates with
time.

Ir addition, exponential models can be used to model the overall hazard as a function
of time, if they include ¢ or functions of ¢ as covariates.

For example, for cur hip-fraciure data we could fit a model in which we simply claim
that the hazard is constant with time,

h(t|x;) = ho exp{Biprotect; + frage;)
for some constant hg, or we could directly include ¢ in the model,
h{tix;) = ho exp(fiprotect; + frage, + fBat) (13.3)

As a computer issue, we will have to construct the time-varying covariate for £, but
that is not difficult (although it may require considerable memory depending on your
dataset. Note: streg has no tvc() option like stcox and so you must stsplit the
data):




13.1.1 Exponential regression in the PH metric 217

. Summarize _t
Variable | Obs Mean  Std. Dav. Min Max

_t I 106 11.5283 8.481024 1 39

. Btaplit myt, at{1{(1}39}
(808 ohservations (episodes) created)

. Btreg protect age myt, dist{ezp) nohr

failure _d: fracture
analysis time _t: timel

Id: id
Iteratien log likelihood = -60.067085
Iteration log likelihood = -51.705495

0
1: =
Iteration 2: log likelihood = -43.731761
Iteration 3: log likelihood = -43.704655
4

Iteration 4: log likelihood = -43.704635
Iteration G: log likeliheod = -43.704635
Exponential regression -- log relative-hazard form
No. of subjects = 48 Number of obs = 714
No. of failures = 31
Time at risk = 714
LR chi2(3} = 32.72
Log likelihecod =  -43.704835 Prob > chiZ2 = 0.0000
_t Coef. Std. Err. z Prlz| [95% Conf. Interwvall
protact -2.225445  .43813B5 -5.08 0.000 -3.084176 -1.386715
age .1023765 - 036895 2.7 0.006 -0300638 . 1746895
myt 066876 0234889 2.86 0.004 .0208387 .1129133
_cons -9.862588  2.694014 -3.66 0.000 -16.14276 -4,582417
Note how we used stsplit to split the records at each time in {1,2,3,...,39} and

create the time varying covariate myt= t.

Given the above estimation results, we can rewrite the model in (13.3) as
h(t|x;) = {ho exp(Bst) } exp{fhprotect; + Srage;}

and, in a logical sense, {fy cxp(Bst}} is our baseline hazard. Since hy = exp(f) in an
exponential model, in terms of our estimates we can calculate and graph the baseline
hazard

. gen hazard = exp{_b[_cons)) * exp(_b{myt] * myt)
. line hazard myt, c(J) sort lltitle{"baseline hazard"}

which produces Figure 13.1.
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Figure 13.1: Estimated baseline hazard function

We did not really fit a smooth function of t for the baseline hazard in streg because
that would require stsplitting our records infinitely finely. However, the “grid” size
we chose (every integer) seems to be adequate for our purposes.

In this case, including f in the model resulted in a hazard function that not only
increases with ¢, but increases at an increasing rate. That, however, is due to the
funetional forin we chose and may not really reflect what is going on in the data. In
our parameterization, kg exp{fst), the only way the hazard function can increase is at
an increasing rate.

Continuing this development, let’s try In(myt + 1) instead of myt as a covariate so
that the model becomes

i

h{t]x;) hoexp{Biprotect; + Brage; + B3 In(myt + 1)}

(ho exp{fs In(myt + 1)}] exp(Biprotect; + faage,)

where we now treat hgexp{fsln(myt + 1}} as the de facto baseline hazard,

. gen lmyt = lan(myt+1)
. streg protect age lmyt, dist(exp)
{output omitted)
. gen hazard2 = exp(_b[_cons] + _b{lmyt]*lmyt)
. line hazard2 myt, <(J) gort lititle("baseline hazard"}

which produces Figure 13.2.
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Figure 13.2: Estimated baseline hazard function using in{myt + 1)

In this case, we get a hazard that increases at a (gently) decreasing rate, but once again,
this could be an artifact of our parameterization.

Rather than specifying a particular funetional form of myt to include in our model,
we can get a better idea of the hazard function preferred by the data by including a
crude step function of myt instead, in which the height of each step is its own model
parameter,

. gen in_t1 = O<=myt & myt<10
. gen in_t2 = 10<=myt & myt<20
20<=myt & myt<30
. gen in_td4 = 30<=myt

I

. Egen in_t3

. streg protect age in_t2 in_t3 in_t4, dist{exp)
{output omitted )

. gen hazard3d = exp{_bl_cons] + _blin_t2]*in_t2 + /#
> *#/ _blin_t3]*in_t3 + _blin_t4]=*in_t4}

. line hazard3 myt, c(J) sort 1lititle("baseline hazard")

which produces Figure 13.3.

{ Continued on next page)
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Figure 13.3: Estimated baseline hazard function using a step function

Note that for reasons of collinearity, we do not include the first step indicator variable
in_t1 in our model—the intercept term takes care of that step for us.

From Figure 13.3, it appears that the hazard is increasing at an increasing rate but
then jurnps down at the end. This graph, kowever, can be misleading because there are
very different numbcrs of observations in each of the steps. A better graph would define
the steps so as to put 25% of the data in each step,

. summarize myt, detail

myt

Percentiles Smallest

1% &) 0

5% 0 0
10% 1 0 Obs T14
25% 3 0 Sum of Wgt. 714
50% B Mean 10.61765
Largest Std. Dev. 8.678827

oY% 16 35
oY 23 36 Variance 75.32204
95% 28 37 Skevness .7923223
99% a3 38 Kurtosis 2.79787

. gen in_tl = O<=myt & myt<3

. gen in_t2 = 3<=myt & myt<8

. gen in_t3 = B8<=myt & myt<i§

- gen in_t4 = 16<=myt

- Btreg protect age in_t2 in_t3 in_t4, dist(exp)
(output omitted )

. gen hazard4 = exp{_b{_cons] + _blin_t2]=in_t2 + /=
> %/ _blin_t31*in_t3 + _blin_td4]+*in_t4)
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. line hazardd myt, c(J) sort lititle{"baseline hazard")

which produces Figure 13.4.
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Figure 13.4: Estimated baseline hazard function using a better step function

Looking at this graph, we now kuow what we believe: the hazard increases at a decreas-
ing rate. Actually, a better statement would be the following: up until time ¢ = 16,
we believe it certainly is not increasing faster than linearly (probably increasing at a

decreasing rate), and after that, we really do not know. In any case,
hazard to the result we obtained when we used In(myt + 1),

. line hazard2? hazard4 myt, ¢(J J} sort lititle("baseline hazard")

which produces Figure 13.5.

{Continued on next page)

we compare this
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baseiine hazard

8
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40

Figure 13.5: Comparison of estimated baseline hazards

It is a fair fit, except perhaps in the second time interval.

The point of the above exercise is not that you should use exponential regression
when you have no idea of what the baseline hazard looks like—use Cox regression
instead. The point is that exponential regression can be used to fit models in which the
hazard varies with time, and that may be a reasonable thing to do, especially if you
want to verify the fit of another parametric model. For instance, pretend that you have
strong reason to believe that the formulation ought to be Weibull. Even after fitting
a Weibull model, you could use the exponential model with dummy variables for time
intervals to verify that the Weibull fit was reasonable.

The method we have used—splitting the data on each integer time point—uses
considerable memory. Depending on the size of your dataset, that may not matter,
but note that the piecewise-constant hazard with steps at the 25th, 50th, and 75th
percentiles of time would have required only splitting the data on three time points.

13.1.2 Exponential regression in the AFT metric

In the accelerated failure-time formuiation of Section 12.2.2, we have
7; = exp(—x;8.)¢t;, and in the exponential model, it is assumed that

T~ Exponential {exp{3y)}

That is, 1; is distributed as exponential with mean exp(fs). This implies then that

In(t;) = x;8;+n(r;)
Oy + Xjﬁm + uy
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where u; follows the extreme-value (Gumbel) distribution, the result of which is that

E{in{t;)Ix;} = fo + 38, +'(1)

where I7(1) is Euler’s constant.

U Technical Note

The Gumbel distribution gets the name extreme-value distribution because it can be
shown to be the limiting distribution (as n — oo) of the maximum value from a sample
of n identically distributed random deviates with a continuous probability distribution
suppotted on the real line.

U

Alternatively, we can derive the AFT formulation by accelerating the effect of time
on survival experience. At baseline values of x, 7; = {; since all covariates are equal to
zero. Thus, the baseline survivor function of £; is that from an exponential distribution
with mean exp{3,)}; i.c.,

Sa(t;) = exp{—exp(—Bo)t;}

In an AFT model, the effect of the covariates is to accelerate time by a factor of
exp(—x;03,). Thus, for the AFT model,

S(tilx;} = Solexp(~x;8.)t;}
= exp{— exp(—,@o) exp(_xjr@m)tj}
= exp{—exp(—fo — x;8.)t;}

and when we compare with (13.2), we find that the transformation from the PH to
the AFT metric (for the exponential madel) is simply one of flipping the signs of the
regression coeflicients.

Using our hip-fracture data, we can chtain exponential regression estimates in the
AFT metric,

. use http://uwww.stata-press.com/data/cgeg/hip2, clear
(hip fracture study)

. streg protect age, dist(exp) time

failure _d: fracture
analysis time _t: timsel

id: 1id
Iteration O: log likelibood = -60.067085
Iteration 1: log likelihood = -54,034698
Iteration 2: log likelihood = -47.553588
Iteration 3: log likelihood = -47.534671
Iteration 4: log likelihood = -47.534656
Iteration 5: log likelihood = —47.534666
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Exponential ragression -- accelerated failure-time form

No. of subjects = 48 Number of cbhs = 106
Ne. of failures = 3
Time at risk = Ti14

LR chi2{2} = 25,06

Log likelihood =  -47.B34656 Prob > chi2 = 0.0000

.t Coef. Std. Err. z P>|z| [9BY% Conf. Intervall]

protect 1.688958  .37033s7 4.668 0.000 .9631137 2.414803

age -.0809663  .0342787 -2.3¢ 0.018 -.1481514  -.0137813

_cons 7.892737  2.458841 321 0.001 3.073498 12.71198

from which it follows that
In{t;) = 7.89 + 1.69protect; — 0.08age; + u;
or, if you prefer,
7; = exp(—1.69protect,; + 0.08age,}t;

The effect of protect is to slow down time, and the effect of age is to accelerate it, or
equivalently, the effect of protect is to delay failure, and that of age is to hasten it.

As we have previously discussed in Section 13.1.1, we do not believe the assumption
of constant hazard is appropriate for these data, and our previcus concerns apply as
much to the exponential model estimated in the AFT metric as they do to the model fit
in the PH metric.

The approach we suggested for relaxing the assumption of constant hazard in the
previous section, while applicable in this metrie, is nearly impossible to interpret, and
so we do not recommend it. You could, however, stsplit the data and introduce ¢
as a variable in the model. If you do that, you will then discover that time speeds up
with time, which you will have to think about carefully. When you go to evaluate the
fit—to find out whether time should acrelerate with time or, say, In(time)—you find
that nearly impossible to do because predict will not help you, or at least it will not
help you if you stick with the tiine metric and predict failure times. In time-varying
data, predict, time calculates predictions for each ohservation as if the covariates are
constant, and that is not what you need. All of this is to say that if you want to use
the exponential model to explore the hazard, you will find that much easier to do in the
proportional hazards metric.

13.2 Weibull regression
13.2.1 Weibull regression in the PH metric

The Weibull model assumes a baseline hazard of the form ho(t) = ptP~ exp{/3;), where
p is some ancillary shape parameter estimated from the data and the scale parameter is
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parameterized as exp(fp). Given a set of covariates x;, under the proportional hazards
model,

h{tlx;) = holt)exp(x;8,)
= ptf lexp(o +x;3,)

and this yields

Htlx;) = exp(fo +x;8,;)t
S(tx;) exp{— exp(fy + x;8;)¢"} (13.4)

The estimated scale parameter, thus, is obtained by exponentiating the estimated in-
tercept coefficient.

The Weibull distribution can provide a variety of monotonically increasing or de-
creasing shapes of the hazard function, and their shape is determined by the estimated
parameter p. Figure 13.6 gives a few examples,

Weibull

Figure 13.6: Weibull hazard function for various p

Note that when p = 1, the hazard is constant, and thus, the Weibull mode! reduces
to the exponential model. For other values of p, the Weibull hazard is not constant; it
is monotone decreasing when p < 1 and monotone increasing when p > 1. The Weibull
is suitable for modeling data that exhibits monotone hazard rates.

Uéing streg, dist{weibull) with our hip-fracture data,
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. use htip://wwu.etata-press.com/data/cgg/hip2, clear
(hip fracture study}

. atreg protect age, dist(weibull)

failure _d: fracture
analysgis time _t: timel
id: id

Fitting conetant-only model:
Iteration Ot log likelihood = -60.067088
Iteration i: log likelihood = -59.30148
Iteration 2: Ing likelihood = -53.298481
Tteration 3: log likelihood = -59.298481

Fitting full model:

Itaration 0:  log likelibood = -59.298481
Iteration 1: log likeliheod = -B4,.887563
Iteration 2: log likelihood = -42,123875
Iteration 3: log likelihcod = -41.993012
Iteration 4: log likelihood = -41.992704
Iteration B: log likelihocod = -41.992704
Weibull regression -- log relative-hazard ferm
No. of subjects = 48 Kumber of chs = 108
No. of failures = 31
Time at risk = 714
LR chi2(2} = 34.61
Log likelihood =  -41.992704 Preb > chi2 - 0.0000
_t | Haz. Ratic 5td. Err. z P>zl [96% Conf. Intervall
protect .1099611 0448214 -5.42 0.000 .0454629 . 2444548
age 1.117186 0423116 2,93  0.003 1.03726 1.203271
fln_p .51B8694  .1376486 a.77  0.000C 2490831 . 7886556
P 1.680127  ,2312671 1.282849 2.200438
t/p .6951931  .0819275 -4544653 7795152

Note that in the output above Stata reports a Wald test for H,: In{p) = 0 for which
the test statistic is 3.77 and that we can reject the null hypothesis. This is equivalent
to testing H,: p = 1, and thus we can reject that the hazard is a constant.

U Technical Note

From the above cutput, we see that the results for three parameterizations of p are
given: In(p), p itself, and 1/p. The first parameterization, In{p}, represents the metric
in which the model is actually fit, and by estimating in this metric we are assured
of obtaining an estimate of p that is positive, and the estimate of p is obtained by
transforming In(p) post-estimation. The third parameterization, 1/p, is given so that
one may cormpare these results with those of other researchers who commonly choose
to parameterize the shape in this manner.

Q
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By default, streg reports hazard ratios (exponentiated coefficients} when estimating
in the PH metric. We sce that wearing the hip-protection device reduces the hazard of
hip fracture to almost one-tenth of what it would be otherwise.

While results reported in this way make interpreting the effects of variables on the
relative hazard easy, these results do now show all the parameters of the baseline hazard
function becanse one of those parameters is Fy. We can, however, redisplay the results
and ask for the coefficients:

. streg, nohr

Weibull regression -- log relative-hazard form
No. of subjects = 48 flumber of obs = 106
No. of failures = a
Time at riek = 714
LR chi2{2) = 34.61
Log likeliheod =  -41.992704 Prob > chi2 = . 0000
_t Coef . Std. Err. z P>zl [95% Conf. Intervall
protect ~2.207628 .4076113 -5.42 Q.000 =3.006632 -1.40B725
age .1108134 0378734 2,93  0.003 .D36583 .1860439
_tons -11.67104 2.90918 -4.01 0.000 -17.37295 -5.969135
/ln_p .518B694 1376486 3.77  G.000 2490831 . T8B6B56
p 1.680127  .2312671 1.282848 2.200436
1/p .5851931 L0H1927TS .4544553 .TT85152

From these results, we see that

1.68¢%°% exp(—11.67)
.0000144¢° 58

2

holt) = ptP~ 1 exp(Gy)

i

The baseline hazard is so small because it is being evaluated at protect==0 and age==
and, as done previously, we could move the baseline to reflect a more reasonable group
by estimnating on, say, age8¢ = age-860. In any case, as demonstrated in Section 13.1.1,
we could graph the baseline hazard by typing

. gan h = 0.0000144 = _t"0.68
. line b _t, c{1) sort

This time, however, we will follow a different approach to estimating the baseline hazard,
and type

. replace protect=0
. replaca age=0
. predict h, hazard

With this method, we let predict do all the work. predict, hazard will calculate the
hazard at the recorded values of the covariates after any parametric estimation using

streg. If we set all the covariates to zero, we obtain the baseline hazard. The full
capabilities of predict when used after streg are covered in Chapter 14,
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If we perform the above and estimnate the baseline hazard for our fitted model, we
can graph it using

. line h _t, c{l} sort lititla{"baseline hazard")

which produces Figure 13.7,

%-
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Figure 13.7: Estimated baseline hazard function for Weibull model

In Scction 13.1.1, we fit a step function for the hazard. We can compare that to the
baseline hazard produced by the Weibull model. In doing these kinds of comparisons
between classes of parametric models, it is iimportant to make them at reasonable values
of the covariates, and thus we will make the comparison at protect==0 and age==70.
In replicating the calculations for the step function hazard, we let predict do the work:

- use http://www.stata-press.com/data/cgg/hip2, clear
. stsplit myt, at{1(1}39)

. gen in_tl = O<=myt & myt<3

. gan in_t2 = 3<=myt & myt<8

. gem in_t3 = B<emyt & myt<l1é

. gen in_t4 = 16<=myt

- Btreg protect age in_t2 in_t3 in_t4, dist{exp)

- gen hage = age

. gen hprotect = protect

. replace age = 7Q

. replace protect = 0

- predict hstep, hazard

. replace age = hage

. replace protect = hprotect

. Btreg protect age, dist(weib)

. replace age=T0

. replace protect=0

- predict h, hazard

. line hstep h _t, (1 1) sort lititle("baseline hazard")
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The result is shown in Figure 13,8,

baseling hazard
pradicted hazard
2

Q 10 20 30 42

pradicted hazard ——~ —- predicted hazard

Figure 13.8: Comparison of exponential (step) and Weibull hazards

As we said in Section 13.1.1, when commenting on Figure 13.4, “Up until t = 16, we
helieve [the hazard] is certainly not increasing faster than linearly [...] and, after that,
we really do not know.” We do not know because of the small amount of data after
t = 16. and so, in Figure 13.8, we are not much bothered by the difference on the right
between the two hazard functions.

Fitting null models

You can use streg to obtain estimates of the parameters of the parametric distribution
when there arc no covariates in the model. For example, if we wanted to find the Weibull
distribution that fit our data by treating all subjects as alike {that is, ignoring age and
protect), we could type

. use htip://wwv.stata-press.com/data/cgg/hip2, clear
(hip fracture study)

. streg, dist(weibull) time

failure _d: fracture
analysis time _t: timel
id: id

Fitting constant-only model:

Iteration 0¢: 1log likelihood = -60.067088
Iteration 1: log likslihcod = -59.30148
Iteration 2:  log likelihood = -59,298481
Iteration 3: log likelihood = -59,298481

Fitting full model:
Iteration 0:  log likelihood = -5%.29B481
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Weibull regreassicn -- accelerated failure-time form
No. of subjects = 48 Number of oba = 106
No. of failures = 3
Time at risk = 714
LR chi2{0} = 0.00
Log likelihood =  -59.2098481 Prob > chi2 -
-t Coef. Std. Err. z P>zl [96% Conf. Intervall
_cons 3.111177 . 1489163 20.89 0.000 2.819306 3.403048
/in_p .1910097 . 1476597 1.29 0.196 -.09B3979 4804174
p 1.210471 1787378 . 9062882 1.616745
1/p .B261245 .1219883 .6185252 1.103402

and we obtain 3 = 3.11 and p=1.21, which completely specify a Weibull distribution
with survivor function

8(t) = exp{-exp(fo)t*}
= exp{—exp(3.11t?1)}

Such estimation is useful for those wishing to obtain the maximum likelihood estimates
of the Weibull distribution for univariate data (or univariate data with censoring, as in
this case).

In addition, by fitting a null model for each value of protect, we can graph and
compare the hazard functions for the data when protect==0 and protect==1.

. Btreg if protecte==0, dist{weib) nohr
{output omitied)
. predict hQ, hazard
. streg if protect==1, dipt{waeib) nohr
{output omitted)
. predict hl, hazard
. label var hQ “protect==0"
. label var hl “protect==1"
. line b0 h1 _t, ¢{1 1) sort 1ititle("hazard")

This result is shown in Figure 13.9.
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Figure 13.9: Estimated Weibull hazard functions over values of protect

Let us take a moment to reflect. In Figure 8.2 of Section 8.2.7, when we discussed
nonparametric analysis, we parameterized neither the effect nor the underlying hazard
function. Later, in Section 8.5, we illustrated nonparametric tests, which similarly made
no assumptions about the functional forms of the effect or the hazards.

In Section 9.1, we used Cox regression. In that analysis, we parameterized the effect
but not the underlying hazard.

Above, we just did a visual comparison, leaving the effect unparameterized but
parameterizing the hazard function. And, of course, we could fit a Weibull model on
protect and thus parameterize both,

All our tests and inspections have vielded the same result: there is a difference
assoctated with wearing the hip-protection device. That results are the same need not
be the case, and the question then arises, which should you use?

There is no simple answer to that question, so let us instead understand how to
determine the answer in particular cases.

The advantage of the modeling-the-effect approaches is that you can control for the
effects of other variables. For instance, in our hip data, we know that patients vary in
age, and we know age also affects outcome. In a carefully controlled experiment, we
could ignore that because the average ages (and the distribution of age as well} of the
control and experimental groups would be the same, but in our data that is not so.

The disadvantage of the modeling-the-effect approaches is that you could model
the effect incorrectly, and there are two ways you could do that. You could model
incorrectly the effect of other variables, or you could mismodel the effect itself, for
example, by stating its functional form incorrectly.
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Effects of the form “apply the treatment and get an overall improvement” are often
not simple. Effects can vary with other covariates (being perhaps larger for males than
for females), and effects can vary with time, which is to say, aspects that change over
time and that are not measured. For instance, a treatment might involve surgery, and
in such cases, there may be a greater risk to be followed by a lesser risk in the future.

It is because of these concerns that looking at graphs such as the one above is useful,
whether you are engaging in parametric or semiparametric modeling (although, when
doing semiparametric modeling, you can only indirectly look at the hazard function by
looking at the cumulative hazard or survivor funetion).

In most real circumstances, you will be forced into parametric or semiparametric
analysis. Nonparametric analysis is useful when the experiment has been carefully con-
trolled, although even controlled experiments are sometimes not controlled adequately.
In all cases, nonparametric analysis is a useful starting point, In nonexperimental sit-
uations in the presence of covariates, you do this more as a data description technique
rather than in hopes of producing any final analysis that you can believe. You, as
a researcher, should be able to describe the survival experience, say, as reflected in a
graph of the survivor function or cumulative hazard function for your data, ignoring the
complications of confounding variables and the like. Before disentangling reality, you
need to be able to describe what the reality is that you are starting with.

So, our position is that you will likely be forced into parameterizing the effect. This
is perhaps due more to our past analysis expericnces. In a well-designed controlled
experiment, there is nothing wrong with stopping at nonparametric analysis.

If you do need to continue, should you parameterize the hazard function? On this
1ssue, different researchers feel differently, We are very favorably disposed to parametric
analysis when you have good reason to believe that the hazard function ought to follow a
certain shape. linposing a hazard function is an excellent way of improving the efficiency
of your estimates and helping to avoid being misled by the fortuity of chance. On the
other hand, when you do not have a good a priori reason to know the shape of the
hazard, you should use semiparametric analysis.

When choosing between a semiparametric and parametric analysis, you must also
take into consideration what information you are trying to obtain. If all you care about
are hazard ratios (parameter effects) in a PH model, then you are probably better off
with a semiparametric analysis. If you are interested in predicting the time to failire,
however, some sort of parametric assumption as to the hazard is necessary. In this
case, even if you do not have a priori knowledge as to the shape of the hazard, you
can use streg, in all its implementations, to compare various functional forms of the
hazard, and you can use the piecewise-exponential model to “nonparametrically” check
the validity of any parametric form yon wish to posit.
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13.2.2 Weibull regression in the AFT metric

In the accelerated failure-time formulation of the Weibull, we have 7; = exp(—x;8,}t;,
and in the Weibull regression model it is assumed that

T; ~ Weibuli{ g, p)

That is, 75 is distributed as Weibull with parameters {3, p) with the cumulative distri-
bution function

F(r) =1 — exp[—{exp(—Fo)7}"] (13.5)
This implies then that
Inft;) = x;8, +In(r)

where u; follows the extreme-value (Gumbel) distribution with shape parameter p, the
result of which is that

()

E{ln{t;}x;} = Bo + x;8, +

where I'{1) is Euler's constant. Alternatively, we can derive the AFT formulation by
accelerating the effect of time on survival experience. At baseline values of x, 7; = t;
since all covariates are equal to zero. Thus, the baseline survivor function of £; is
obtained from (13.5} to be

Solt;) = exp[—{exp(—fo)t; }*]

In an AFT model, the effect of the covariates is to accelerate time by a factor of
exp{—Bzx;). Thus, for the AFT model,

S(tilx;) = Solexp(~x;8;)t;}
= exp|—{exp(—5o} exp(—x;8,)t;}"]
= expl[—{exp(—3o — x;8,)t;}7] (13.6)

Comparison with (13.4) shows that one may transform the regression coefficients from
one metric to the other using the following relationship:

Barr = Bes {13.7)
p
In addition, some authors cast the Weibull shape parameter p {which is common to both
parameterizations) in terms of s = 1/p, where s is known as the dispersion parameter.
For convenience, Stata reports both the estimates and standard errors of p and 1/p
in the output from Weibull regression. You fit Weibull models in the AFT metric by
specifying the time option to streg:
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. use http://www.stata-press.com/data/cgg/hip2, clear
{hip fracture study)

. streg protect age, dist(weib} time

failure .d: fracture
analysis time _t: timel
id: id

Fitting constant-only model:

Iteratien 0: log likelihood = -80.067085
Iteratien 1: log likeliheod = -55.30148
Iteration 2: log likelihecod = ~59.298481
Tteration 3: log likelihood = -59.298481

Fitting full model:

Iteration O: log likelihood = -59.285481

Iteration 1 log likelihood = -54,BB7E63

Iteration 2:  log likelihood = -42.123875

Iteration 3: leg likelihood = -41.993012
4 =

Iteration 4: log likelihood = -41.393704
Iteration 5: log likelihood = -41.8992704
Weibull regression -- accelerated failure-time form
Ko. of subjects = 48 Number of obs = 106
No. of failures = 31
Time at risk = 714
LR chi2(2) = 34.61
Log likelikood =  -41.992704 Prob > chi2 = 0.0000
_t Coef. 5td. Err. z Pxlzi [98% Cont. Intervall
protact 1.313965  .2366229 5.5 0.000 .BG501928 1, 777737
age -.0659554 0221171 -2.98 0.003 -.1093041  -.0226067
_cons 6.948524  1.575708 4.41  0.000 3.858192 10.03488
/lo.p .6188694  .1376486 3.77  0.000 2490831 . 7886556
P 1.680127 2312671 1.282849 2.200436
1/p .5851931  .0B19276 4544553 .TT951E2

We note that the estimate of p is identical to that from when we fit this Weibull model
in the PH metric and that the regression coefficients obey the transformation given in
(13.7).

13.3 Gompertz regression (PH metric)
The Gompertz model is available only in PH metric and assumes a baseline hazard
ho(t) = exp(t) exp(fo)
so that in the proportional hazards model

hitlx;) = holt) exp(x;8,)
= exp{vyt)exp{fo + x;8;)




13.3 Gompertz regression (PH metric) 235

and thus,

Htlx;) = ~ 'exp(fo +x,0,) {exp(yt) - 1}
S{tlx;) exp[—y~ " exp(fo + x; 8, }{exp(yt) — 1}]

The Gompertz distribution is an old distribution that has been extensively used
by medical researchers and biologists modeling mortality data. This distribution is
suitable for modeling data with monotone hazard rates that either increase or decrease
exponentially with time, and the ancillary parameter -« controls the shape of the baseline
hazard.

Gompertz

=]
N
-
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time

gamma=2 ———w- gamma =0
e gJAMMA = =2

Figure 13.10: Gompertz hazard functions

As depicted in Figure 13.10, if ~ is positive, the hazard function increases with time: if
7 is negative, the hazard decreases with time; if v = 0, the hazard function is exp(3g)
for all ¢, which is to say that it reduces to the hazard from the exponential model.

Some recent survival analysis texts such as Klein and Moeschberger (2003) restrict
7 to be strictly positive. Note that when v < 0, S{¢}x} decreases to a nonzero constant
as t -+ oc, implying that there is a nonzero probability of never failing (living forever).
That is, the hazard remains positive but decreases to zero at an exponential rate, which
is too rapid a decline to guarantee eventual failure. By restricting + to be positive, one
is assured that S(¢|x) tends to zero as ¢ — oo,

Although the above argument may be desirable from a mathematical perspective,
Stata’s implementation takes the more traditional approach of not restricting v. In
survival studies, subjects are not followed forever-~there is a date when the study ends—
and in many investigations {specifically in medical research}, an exponentially decreasing
hazard rate is clinically appealing.
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Using our hip-fracture data, we fit

. use http://www.stata-press.com/data/cgg/hip2, clear
(hip fracture study)

. strag protect age, dist{gompertz) nohr
failure _d: fracture
analysis time _t: timel
id: id
Fitting constant-only model:
Iteration 0: log likelihood = -60.067085

Iteration 1: log likelihood = -£9.734027
Iteration 2: log likelibheod = -59.730841
Iteration 3: lopg likelihood = -58.730B4

Fitting full model:
Iteration O: log likelihood = -69.73084

Iteration 1 log likelihood = -53.743223
Iteration 2: log likelihood = -42,693409
Iteration 3: log likelihood = -42,608467
Iteration 4: log likelihood = ~42,609352
Iteration 6: log likelihood = -42,608352
Gompertz regression —— log relative-hazard ferm
No. of subjects = 48 Number of oba = 106
No. of failures = 31
Time at riesk = Ti4
LR chi2(2) - 34.24
Log likelihcod =  -42,608352 Preb > chi2 = 0.0000
_t Coaf. 8td. Err. z P>z} f95% Conf. Intervall
protect -2.311232  .443577% -6.21 0.000 -3.180629  -1.441836
age .1055445 0371977 2.84 0.005 .0326383 .1784508
-Cons -10.19274  2,721731 -3.74 0.000 -15.52723  -4.86B8245
gamma .0T52767 0233602 3.22  0.001 .029458156 .1210818

and find that ¥ > 0, meaning that we estimate a hazard that is increasing exponentially.
We can plot the baseline hazard using

. replace protact = 0O
(72 real changes made)

. replace age = 0
{106 real changes made)

. predict hC, hazard
. line hO _t, c(1) sort lititle{"baseline hazard")

which produces Figure 13.11.
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Figure 13.11: Estimated baseline hazard for the Gompertz model

Given our previous discussions on the exponential and Weibull models, this is a poor
model for our data. We know that the hazard is increasing, and we have argued that
it 1s probably increasing at a decreasing rate, something not allowed under a Gompertz
specification where the hazard increases or decreases exponentially.

13.4 Log-normal regression (AFT metric)

In the accelerated failure-time formulation, we have T; = exp{—x;8,)t,, and for the
log-normal regression model, it is assumed that

7; ~ Lognormal{3,, o)

That is, 7; is distributed as log-normal with parameters (B, 0} with cumulative distri-
bution function

Fir)= (M) (13.8)

[+

where ®() is the cumulative distribution function for the standard Gaussian (normal)
distribution. Thus,

ln(tj) = ij@;r + ]Il(‘?’j)
= ﬁ(] + XJ',B‘T —+ Uy

where u; follows a standard normal distribution with mean 0 and standard deviation o.
That is. for the log-normal medel, transforming time into In(time} converts the prohlem
into one of simple linear regression (with possible censoring). As a result,
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E{In(t;)x;} = Bo + x;8;

Alternatively, we can derive the AFT formulation by accelerating the effect of time
on survival experience at baseline, where all covariates are equal to zero. Thus, the
baseline survivor function of ¢; is obtained from (13.8) to be

Int; —
Saty =1-0 (20— R)
o
In an AFT model, the effect of the covariates is to accelerate time by a factor of
exp{-x;3,). Thus, for the AFT model,

S(tslx;) = So{exp(—x;8;)t;}
_— [ln{eXD(—xjﬁz)tj} - ﬁo]

a

= 1—-® { In t.'f _ (,BU + x.fﬁx)} (139)
F

The attractive feature (for some problems) of this distribution is that the hazard function
is nonmonotonic—it increases and then decreases; see Figure 13.12.

lognormal

15

timie

sigma=0.5 —-——- sigma = 1
« sigma = 1.25

Figure 13.12: Examples of log-normal hazard functions (8 = 0}

This model has no natural PH interpretation. That is, from (13.9), we could certainly
derive the hazard as a function of x; as

—25(t%;)

htlx;) = TSR,y

. 4
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but there is no choice of ha(t} for which this reduces to the form

ht]x;) = ho(t) exp(x;3;)

and so this model is parameterized in the APT metric only.
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Although we do not think the log-normal model is an appropriate model for our

hip-fracture data, by way of illustration, we fit a log-normal model to it:

. use http://www.stata-press.com/data/cgg/hip2, clear
{hip fracture study)

. Btreg protect age, dist(lognormal)

" failure
analyeis time

_d: fractur
bt timed
id: id

Fitting coastant-only model:

1]

Iteration O: log likelihood = -G9.784524
Iteration 1 log likelihecod = -68.743214
Iteration 2: log likelihood = -58.663856
Iteration 3: log likelihood = -59.5112566
Iteration 4: log likelihood = -59.51081%
Iteration 5: log likeliheod = -58.51091¢
Fitting full model:
Iteration 0: log likelihood = -58.510919 (not concave}
Iteration 1 log likelihood = -48.387777
Iteraticn 2: log likeljhood = -42.455266
Iteration 3: log likelihood = -41.847689
Iteration 4 log likelihood = -41.845325
Iteration & log likelihood = -41.B4%5326
Log-normal regression -- accelerated failure-time form
No. of subjects = 483 Wumber of cbs = 105
Ko. of failures = 31
Time at risk = 714
LR chi2(2) = 35.33
Log likeliheod =  -41.845325 Prob > chi2 = 0.000¢
_t Coef.  Std. Err. z P>zl [95% Conf. Interval]
protect 1.459569 . 246986 B.91  0.000 . 97643865 1.9438E53
age -.0785641  .0222192 -3.64 0.00Q -.1221129  -.0350162
_cons 7.45804 1.68032 4.6  0.000 4.341069 10.575601
/ln_sig -.2952626  .126B218 -2.33  0.020 ~.54382856  -.0466964
Bigma . 7443382 .094358 .5805215 9543771

Although the log-normal model does not fit into the proportional hazards framework,
predict may still be used after estimation to obtain the predicted hazard function. We
can comparc the hazards for the protect==0 and protect==1 groups at age 70 by

typing

. replace protect=0
{72 real changes made)
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. replace age=T(¢
(96 real changes made)

. predict hO, hazard

. replace protect=1
{106 real changes made)

. predict hil, hazard

. label var h0 "protact==Q"

. label var hi “"protact==1"

. line hO hi _t, ¢(1 1) sort lititle{"h{t)")

which produces Figure 13.13.

protect==0 —mwm- protect==1 ]

Figure 13.13: Comparison of hazards for a log-normal model

The nonproportional-hazard nature of this model is now obvious. Given what we already
know about the hip data, we would argue that both of these hazard functions misspecify
what is occurring,.

13.5 Log-logistic regression (AFT metric)

In the AFT metric, 1; = exp(—x;3.)¢;, and for the log-logistic regression model, we
assume that

7; ~ Log-logistic(fp, v)

That is, 75 is distributed as log-logistic with parameters {Jp.v) with cumulative distri-
bution function

Fry=1-[1+ {exp(—ﬁo)»r}ﬂ_l (13.10)
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Thus,
In(t;) = x;8, + In(7;}
= fo+x;8,+u;

where u; follows a logistic distribution with mean 0 and standard deviation 7+v/+/3, Ag
a result,

E{ln(t;)1x;} = 6o + %8,

Alternatively, we can derive the AFT formulation by accelerating the effect of time
on survival experience. At baseline values of the covariates x, 7; = ¢; since all covariates
are equal to zera. Thus, the baseline survivor function of ¢; is obtained from (13.10) to
be

Sotts) = [1+ fexp(~By;}¥]

In an AFT model, the effect of the covariates is to accelerate time by a factor of
exp(—x;/3,). Thus, for the AFT model,

S{t;[x;) = Sof{exp(—x;8.)t;}
= 1+ ool ep(—x,8,0)%]

[+ (e ~ x;8,0F]

The log-logistic distribution closely resembles the log-normal distribution, and some
examples of log-logistic hazards are given in Figure 13.14.

(Continued on next page)
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log-logistic ;’
Y
o |
o

gamma=1 = —wew. gamma = 0.5
reeeeneas Jamma = 0.25

Figure 13.14: Examples of log-logistic hazard functions (5y = 0)

Like the log-normal model, the log-logistic model has no natural PH interpretation.
One advantage of the log-logistic model over the log-normal model is that the log-logistic
mrodel has simpler mathematical expressions of the hazards and survivor functjons,
expressions that do not include the normal cumulative distribution function. If v < 1,
the log-logistic hazard increases and then decreases. If + > 1, then the hagzard is
monotone decreasing.

Using our hip-fracture data,

. use http://uww.etata-press.com/data/cgg/hip2, clear
{hip fracture study)

. Btreg protect age, dist(llogistic)
failure .d: fracture

analysis time _t: timel
id: id

Fitting constant-only modal:

Iteratien 0: log likelihood = -€D.090862
Iteraticn 1: log likelihood = -60.599923
Iteration 2: log likelibood =  -59,3027
Iteration 3: log likelihood = -55,.398893
Iteration 4: leg likelihood = -59,298892

Fitting full medel:

Iteration 0: log likelihood = -59.298892 (not concavae)
Iteration 1: log likelihood = -48.608502
Iteration 2: leg likelibood = -42.884B806
Iteration 3: log likelihood = -42,242365
Iteratjion 4: log likelihood = -42, 240835
Iteration 5: log likelihood = -42,240534
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Log-logistic regression -- accelerated failure-time form

No. of subjects = 48 Number of oba = 106
Ho. of failures = 31
Time at risk = 714

LR chi2{(2) = 34.12

Log likelihood =  -42,240634 Prob > chi2 = 0.0000

_t Coof, Std. Err. z P>zl [956% Conf. Intervall

protect 1.434467  .2483224 B.78 0.000 9477643 1.92117

age -.0755823  .02211983 -3.42 0.001 -.1189352 -.0322293

_cons 7.284475  1.662087 4.66 0.000 4.2229 10.34805

/ln.gam -.85665428  _1476461 -5.80 0.000 -1.146924 - .B671619

gamma 4246275 .0626946 3179301 .5671327

We obtain results nearly identical to those produced under the log-normal model and
every bit as inappropriate for these data, and in fact, a comparison of the hazards for
protect==0 and protect==1 with age held at 70 years,

. replace protect=0
(72 real changes mads}

. replace age=70
{96 real changes made)

. predict hQ, hazard

. raplace protect=1
(106 real changes made)

. pradict hi, hazard

. label var hQ "protect==0"

. label var hl “protact==1"

- line h0 hil _t, c(1 1) sort lititle{"h(t}")

will produce a graph nearly identical to Figure 13.13.

In point of fact, the log-logistic and log-normal models are very similar, and for
most purposes are indistinguishable, much like probit and logistic regression models for
binary data. Returning to our linear model for In(t;),

In{t;) = Go +x;8, + u;

It was noted that for the log-normal model, u; is normal with mean 0 and standard
deviation o for the log-logistic model, u; is logistic with mean 0 and standard deviation
7y/+/3. For the above data, 5 = 0.425, and thus 74 /V3 = 0.771, which nearly equals
o = 0.744, estimated in Section 13.4.
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13.6 Generalized gamma regression (AFT metric)

In the AFT metric, 7; = exp(—x;3.}t;, and for gamma regression models, we assume
that

T; ~ Gamma(Sy, £, o)
That is, 7; is distributed as generalized gamma with parameters ({g, %, o) with cumu-

lative distribution function

Fir)={ #(2), if & = 0 (13.11)

I(y,u), ife>0
1—7{v,u), fe<0

where v = |x|7%, zq = sign{s){In(7) — Bo}/o, v = vexp(\/F20), B() is the standard
normal cumulative distribution function, and J(a, z) is the incomplete gamma function

1 T
I{a,z) = m)—./o e Yy gy

Thus,

In(t;) = x;8, +In(r;)
Bo+x;8, +uy

fl

where %; has mean

o)

E(y;) = AT

+ In(v)

As a result,

E{ll’l(tj)h[j} = Gy + Xjﬂx + E(uj)

Alternatively, we can derive the AFT formulation by accelerating the effect of timne on
survival experience. At baseline values of the covariates x, 7; = t; since all covariates
are equal to zero. Thus, the baseline survivor function of ¢; is

S{)(tj) = 1 - F(tj)
where F() is given in {13.11). Thus,

Stjlx;) = Sof{exp(—x;8,)t;}
= 1 - Flexp(—x;8,)t;}
= 1 F*(t;)




13,6 Generalized gamma regression (AFT metric) 245

where F*(} is F() from (13.11) with z, replaced by
In(r) — (B + x;8;)

aJ

z = sign(k)

The generalized gamma. distribution is a three-parameter distribution (3, %, ¢} possess-
ing a highly flexible hazard function that allows for a large number of possible shapes.
The gamma distribution includes as special cases the Weibull if 5 = 1, in which case
p = 1/o; the exponential distribution if £ = ¢ = 1; and the log-normal distribution if
k& = 0. As such, the generalized gamma model is commonly used for evaluating and
selecting an appropriate parametric model for the data. For example,

. use http://www.stata-press.com/data/cgg/hip2, clear
(hip fracture study)
. streg protect age, dist{gamma)
failure _d: fracture
analysis time _t: timel

id: id

Fitting constant-only model:

Iteration 0: log likelihood = -83.838211

Iteration 1: log likelihood = -62.510044 (nmot concava)
Iteration 2: log likelihood =  -59,B327

Iteration 3: log likelihood = -58.095428

Tteration 4: log likelihood = -59.074315

Iteration 5: log likelihowd = —-B59.074271

Iteration 6: log likelihood = ~59.074271

Fitting full model:

Iteration O: log likelihood = -53.074271 (not concave)
Iteration i: log likelihood = -46.552166
Iteration 2: log likelihood = —44.146478 (not concave)
Iteration 3: log likelihood = -42.041913
Iteration 4: log likelihood = -41.4B5BRT
Iteration &: log likelihood = —41.483472
Iteration &: log likelihood = -41.483472
Gamma regression -- accelerated failure-time form
No. of subjects = 47 Number of cbs = 106
No. of failures = 31
Time at risk = 714
LA chi2{2} = 35.18
Log likelihood =  -41.483472 Prob > chi2 = 0.0000
_t Coef. Std. Err. z P>zl [95% Conf. Intervall]
protect 1.4067  .2673213 5.47  0.000 .8023597 1.511041
age -.0727836 02328 -3.12 0.002 -.1184116  -.02715658
.cons T.223275 1.60255 4.81  0.000 4,082336 10.36422
/ln_sig -.3836568  .1842131 -2.08  0.037 -.7447069  -.0226047
/kappa .4644343 .576288 0.81 0.420 - .6GGE0595 1.593938
sigma .6813859 . 1255165 47438735 . 9776488
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and we note that the 95% confidence interval for £ {—0.665, 1.594) includes both 0 and
1, and thus does not rule out a Weibull model («x = 1} or a log-normal model {x = 0),
which is not surprising given what we know about these data.

As such, a graph of the comparison of hazards for protect==0 versus protect==
via
, Teplace protect=0
(72 real changes mada}

. Teplace age=70
{96 real changes made)

. predict hQ, hazard

. replace protect=1
{106 real changes made)

. predict hl, hazard

. label var hO "protect==0"

. label var hl "protact==i"

. line hO h1 _t, <(1 1} sort lititle("h{t}"}

will produce a graph similar to that given for the log-normal (Figure 13.13).

13.7 Choosing among parametric models

We mnay ask ourselves, given that we have several possible parametric models to choose
from, how can we select one? The preferred auswer is that the science for the problem
at hand suggests an appropriate parametric model. If we think carefully about the
underlying process that generated the failure times in our data and specifically about
the possible shape of the hazard function, we can get a good idea of which parametric
model(s) we should evaluate.

From a purely statistical view, several strategies are available for selecting a para-
metric maodel, of which we will consider two:

1. When models are nested, the likelihood-ratio or Wald tests can be used to dis-
criminate hetween them. This can certainly be done in the case of Weibull versus
exponential, or gamma versus Weibull or log-normal.

2. When models are not nested, the likelihood-ratio and Wald tests are unsuitable,
and we can use, for instance, the Akaike (1974) information criterion (AIC).

13.7.1 Nested models

Using our hip-fracture data, we first fit a generalized gamma model (the most general
of the models available in streg) and test the following hypotheses:

1. H,;: x =0, in which case if H, is true then the model is log-normal.

2. H, x =1, in which case if H, is true then the model is Weibull,
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3. A;: & = 1,0 = 1, in which case il H, is true then the model is exponential
(constant baseline hazard function).

We start by fitting the gamma model:

. use http://www.stata-press.com/data/cgg/hip2, clear
(hip fracture study)

. streg protect age, dist(gamma) noloeg

failure _d: fracture
analysis time _t: timel

id: 414
Gamma regressiom -- accelerated failure-time form

No. of subjects = 43 Number of cbs = 106

Ne. of failures = 31

Time at risk = 714
LR chi2{2) = 35.18
Log likelihood =  -41.483472 Frob > chi2 = 0.0000
_t Coef. Std. Err. z P>|z] [95% Conf. Interval]
protect 1.4067  .2573213 5.47  0.000 . 9023697 1.911041
age -.0727838 02328 -3.13 0.002 ~.1184116 -.0271556
_cons 7.223276 1.60265 4,61  0.000 4.082335 10.36422
fln_sig -.3836568  .1842131 -2.08 0.037 -.7447068  -.0226047
/Rappa .4644343 .675288 0.81  0.420 - 6650895 1.693838
sigma .6813668 1205165 .4748736 .9776488

We can now perform our three tests:

(1) Hpyx=0
We can read the Wald test directly from the cutput since streg reports that the
test statistic for /kappa is z = 0.81 with significance level 0.420, Alternatively,
we could perform the Wald test ourselves using test:

. test [kappa) _bl_cons] = 0
{ 1} [kappa) _cons = 0

chiz{ 1)
Prob » chi2

0.77
0.3798

The test statistic looks different because in this case, a chi-squared is reported
and streg reported a normal, but these tests are identical, as illustrated by the
identical levels of significance.

We couid also perform a likelihood-ratio test, which in this context is asymptot-
ically equivalent to the Wald test, and the choice between the two is a matter
of personal taste, Wald tests have the advantage that they can be used with
sampling weights and robust estimates of the variance—covariance matrix of the
parameters, whereas likelihood-ratio tests cannot. Since we specify neither sam-
pling weights or robust standard errors in this model, however, the likelihood-ratio
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test is appropriate. For nested models (in this case, the log-normal nested within
the gamma), the procedure for performing a likelihood-ratio test is as follows:

. streg protect age, dist(gamma) /* Fit the saturated modal %/
{output omitted }
. astimates store sat /* Save the results =/
. streg protect age, dist{lnormal) /*» Fit the nested model */
{output omitted)
. lrtest sat, force /* Likelihood-ratio test */
likelihood-ratio test LR chiZ2(1} = 0.72
{Assumption: . nested in sat) Prob » chi2 = 0.3949

This compares favorably to the asymptotically equivalent Wald test.

Technical Note

Note that in order to perform the likelihood-ratio test, we needed to specify the
force option to lrtest; otherwise, Stata would refuse to perform this test. Nor-
mally, using force is not a good idea, since you are overriding Stata’s judgment
that the test has no statistical validity. In this case, however, Stata simply does
not know that the models are nested because streg can fit lots of different models,
and some of the combinations are not nested.

o

Hyk=1
For this test, we will obtain the Wald test only, but first we need to refit our
gamma model:

. gquietly streg protect age, dist(gamma) nolog

. test [kappal.b[_coms] = 1

{ 1) [kappal_cons = 1

chiz{ 1} =  1.03
Prob > chi2 =  0.3111

We note that the test results do not preclude the use of the Weihull model for
these data; these results agree with what we already know about the nature of
the hazard for hip fracture.

Hior=10=1

Asin (1) and (2), we can perform either a likelihood-ratio test or a Wald test, but
we opt for a Wald test so that we can demonstrate how to use test to test two
parameters simultaneousiy:

. test [kappal _b{_cons] = 1, notest
{ 1} [kappal_cons = 1
. test [1n_sig]l b{_coms] = 0, accum

{ 1) [keppal _cons = 1
( 20 [n_sigi_cons =0
chi2{ 2) = 15.86
Prob > chi2 = 0.0004
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Note that streg, dist{(gamma) estimated In{o) instead of o, so to test ¢ = 1,
we needed to test In(o) = 0. The test results strongly reinforce what we already
know, that the risk of hip fracture is certainly not constant over time.

Concerning the log-normal and Weibull, recall that in Section 13.1.1 we used ex-
ponential regression to fit a step function and argued that the hazard was inereasing
and perhaps at a decreasing rate, that we found that the Weibull fit this exponentially
estimated step function well, and that when we produced log-normal resuits, we made
comments that the increasing and then decreasing hazard were inappropriate for these
data. However, the statistical test we just performed cannot reject the log-normal spec-
ification. Furthermore, the Weibull and log-normal are not nested models, and so a
direct test such as the above to determine which is more suitable is not feasible.

When we fit our exponential step function, we did not put standard errors around
our estimates of the steps (although streg reported them). If we had more data and
if the pattern we think we saw persists, then the statistical test would reject the log-
normal. The problem is that we do not have more data and cannot, on the basis of these
data, justify our supposition that the hazard is monotonically increasing. Nevertheless,
we would have no difficulty rejecting that assumption on the basis of our science, or at
least based on our prior knowledge of hip fracture among elderly women.

13.7.2 Non-nested models

In the casc of non-nested models, Akaike {1971} proposed penalizing each model’s log
likelihood to reflect the number of paramneters being estimated and then comparing
them. Although the best-fitting model is the one with the largest log likelihood, the
preferred model is the one with the lowest value of the Akaike Information Criterion
{AI1C). For parametric survival models, the AIC is defined as

AlC=—-2InL +2{(k + ¢}

where k is the number of model covariates and ¢ the number of model-speeific distribu-
tional parameters.

For the miodels fit by Stata’s streg, the values of ¢ are given in Table 13.1.

Table 13.1: Comparison of streg maodels

Distribution Metric  Hazard Shape ¢
Exponential FPH, AFT constant 1
Weibull PH, AFT monotone 2
Gompertz PH monotone 2
Log-normal AFT variable 2
Log-logistic AFT variable 2
Generalized gamma AFT variahle 3
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To illustrate the Akaike information criterion {(AIC), we review the six parametric
models as fit on the hip-fracture data with covariates age and protect. Table 13.2
gives the log likelihoods and Akaike information criterion values from each model:

Table 13.2: Comparison of AIC values for streg models

Distribution Log Likelihood & ¢ AIC
Exponential -47.534656 2 1 101.06031
Weibuli -41.992704 2 2 9198541
Gompertz -42.609352 2 2 93.21870
Log-normal -41.845345 2 2 91.69065
Log-logistic -42.240534 2 2 9248107
Generalized gamma -41.483472 2 3 92.96694

Per the AIC criterion, the log-normal model is selected. Note, however, that the more
reasonable (based on the science of hip fractures) Weibull model has virtually the same
AIC score, 91.99 versus 91.69, and on that combined basis, we would choose the Weibull.




14 Post-estimation commands for
parametric models

14.1 Use of predict after streg

predict after streg is used to generate a new variable containing predicted values or
residuals, and what is calculated is determined by the option you specify; see Table 14.1
for a list of what is available.

Table 14.1: Options for predict after streg

Option Contents

xb By + X 163 R N

stdp standard error of 3y +x;3,
median time predicted median survival time
median Intime predicted median In{survival time)
mean time predicted mean survival time
mean lntime predicted mean In{survival time)
hazard predicted h{.t)

hr predicted hazard ratio

surv predicted S{_t|-t0)

csurv predicted S(_t] earliest _t0 for the subject)
csnell {partial) Cox—Snell residnals
ccsnell cumulative Cox—Snell residuals
mgale (partial) martingale residuals
cmgale cummulative martingale residuals
deviance deviance residnals

Calculations are obtained from the data currently in memory and do not need to
correspond to the data used in fitting the model. This is true for all the calculations
predict can make following streg. Below, we give a more detailed list:

e xb - linear prediction
xb calculates Gy + x;3_, the lincar prediction.
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stdp — standard error of the linear prediction
stdp calculates the estimated standard eypor of Gy + x;3, based on the estimated
variance—covariance matrix of (3p, 8,).

median time — predicted median survival time

This is the default prediction; that is, if you do not specify any options, predict
will calculate the predicted median survival time, Q(0.5/x;}, reported in analysis-
time units. Note that the prediction is made from time ¢ = 0 conditional on
constant covariates, and thus if you have multiple-record-per-subject data with
time varying covariates, each record will produce a distinct predicted median
survival time.

median lntime —- predicted median In{survival time)

The predicted median In{survival time) is reported in In(analysis time} units. As
is the case with median time, predictions are from time ¢t = 0 conditional on
constant covariates, even in multiple-record data.

mean time — predicted mean survival time

The predicted mean survival time is reported in analysis-time units and is calcu-
lated as the integral of the survival function from 0 to infinity, given each obser-
vation’s covariate values and the estimated model paraneters.

mean 1lntime — predicted mean In{survival time}

The predicted mean In{survival time) is reported in analysis-time units and is
calculated as the expected value of the distribution of Infsurvival time), given
each ohservation’s covariate values and the estimated model parameters.

hazard -— predicted hazard function
Calculnres A{_t]x;) given the estimated model parameters. Note that this caleu-
lation is not restricted to models fit in the PH metric.

hr — predicted hazard ratio R

Calculates the relative hazard, exp(x;3,), for all models that may be parameter-
ized as PH. This option is not allowed with AF1 models. For the exponential and
Weibull models {which may be cast in both metrics), the predicted hazard ratio
is ealculated regardless of the metrie under which the model was fit; that is, the
parameter estimates used in the above are from the PH version of the model.

surv -— predicted conditional survivor function

Calculates S{_t|-t0,x;), which is the probability of survival past time _t given
survival to time _t0, given x; for each observation and the estimated model pa-
rameters. Note that _t0 and _t are specific to each observation.

csurv - - predicted survivor function

Calculates a running product within each subject of the predictions produced by
predict, surv. This amounts to the probability of survival past _t for each
subject, given that the subject survives any gaps for which it is left unobserved.

A
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s csnell — (partial) Cox—Snell residuals
If you have single observations per subject, then csnell calculates the usual Cox—
Snell residuals from (11.1). Otherwise, it calculates the additive contribution to
this obsetvation to the subject’s overall Cox—Snell residual.

¢ ccanell — cumulative Cox-Snell residuals
If you have single observations per subject, then ccsnell is equivalent to csnell.
Otherwise, in the last observation (with respect to analysis time) on each snbject,
ccsnell records the sum of the partial Cox-Snell residuals and sets the other
observations to missing. Only one value per subject is recorded—the overall sum -~
and it is placed on the last record for the subject.

e mgale — {partial} martingale-like residuals
If you have single observations per subject, then mgale calculates the usual mar-
tingale residuals. Otherwise, it calculates the additive contribution of this observa-
tion to the subject's overall martingale residual. We use the term “martingale-like”
because, although these residuals do not arise naturally from martingale theory in
the case of parametric survival models as they do for the Cox proportional hazard
madel, they do share similar properties.

s cmgale —— cumulative martingale-like residuals
If you have single observations per subject, then cmgale is equivalent to mgale.
Otherwise, in the last observation on each subject, cmgale records the sum of
mgale and sets the other observations to missing. Only one value per subject is
recorded -the overall sum—and it is placed on the last record for the subject.

e deviance - deviance residuals
deviance calculates the deviance residuals, which are a scaling of the martingale
residnals to make them symmetric about zero. in the case of multiple-record-per-
subjoct data, only one value per subject is caleulated, and it is placed on the last
record for the subject.

14.1.1 Predicting the time of failure

After estiination with streg, vou can type

1. predict newwvar, time to obtain the predicted time of failure given x;.

2. predict mewver, lntime to obfain the predicted In(time of failure) given x;.

If neither median nor mean is specified, the option median is assumed, but specifying
one of these options removes any ambiguity, and so we highly recommend it.

Combining these options gives four (potentially} distinet predictions. To demon-
strate, we fit a Weibull model to our hip-fracture data, predict using the four combi-
nations of thesc options, and list these predictions (along with the covariates) for the
last observation.
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. use htip://www.stata-press.com/data/cgg/hip2, clear
(hip fracture atudy)

. streg protect age, dist{weibull)
{output omitted )
. predict t_mean, time mean
. predict t_median, time median
. predict lnt_mean, lntime mean
. predict lnt_median, lntime median
. list _t protect age t_mean t_median lnt_mean lnt_median in 1, abbrev(i0)

t protect age t_mean t_median lnt_mean lInt_median

106. 39 1 67 41.60789  37.46217 3.407823 3.623332

Before we proceed with analyzing each of these predictions, let's fit the model again,
this time in the AFT metric:

., uee http://www.stata-press.com/data/cgg/hip2, clear
(hip fracture study)

. streg protect age, dist{weibull) time nolog

failure _d: <fracture
analysis time _t: timel

id: id
Weibull regression -- accelerated failura-time form
No. of subjects = 48 Number of obs = 106
No. of failures = 31
Time at risk = 714
LR chi2(2) = 34.61
Log likelihood =  -41.992704 Prob > chi2 = 0.0000
-t Coef. Std. Err. z P>zl [95% Conf. Intervalj
protect 1.313865  .2366229 5.56 0.000 .8501928 1.777737
age -.0659564 0221171 ~-2.98  0.003 -.1093041 - .0226067
.cons 6.946524  1.575708 4.41  0.000 3.868182 10.03486
fln_p .5188684  .1376488 3.77  0.000 . 2490831 . 7886556
P 1.680127 2312671 1.282849 2.200436
1/p .5951931  .0819275 4544553 7795152

. predict t_mean, time mean

. predict t_median, time median

. predict lnt_mean, lntime mean

. predict lnt_median, latime madian

. list _t protect ags t_mean t_median lnt_mean lnt_median in 1, abbrev({i0)

t protect age t_mean ¢ _median lnt_mean lnt_median

106. | 39 1 67 41.60789 37.46217  3.497923 3.623332
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We did that just to demonstrate that nothing changes—it really is the same model—
and predict was smart enough to take parameter estimates in either metric and apply
them correctly when calculating the prediction. When we take a closer look at how
these calculations are performed, we can switch between thinking in the PH and AFT
metrics freely.

Locking at our predict commands one at a time,

1. predict t_mean, time mean:
This gives the expected value of survival time, otherwise known as the first moment
of the distribution of survival time. Letting 7} be the time to failure for a random
observation with covariate values x;, the expected value of T} is given by

pr, = E(T;|x;) fx tf(t]x;)dt (14.1)

0
[= 4]
S(tx;)dt

0

where £()} is the probability density function of T and 5(} is the survivor function,
both determined by the choice of parametric model. The “prediction” aspect of
the calculation has to do with the fact that the model parateters that characterize
FO) and S() are replaced by their maximum likelihood estimates.

In the case of the Weibull AFT model above, from (13.6) we have
S(tlx;) = exp{—{exp(—Bo — x;8,)t}7] (14.2)

Equivalently, we could use the Weibull PH survivor function, but we will stick
with the AFT parameterization since those are the parameter estimates that we
currently have handy. Performing the integration in (14.1) gives

iz, = explp(Bo + %;8,)}T (1 + %)

where I'() is the gamma function. Thus, for our model the predicted mean survival
time becomes

~ JZS - 1
i, = exp {p (,60 + Biprotect; + ,Bgagej) } r (1 + 5)

and plugging in the estimated model parameters and the values of protect and
age from the last observation in our data yields pir,,, = 41.60789, which is what
is given by predict.

2. predict t_median, time median:
This gives the median, or 50th percentile, of survival time. From (14.2) we can
derive the quantile function Q{u|x;) for the Weibull AFT madel by noting that
since T; is continuous, QQ{ulx;) =t if and only if 1 — S(¢|x;) = u. Thus,

Q{ulx;) = exp(Bo +x;8,) {~ In(1 — u)}*/*
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The median of 7} is
Bt = Q(0.5]x;)

and is estimated by plugging in the covariate values X; and the parameter esti-
mates. For our model,

ijJ_ = exp (,@0 -+ Blprotectj -+ Egagej) {ln(2)}1/ﬁ (14.3)

and plugging in the estimated model parameters and the values of protect and
age from the last observation in our data yields Hr0s = 37.46217, which is what
is given by predict.

predict lnt mean, lntime mean:

This predicts the expected value of In(T;) and can be derived in many ways. The
most direct way would be a generalization of (14.1), which instead of integrating
{ times the density, integrates In(t) times the density:

E{n(T,)} = /0 " In(t) f(tl, at

For models that are parameterized as AFT, however, a better approack would be to
derive the distribution of In{T}) via a change of variable and directly calculate the
mean of this new distribution. With AFT models, the change of variable recasts
the model as onc that is linear in the regressors, and thus the calculation of the
mean reduces to calculating the mean of a residual term.

For example, our Weibull AFT model can alternatively be expressed as
In(T}) = o + x;8, + u; (14.4)

where the residual term u; follows the extreme-value distribution with shape pa-
rameter p, such that E(u;) = I'(1)/p, where TV(1) is Euler’s constant. Therefore,

E{ln(;)} = Bo+x;8, + E(uy)
= Bo+x;8,+T'(1)/p

and in the case of our model, this becomes
E{in(T})} = fo+ Biprotect, + Prage; + 1V(1)/p

Plugging in our estimates and covariate values yields E{ln(TmB)} = 3.497923,
which is what is obtained by predict.

For other AFT models such as the log-normal and the log-logistic, F{u 5) = 0 when
the model is recast in the log-linear form, and thus E{In(T})} is simply the linear
predictor, For the Weibull (and exponential as a special case) model, however,
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Ef{u;) is nonzero, and in many instances, researchers choose to ignore this fact
and predict In(time) using only the linear predictor. Even though this prediction
is biased, it is widely used. In any case,’if this alternate predicted In{time) is
desired, it is easily obtained: predict neu_%i;ar, xb will give the linear predictor.

Note that if you exponentiate a predictéd mean of In{T;) in order to predict
survival time, what you get is not equal to the mean of 75 but is rather another
prediction of time to failure altogether. In addition, you can also exponentiate the
linear predictor (i.e., ignore the nonzero mean residual} and produce yet another
predicted time to failure.

. gen a_lmean = exp(lnt_mean}
. predict xbh, xb

. gen a_xb = exp(zb)

. list _t protect age t_mean t_median e_lmean e xb in 1

t protect  age t_mean t_median e_lmean a_xb

106, as 1 67  41.60789  37.486217  33.04674  46.55427

The four predicted survival times are comparable but not equal. t_mean is the
predicted mean failure time, t_median is the predicted median failure time, and
e_lmean and e_xb are other predictions of failure time obtained via the alternate
methods we have described. Each of these four predictions has been used by
rescarchers, and our aim is not to debate the relative merits of each but rather to
point out how they are calculated and that they generally do not coincide.

The moral of the story is that if you want to predict survival time, be aware
of what the software gives you by default and how you can change the default in
order to obtain the prediction you want. In Stata, these four predictions are easily
obtained, and given the commands and options required for each, the context is
clear.

O Technical Note

Note that exponentiating a linear predictor in order to predict survival time (e xb
in the above) makes sense in an AFT model but not for a PH model, in which
case what you obtain are hazard ratios, which most likely have nothing to do with
predicting a survival time.

a

4. predict 1lnt median, lntime median:
The direct caleulation of the median of In(T;) would involve the derivation of
the distribution of In(T;) from that of T; via a change of variable. Ounce the
distribution of In(T};) is obtained, you can derive the quantile function for this
distribution and use it to evaluate the 50th percentile.

I an AFT model, recasting the model as one that is log-linear in time such as
(14.4), the calculation reduces to taking the median of the distribution of the
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IT models (such as the
qetric about zero, and
hials the mean of In{T})

residual, u;, and adding G + x;8, to it. For many A
log-normal and log-logistic), the distribution of u; is sy}
thus E(u;} = median(u;) = 0. So, the median of In(7}) §
and is simply the linear predictor in both cases. _
log-linear form (14.4),
istribution with shape

The Weibull, however, is not such a model. Given thg
recall that for the Weibull u; follows an extreme-value
parameter p. As such,

median(u;} = In{ln{2)}/p
and thus our estimate of the median log-survival time {qfour model becomes

mﬁan{ln('ﬂ)} =Bo+ Elprotectj + Egagej +{8{In(2)}/p

which equals ln(ﬁTj), where ET_,- is given in {14.3).

mation of T}, and the
ation. Thus, for our

This is generally true, since In(T;) is a monotone transfgy
calculation of the median is invariant to such a transfggy
covariates and parameter estimates,

mé.a?an{ln(T1oﬁ)} = In (ﬁTms)
In(37.4621%
3.623332 B

i

I

which agrees with what predict calculates.

Note that since medians are invariant to the log transfofmation, exponentiating
the predicted median of In{survival time) does not result }h an alternate predicted
survival time—it merely reproduces the predicted medianBurvival time, something
already considered. K

fie with multiple-record-

per-subject data. Remember that each prediction is made forgach record in isolation:
the predicted failure time is from time 0 under the assumptiol® of constant covariates.

For example,

. use http://vwv.stata-press.com/data/cgg/hip2, clear
(hip fracture study)

. streg protect calcium, dist(weibull) time
{output omitted)
. predict t_hat, maan time
. list id _tQ _t protect calcium _d t_hat if idw=10

id _t0 _t protect calcium _d t_hat
11. 14 0 B 0 9.69 0 B.384427
12. 10 5 B o .47 0  7.9B6587
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The interpretation of t_hat in the first observation displayed is that if we had a subject
who had protect==0 and calcium==9,69, and those covariates were fixed, then the
predicted (mean) time of failure would be 8.38, In the second observation, the prediction
is that if we had a subject who was under continual observation from time 0 forward
and had the subject fixed covariates of protect==0 and calcium==3.47, the predicted
time of failure would be 7.96. Neither prediction really has much to do with subject 10
in our data, given the nature of the time-varying covariate calcium.

14.1.2 Predicting the hazard and related functions

After estimation with streg, you can type

1. predict mnewwvar, hazard
to obtain the predicted hazard.

2. predict mewvar, hr
to obtain the predicted relative hazard (hazard ratio), assuming that the model
has a PH implementation. Otherwise, this option is not allowed.

3. predict newwver, surv
to obtain the predicted survivor function conditional on the beginning of an in-
terval (determined by _t0).

4. predict newwar, csurv
to obtain the (unconditional) predicted survivor function.

It is important to appreciate that all of these calculations (with the exception of
hr) can be made even for models fit in and with only an AFT parameterization., All
survival models may be characterized by their hazard function A{t[x); it just may be
that A(f|x} cannot be written according the the proporticnal hazards decomposition
ho{t)exp(x3,). predict, however, calculates h() and not hg(}), and if you want hqf)
because it is appropriale given the mode! you have fit, you can obtain it by first setting
x = O and then predicting h(}.

The values that predict, hazard calculates are h{_t}. For example,

. use http://wuw.stata-press.com/data/cgg/hip2, clear
{hip fracture study)

. streg protect age, dist(veibull)
{output omitted }
. predict h, hazard
. list id _t0 _t protect age _d h if id==10 | id==21

id _t0 i 1 protect age -d h
11. 10 0 5 [ 73 0 .13971233
12, 10 -1 B ¢ 73 o .1923367
35. 21 o B 1 82 v} L041649
36. 21 & 6 1 B2 1 .0471474
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The above output reports

11. H(5|protect == 0,age == 73) = (.1397

)
12. h(8{protect == 0, age == 73) = 0.1923
35. E(5|protect == 1,age == 82) = (.0416
)

36. h(6|protect == 1, age == 82) = 0.0471

If we change the data after estimation, predict calculates results based on the
previously estimated model parameters and the new data in memory,

. drop h

. replace age = 70
(96 real changes made)

. replace protect = O
(72 real changes made)

. pradict h, hazard
. list id _t0 _t protect age _d h if id==10 | id==21

id _t0 _t pretect age _d h
11. 10 0 5 0 70 o .1001877
12, 10 5 8 0 70 0 .1379384
35, 21 0 5 0 70 0 .1001877
3G, | 2 5 8 0 70 1 .1134356

and the interpretation of this output is

11. E(5[protect ==0,age == 70) = 0.1002

12. h(8|protect == 0,age == 70) = 0.1379

35. 3(5]protect == 0,age == 70) = 0.1002

36. h(blprotect == 0,age == 70) = 0,1134
predict always works like this, regardless of the option specified. predict calculates
results; it does not retrieve results stored at the time of estimation. Changing the

data in memory after estimation is a favorite trick to obtain desired caleulations. Just
remember to save your dataset before you change it.

predict, surv and predict, csurv calculate current and cumulative survival prob-
abilities using the data currently in memory.

. predict s, surv

. predict cs, csury
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. list id _t0 _t protect age _d & c¢s if id==10 | id==21

id _t0 _t protact age _d g 1]
11. 10 0 5 0 7O Q LT421641 . 7421641
12. 10 5 8 0 70 o .GIBE433 .518508
35. 21 Q E 3] 70 o] LT421641 .7421641
3s. 21 5 [ 0 70 1 ,8086372 6668363

The interpretation of the previous output {for T = survival time} is given in Ta-
ble 14.2.

Table 14.2: Use of predict, surv and predict, csurv

Obs.  Var, Caleulation Value

11 s Pr(T > 5 | protect == 0,age == 70) 0.7422
12 s Pr(T > 8 | protect == Q,age == 70,7 > 5) 0.6986
12 cs  Pr(T > 8 | history) 0.7422 x 0.6986 = 0.5185
35 5 Pr(T > 5 | protect == 0,age == 70) 0.7422
35 s Pr(7T > 6 | protect == 0,age == 70,T > 5) 0.8986
36 es  Pr{T > 6 | nistory) 0.7422 x 0.8986 = 0.6669

Note that the cumulative probabilities calculated by predict, csurv are obtained by
multiplying (within subject) the predict, surv results. This means that if the covari-
ates change during saucepans, that change would be reflected in the calculated cumu-
lative probabilities. We labeled the cumulative results as those given the “history” to
emphasize that fact aud did that even though, in our example, the covariates do not
change.

3 Technical Note

This method of caleulating cumulative probabilities via multiplication across the
covariate history is not without issues. In cases where there are gaps or delayed entry,
the net effect of the teclinique is to assume the probability of survival over the gaps is
one, just as it is in the likelihood function. This empirically based notion of survival
probabilities can make comparison of subjects with similar covariates more difficult if one
of the subjects exhibits gaps and the other does not. {We will see another manifestation
of the interpretation problem caused by gaps in Section 14.2.)

W]

Finally, you may have noticed that there is no cumhazard option to predict after
streg in current Stata. There is really no good reason for this, except to say that
obtaining an estimate of the cumulative hazard function at time _t is easy given the one-
to-one relationship between the survivor function and the cumulative hazard function,
One types
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. predict cs, csurv /% Wa want cummlative survival here */
. gen chaz = -1n{cs) [ H(t) = -1n{8(t)} =*/

14.1.3 Calculating residuals

The residuals calculated by predict can be used in the same way as discussed in Chapter
11, where we discussed regression diagnostics for the Cox model. The interpretation is
the same in all cases. There is, however, a difference in how (and when) you request
the residuals. With the parametric models, the residuals are calculated after estimation
using predict, whereas with the Cox model most of the residuals must be requested at
the time of estimation via options to the stcox command. Requests after the fact are
more convenient, and the reason stcox requires that you request the residuals at the
time of estimation has to do with computer efficiency. In the case of Cox regression,
the residuals (like the likelihood) are based on calculations involving summations across
risk pools, and it is in the identification of those risk pools that the computer spends
substantial time. Thus, rather than reforming the risk pools post-estimation, it is more
efficient to use the risk pools that were already formed during the estimation.

In any case, the intricacies of diagnostics for Cox models carry over to parametric
models for survival data, and thus are not something on which we elaborate in detail.
That is not to say that such diagnostics are not important in parametric models; it is
just that we {the authors) feel the application of those topics covered in Chapter 11 can
be applied to this context in a straightforward manner.

As an example, we fit a Weibull model to our hip data and caleulate the (cumulative)
Cox—8nell residuals in order to look for outliers:

. use http://www.stata-press.com/data/cgg/hip2, clear
(hip fracture study)

. streg protect aga, dist{weib)
{output omitted)

. predict cc, ccenell
(58 missing valuas generated)

. acatter ¢c _t, mlab{id} a(i)

The result is shown in Figure 14.1.

(Continued on next page)
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Figure 14.1: Cumulative Cox—Snell residuals for a Weibull model

We see that id==16, 19, & 20 are probable outliers. In looking at outliers, we find it
useful to also have the predicted time of failure (the mean is fine) based on the model:

. predict pred_t, time mean

. list _t0 _t pred_t age protect _d cc if id==16

_t0 Lt pred_t age protect _d cC
23. 0 5 B.7821123 T 0 0 .
24, 5§ 12 5.782123 T 0 1 2,819476

We see that this 77-year-old woman failed at time 12, which was a long time after
the predicted (mecan) time of 5.78. Notc also that cc is missing in observation 23. We
asked for the cumulative Cox—Snell residuals because we had multiple-observation-per-
subject data, and when we did that, the summed residual was filled in only on the last
record of each subject. That is why predict in the previous log said “58 missing values
generated”.

Also note that variable pred_t has the same value in both observations. As we
warned, predicted failure times are made as if covariates are constant. In our model of
age and protect, the covariates are indeed constant and so that is a correct result, but
in general, this may not be what we want.

You may be asking yourself, why not just find outliers based on pred.t? There are
two answers:

1. You can only correctly caleulate “residual time” = t — pred._t for those who fail;
censored cbservations can also be outliers.



264 Chapter 14. Post-estimation commands for parametric models

2. The distribution of pred-t can be very nonsymmetric, which makes finding outliers
hased on residual time difficult.

14.2 Using stcurve

stcurve is a wonderfully handy command for graphing, after estimation, the esti-
mated survivor functions, hazard functions, and cumulative hazard functions. stcurve
does nothing you cannot do for yourself using the predict and graph commands, but
stcurve makes doing certain things easier.

Rewmember that predict calculates predicted values, for each observation in the data,
al that observation’s recorded values of the covariates. If you were to type, say, predict
h, hazard and then graph h versus _t, what you wonld see is a hopeless mishmash of
predicted hazards, each at different values of the covariates. The solution is to replace, in
each observation, the values of the covariates with constant values (such as protect==
and age==70) before making the prediction and then graph that. Remember, however,
to save your dataset first so that you can get your real data back. In Chapter 13, that
was exactly the approach we followed for making graphs of the functions, and that
approach is well worth learning because it will lot you draw any graph of which you
can conceive, such as that in Figure 13.8 where we compared Weibull and piecewise
exponential hazards.

Most of the time, however, what we want are “simple”, graphs and those stcurve
can draw for us, and, moreover, stcurve can draw graphs comparing groups that might
otherwise tax to the point of breaking our knowledge of Stata syntax.

stcurve can graph

1. The survivor function. Type stcurve, survival
2. The cumulative hazard function. Type stcurve, cumhaz ...
3. The hazard function. Type stcurve, hazard ...
stcurve can graph any of those functions at the values for the covariates you specify.
The syntax is as follows:
stcurve, ...at(varname=# varname=# ...)

If you do not specify a variable’s value, the average value is used, and thus if the
at (} option is omitted altogether, a graph is produced for all the covariates held at
their average values. The at () option can also be generalized to graph the function
evaluated at different values of the covariates on the same graph. The syntax is

stcurve, ...ati(varname=# varname=# ...} at2(...) at3{(...)

For example, we can fit a generalized gamma model to our hip data and plot the
estimated hazard function for several covariate patterns,
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. use http://www.stata-press.com/data/cgg/hip2, clear
{hip fracture study)

. streg protect age, dist{(gamma)
{output omitted )

. stcurve, hazard /*

> */ atl(protact=0 age=70} /*
> */ at2{protect=0 age=75} /=
> */ at3(protect=0 age=B0) /*
> */ atd(protect=0 age=85)

the result of which is shown in Figure 14.2.

Generalized gamma regression
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Figure 14.2: Hazard curves for the gamma model {protect==0)

In the case of hazard curves for models that are not constrained to fit the PH assumption
{such as the gamma), we emphasize that there is not one hazard function but one
function per pattern of covariates: h{¢|x). In the case of PH models, these functions
can be summarized as k{t|x) = hg(t) exp(x3,). Here, we are being flexible by fitting a
gamma. model, and we can thus check the proportional hazards assumption graphically.

These graphs only gently violate the proportional hazards assumption; note that
the top graph for the oldest group actually turns down, while the bottom graph for the
youngest group does not.

The corresponding graph for those with protect==1is

steurve, hazard /#
*/ atl{protect=1 age=T0) /=
+/ at2(protect=1 age=75} /+*
*/ at3{protect=1 age=80} /*
*/ atd4{protect=l age=85)

L R

and the result is shown in Figure 14.3.
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Generalized gamma regression
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Figure 14.3: Hazard curves for the gamma model (protect==1)

In comparing this graph with the previous one, note carefully the different scales of the
1j-axis.

In a technical note in Section 14.1.2, we meutioned that predict, csurv calcu-
lates the cumulative probability of survival, and that given the way this prediction is
calculated, special care must be given when comparing subjects with similar covariate
patterns where one subject has gaps and the other does not. DBecause of gaps, even
if two subjects have the same covariate values, they may have different predictions of
cumnulative survival for any given time. We can see this by plotting the cumulative
survival function as calculated using predict after setting age==70 and protect==0:

. use http://www.stata-press.com/data/cgg/hip2, clear
(hip fracture study}

. streg protect age, dist{weibull)
{output omitted )

. replace ags = 70
{96 real changes made)

. replace protect = Q
{72 real changes made)

. predict cs, csurv
. line ¢s _t, c{1} sort lititle{"Cumulative survival probability")

The result is shown in Figure 14.4.
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Figure 14.4: Cumulative survival probability as calculated by predict

The spikes in the plot indicate that there are time gaps in the data, and even though
all observations have the same covariate values (we set them that way), the predicted
cumulative survival function is not a smooth function of _x.

When covariates are held constant, the cumulative survival probability as calculated
by predict, csurv will equal S{_t|x} only if there are no time gaps in the data. In
situations where there are gaps, stcurve comes to the rescue. steurve calculates
S(-t{x} directly from the parametric form of this function, ignoring the gaps. A superior
plot of the predicted S{_t[x} is obtained using

. use http://www.stata-press.com/data/cgg/hip2, clear
(kip fracture study)
. streg protect age, dist(weibull)
{output omitted )
., stourve, survival at{protect=0 age=70)

The result is shown in Figure 14.5.

{Continued on next page)
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Weibull regression
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Figure 14.5: Survival function as calculated by stcurve

Given what we have seen, our advice is to use predict, surv if you want individual-
specific survival probabilities that take gaps and time-varying covariates into account.
Use stecurve, survival if you want to plot the estimated overall survival function.




15 Generalizing the parametric
regression model

In Chapter 13, we discussed the six parametric models for survival data available in
Stata’s streg command, namely the exponential, Weibull, log-lnormal, log-logistic,
Gompertz, and generalized gamma. These models represent the basis of parametric
survival models available in Stata. In this chapter, we discuss other aspects and options
to streg that serve to expand and generalize these models.

15.1 Using the ancillary() option

The ancillary{) option is how you specify linear predictors for the “other” parameters
of the assumed distribution. For instance, the Weibull distribution has one ancillary
parameter, p, which is in most cases fitted as a constant. p has been constant in every
example we have considered so far in this book. By specifying ancillary(male), for
instance, you could specify that p = pg+ pimale, and if male were an indicator variable
that assumed the value 0 for females and 1 for males, you would effectively be saying
that p has one constant value for males and another constant value for females. Why
you might want to do that we will explore below.

In terms of ancillary parameters, the exponential model has none (thus, ancillary()
is not relevant); The Weibull, Gompertz, log-normal, and log-logistic models each have
one ancillary parameter, and the generalized gamma model has twa (for which there is
a corresponding anc2{) option te go along with ancillary()).

To understand why we might want to parameterize ancillary parameters, let us
reconsider the expanded hip-fracture data first discussed in Chapter 9. This dataset,
in addition to the data on female patients, contains data on males and includes the
additional variable male specifying the patient’s sex.

Let us begin by fitting a combined male and female Weibull PH model with protect
and age as covariates.
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. use http://www.stata-press.com/data/cgg/hip3, clear
(hip fracture study)

. streg protect age, dist(weibull) nohr nolog

failure _d: fractura
analysis time _t: timel

id: 14
Weibull regression -- log relative-~hazard form
Ko. of subjects = 148 Number of chs = 206
Ko, of fallures = 37
Time at risk = 1703
LR chi2(2) = 49.97
Log likelihood =  -T77,446477 Prob > chi2 = 0.0000
_t Coef. Std. Err. z P>zl {96% Conf. Interval]
protect -2.383745 .3489219 -6.83 0.000 -3.06761% -1.699871
age .0862661 03487 2,78 0.00B 0283042 . 1842079
_cons -10.63722 2,597762 -4.09 0.000 -156,72874  -5.545695
fln_p 4513032 - 1265975 3.66 0.000 .2031767 - 6994287
P 1,B703E7 . 1988033 1.22E5289 2.012605
1/p .B3ETITT .0BCELT . 4968686 .B16134

BRecall that the hazard function for the Weibull PH mode] is
h{t;{x;) = exp{fo + x;8, )pt?

which for our model translates into the estimated hazard

}i(tjlxj) = exp (—10.64 ~ 2.38protect; + U.lﬂagej) 1.57¢557

If we wanted to compare males to females, we could add the variable male to our

covariate list.

{Continued on next page)
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. streg protect age male, dist(weibull) nohr nolog

failure _d: fracture
analysis time _t: timel

id: id
Weibull regression -- log relative-hazard form
No. of subjects = 148 Number of obs = 206
No. of fajlures = a7
Time at risk - 1703
1R cki2(3) = 62.42
Log likeliheod = -71.224402 Prob > chi2 = ¢.0000
.t Coef. S8td. Err. z P>|zl [95% Conf. Interval)
protect -2.09584%  ,3632392 -5.77 0.000 -2.807886 -1.384013
age 09075561  .0339681 2.67 o0.o008 0241788 .1673314
male -1.413811 4555996 -3.16  0.002 ~2.30877 -.5208524
_cons -5.667022 2.562691 -3.77  0.000 -14.6898 ~4.64424
fln_p .3784328 . 1302032 2.91  0.004 . 1232382 .6336264
P 1.459995 .190096 1.131165 1.884432
1/p 584934 0891808 5306639 .88405621

Since male is in our covariate list, we assume that the hazards for males and females
are proportional (given age and protect). The net effect is that only the scale of the
distribution of ¢; changes according to the patient's sex. Since male==0 for females and
male==1 for maies, the above output gives the estimated hazards

exp (—9.67 — 2.10protect, + 0.09age;} 1.46t0-4°, if female

hit;ix;) = \
exp (—11.08 — 2.10protect; + 0.09age,) 1.46t9*%, if male
Since the Wald test for male is z = —3.10 with significance level 0.002, we are

confident that gender does have some effect on the risk of hip fracture. We are not,
however, convinced that the effect is proportional. It may be that the effect of gender
is to alter the shape of the hazard instead and that the above output is just a best
approximation as to the effect of gender given the constraints of the proportional hazards
assumption.

The Weibull distribution has two parameters, a scale parameter and a shape paramn-
eter. The scale parameter is the exponentiated linear predictor and is thus modeled
using the covariate list in streg. The other parameter is the shape, p, and if we want
this parameter to be modeled, we use the ancillary() option to streg:
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- streg protect age, dist(weibull) ancillary(male) nohr molog
failure _d: fracture

analyszis time _t: timel

id: id
Weibull regression -- log relative-hazard form
No. of subjects = 148 Number of oba = 206
Ne. of failures = ar
Time at risk = 1703
LR chi2(2} = 36.80
Log likelihood =  -69,323532 Prob > chi2 = 0.0000
_t Coef. Std., Err. z P>lzl [95% Conf. Intervall
_t
protect -2.130088  .3B67005 -5.97 0.000 -2.829178 -1.430938
age .0939131 0341107 2.75 0.006 0270573 .160768%
_cons -10.17576  2.E51821 -3.99 0.000 ~16.17722 -5.174269
ln_p
male -.4887189 . 1856808 -2.63 0.008 -.8525039  -.124933%
—cons 4540139  ,1157915 3.2  0.000 L 22T0E6T -6808611

In this model, we are assuming that In{p) is not constant over the data, but instead is
a linear function of some covariates z, In(p) = ap + za,, where 7 need not be distinct
from x. The reason we parameterize in terms of In(p) instead of p itself is that p is
constrained to be positive, whereas a linear predictor can take on any values on the real
line.

From cur estimation results, we see that 111?;) = 0.454 for females and hdlr(;) =
0.454 — 0,489 = —0.035 for males. Thus, § = exp{0.454) = 1.57 for females and
P = exp{—0.035) = 0.97 for males. The estimated hazards are then

N exp (—10.18 — 2.13protect; + 0.09age,) 1.67t257, if female
hit;lx;) =
exp (—10.18 — 2 13protect; + [}.OQagej) O.QTtJ._U‘U?’, if male

and if we believe this model, we would say that the hazard for males given age and
protect is almost constant.

The Wald test for male in the above output is z = —2.63 with level of significance
0.008, and thus we are still convinced of the effect of gender on the risk of hip fracture.
However, we are no better off than we were before. In this case, it may be that the effect
of gender is actually proportional, and by not allowing a shift in the hazard to take place,
the model actunally had to change the shape of the hazard in order to accommodate this
effect.

When we included male in the covariate list, we assumed that the effect of gender
was on the scale of the hazard and that the shape of the hazard was the same for both
gexes. When we specified ancillary(male)}, we assumed that the shape of the hazard
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changed according to gender but that the scale remained unaffected. We can be fully
general and allow both the scale and shape to vary by sex by using

. streg protect age if male, dist(weib)
- streg protect age if !male, dist(weib)

but if we did that we would be assuming that the effect of protect and age differed
according to gender as well. There is certainly nothing wrong with this, but let us
assume that what we want is to allow the scale and shape of the hazard to vary with
gender but constrain the effect of protect and age to remain the same. This is achieved
by specifying male both in the covariate list and in ancillary():

. Btreg protect age male, dist(weibull) anmcillary(male) nokhr nolog

failure _d: fracture
analyeis time _t: timel

id: id
Weibull regressicn -- log relative-hazard form
Ko. of subjects = 148 Humber of obs = 208
No. of failunres = ar
Time at risk = 1703
LR chi2{3) = 40.28
Log likslihocd = -69.082313 Prob > chi2 = 0.0000
_t Coef. Std. Err. z P>zl {95} Conf. Intervall]
_t
protect ~2.185115 . 3645006 ~5.99  0.000 -2.885523  -1.470707
age .0966628 . 0345663 2.80 0.005 .02849142 .1644117
male .7382003 1.036608 0.71  G.47¢ -1.293514 2.769015
-cons -10.61465  2.646B45 -4.01  0.000 -16.80238 -5.42693
ln.p
male -. 7116757 .3834735 -1.86 ©.063 -1.46327 0399185
_Cons 5079011 . 1358255 3.74  0.000 .2416881 .7741142

Comparing the Wald tests for both instances of male in this model favors our second
version of this story: the effect of gender is on the shape of the hazard, and given that
the shape changes, the effect on the scale is not significant.

Satisfied that we need to include male only in the estimation of the ancillary param-
eter, we can now use ancillary() to test the proportional hazards assumption on the
other two covariates, protect and age. For example,

{Continued on next page)
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. streg protect age, dist({weibull) ancillary(male protect) nohr nolog

failure _d: fracture
analysie time _t: timel

id:  id
Weibull regression -- log relative-hazard form
No. of subjects = 148 Number of obg = 206
No. of failures = ar
Time at risk = 1703
LR chi2(2) = 13.69
Log likelihood = -89.264261 Prob > chi2 = 0.0011
ot Coaf. - Std. Err. z P>)zi {96% Cont. Intervall
_t
protect -2.458007  1.023378 -2.40 0.018 -4.46179  -.4502238
age 0934049  .0340489 2.74 0D.006 -0266704 .1601394
.cons -10.02396  2,580379 ~3.88 0.000 -15.08141  -4.966508
1n_p
male -.4801077  .1850198 -2.68  0.009 -.B4273%8  -.1174756
protect 0763409  .2215628 0.34 0.730 -.3579142 .510596
_cons 4220745 .1506132 2.80 0,006 .1270741 LTAT0748

and thus we see no evidence to contradict the proportional hazards assumption for
protect. A similar analysis performed on age would also fail to reject the propor-
tional hazards assumption. Since the above test of proportional hazards is based on a
comparison of nested models, we could also perform a likelihood-ratio test,

. streg protect age, dist(weibull) ancillary{male pretect} nohr nolog
{output omitted }

. estimates store protect

. streg protect age, dist(weibull) ancillary(male) nchr nolog
{output omitted )

. Irtest protect ., force
likelihcod-ratio test LR chiZ{1) = 0.12
(Assumption: . nested in protect) Prob > chi2 = 6.7308

with similar results. Note that do perform this test we had to use the force option
to lrtest. This is because we are omitting a parameter from the ancillary parameter
list and not the main parameter list. This causes lrtest to think the models are not
nested since they have differing log likelihoods under the null hypothesis that all main
parameters are zero. In any case, the use force is justified since we know for a fact
that the models are nested.

The use of the ancillary () option is not restricted to PH models; the option may be
used with AFT models, and the interpretation of results is a straightforward extension
of the above.
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15.2 Stratified models

Stratified models, you may remember from Section 9.3, concern estimation when the
baseline hazard is allowed to differ for different groups. Males and females, for instance,
might each have their own hazard function rather than that of males being constrained
to be a proportional replica of that for females. In Section 9.3, we allowed this in the
context of semiparametric estimation.

In parametric stratified estimation, each group is similarly allowed to have its own
baseline hazard function, but the hazard functions are constrained io be of the same
family. If the hazard for females is Weibull, then so must be the hazard for males.

There is an obvious connection of this idea with the ancillary(} option. In the
previous section, when we typed

. streg protect age male, dist(weibull} ancillary(male) nohr nolog

we allowed both the scale and shape of the hazard to vary with male, yet we constrained
the effects of protect and age to be the same for both sexes. Examining the output
from that estimation, we can construct the estimated hazards for males and females as

exp {—10.61 — 2.19protect ;. + 0.10age.) 1.66¢%-56,  if female
Alt;1x;) ’ v
X)) =
JJ exp (—9.88 — 2.19protect; + 0.10age,) 0.82¢; %%, if male

and since this is a PH model, we can write the estimated hazard as
hit;]%;) = ho(t;) exp(—2.19protect, +0.10age,)
far the estimated baseline hazard ﬁg(tj) such that

N exp (—10.61) 1.66t3%°, if female
ho(t;) = oo (— T
p(—9.88)0.82¢;™°°, if male

and we can graph the comparison of these baseline hazards using

. gen hOfemale = exp(-10.61)#%1.66%_t~(0.66)
. gen himale = exp(-9.88)%0.82+_t"(-0.18)
. line h0female hOmale _t, sort lltitle("Baseline hazard")

This produces Figure 15.1 and graphically verifies what we already know: the shape of
the hazard is different for males and fernales; the hazards are not proportionatl.

(Continued on next page)
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Figure 15.1: Comparison of baseline hazards for males and females

Thus, we have a model that assumes proportional hazards with respect to protect
and age, vet we have different baseline hazard functions for males and females. Said
differently, we have a proportional hazards model on protect and age that is stratified
on male and is analogous to the stratified Cox model.

streg’s strata{varname) option provides an easier way to fit these models:

. streg protect age, dist{weibull) strata(male) nchr nolog

failure _d: fracture
analysis time _t: timel

id: id
Weibull regressiun —— log relative-hazard form
No. of subjects = 148 Number of cbs = 208
No. of failures = 37
Time at risk = 1703
LR chi2(3} = 40.28
Log likelibhood =  ~69,082313 Prob > chi2 = 0.0000
_t Caoaf. Std. Err. z P>zl [95% Conf. Intervall
-t
protect ~2.185116  .3645008 -5.99  0.000 -2.899523  -1.470707
age 0066629 0346863 2.80 0.006 0289142 .1644117
_Smale_1 .7382003  1.036608 0.7t 0.476 -1.293514 2.769916
_cons -10.61465  2.646846 -4.01  0.000 -15.80238 -5.42693
ln_p
-Emale_1 -.T116767 3834736 -1.86 0.063 -1.46327 .0389185
-cons 5079011 L 13G82B65 3.74 0.00C 2418881 LTT41142
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These are precisely the same estimates we obtained previously, the only difference being
that the effect of gender is now labeled as _Smale 1. The prefix _8 is used to denote
variables created by strag.

When you specify strata(varname), varname is to identify a categorical variable
that identifies the strata. streg takes this categorical variable and from it constructs
indicator variables that uniquely identify the strata, and then puts those indicator
variables in the model everywhere they need to appear so that the baseline hazards are
allowed to differ. In the case of the model fit above, the variable male was already an
indicator variahle, and so this amounted to putting male in the two places required,
first in the main equation (scale), and second in the ancillary equation (shape).

Suppose that instead of age, we had the variable agecat that equaled 1 if age is
less than 65, 2 if age is between 65 and 74 inclusive, and 3 if age is greater than 74.

. gen agecat = 1
- replace agecat = 2 if age >=8§
(166 real changes made)

. replace agecat = 3 if age > T4
(52 real changes made)

We could then hypothesize a model where the hazard is proportional with respect to
protect and male, but stratified on agecat.

- streg protect male, dist{weibull) strata(agecat)} nclog nohr

fatlure _d: fracture
analysis time _t: timel
id: id
Weibull regression -- log relative-hazard form
flo. of subjects = 148 Number of oba = 208
HNo. of failures = 37
Time at risk = 1703
LR chi2(4} = 57.86
Log likelihood = -72,948131 Preb > chi2 = 0.0000
_t Coef. Std. Err. z P>|z] [95% Conf. Interwvall
_t
protect -2.082556  .3676436 -5.66  Q.000 -2.803126 -1.361988
male -1.501734 . 4554929 -3.30 0.001 ~-2.394483 -.6089838
_Sagecat_2 .3400986  1.610656 0.21  0.833 -2.818729 3.486927
_Sagecat_3 1.132034 1.670177 0.68 0.488 -2.141454 4.,406521
_COLE -3.646434  1.4B63472 -2.51 (0.012 -6.485187 -.7975804
in.p
_Sagecat_2 -.0683576 L 370067 -0.18  0.883 -.7936756 . 6569604
_Sagecat_3 -.087E536 3915644 -0.22 0.823 -.8650456 .6798586
-cons -4174632  .3334877 1.26  0.211 =-.2361707 1.071077

We see that for this model, the scale and shape of the hazard are allowed to vary with
respect to agecat. [i is evident from the labeling of the output that agecat==1 is
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used as the base category. That is, agecat==1 when both indicators _Sagecat.2 and
_Sagacat._3 are equal to zero. For this model, the estimated baseline hazards are

exp (—3.65) 1.52t35%, if agecat==
ho(tj) = ¢ exp(—3.31)1.42t242, if agecat==2
exp (—2.51) 1.39t?'39' if agecat==
and given the Wald tests displayed, none of these haseline hazards are significantly

different from any other.

We demonstrated the strata() option using a PH model, but there is nothing stop-
ping us from applying it to a AFT model. For an AFT model, when we stratify, we not
only allow time to accelerate or decelerate with respect to the strata, but we also allow
the actual shape of the baseline survival function to vary with the strata as well.

Note that the strata() option is really just a convenience option that attaches
the term “stratification” to something that we could have done manually without this
option. With the exception of variable labels in the output,

. streg ..., strata(varname) ...
is synonymous with

. xi: streg ... i.varname, ancillary(i.varneme) ...
for models with one ancillary parameter, with

. xi: streg ... i.varname, ancillary(i.varname} anc2{i.varname) ...
for the generalized gamma model, and with

. xi: streg ... i.vgrname, ...

for the exponential. See [R] xi for more information abont the creation of indicator
variables.

15.3 Frailty models

Frailty models are a further generalization of the parametric regression models avail-
able to users of streg. A frailty model can take one of two forms, an overdisper-
sion/heterogeneity model or a random-effects model. The latter are referred to as shared
frailty models in order to make the distinction between the two, and here we define the
term unshared frailty model to mean the former. What follows is a brief discussion of
these models; for a more detailed treatment (and a more complete bibliography), see
CGutierrez {2002).
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15.3.1 Unshared frailty models

Each parametric regression model available in strag can be characterized by the haz-
ard function A(#;[x;}, regardiess of whether the model is parametrized in the PH or
the AFT metric. In the case of PH models, the hazard function is conveniently repre-
sented as a baseline hazard that is multiplicatively affected by the covariates, but such
a representation is not necessary in the development that follows.

A frailty model in the unshared case defines the hazard to be
h(t;lx;, ;) = ajh(tslx;) (15.1)

where «; is some unobserved observation-specific effect. The effect, @y, is known as a
frailty and serves to represent that individuals in the population are heterogeneous due
to factors that remain unobserved. The frailties are positive quantities not estimated
from the data but instead assumed to have mean one (for purposes of identifiability)
and variance 8, and § is estimated from the data. If o; < 1, then the effect is to decrcase
the hazard, and thus such subjects are known to be less frail than their counterparts.
If a; > 1, then these more frail subjects face an increased risk.

The term frailty was first suggested by Vaupel et al. (1979) in the context of mortality
studies, and by Lancaster {1979) in the context of duration of unemployment. Much of
the initial work on frailty models is due to Hougaard (1984; 1986a; 1986b).

Given the relationship between the hazard and survivor functions, it can be shown
from (15.1) that
S{tjlx5, 05) = {S{ts0x;) 1
where S(2;{x;} is the survival function for a standard parametric model, such as the ones
described in Chapter 13. The unconditional survival function is obtained by integrating
out the unobservable aj, and for this we need to assume a distribution for ;. Two
popular choices (popular due to many reasons, one of which is mathematical tractability)

are the gamma distribution and the inverse-Gaussian distribution, both available in
Stata.

If a; has probability density function g{c;), then the unconditional survival function
is obtained by integrating out the frailty,

Salti1x;) = / " 18t 1x)} gy, (15.2)

where we use the subscript ¢ to emphasize the dependence on the frailty variance #.

When o follows a gamma distribution with mean one and variance 6,

a:}/e‘l exp{—a;/0)

glay) = I{1/6)6/%

and (15.2) becomes
Se(t;]x;) = [t — O1n {S(t;|x;)}) "/



280 Chapter 15. Generalizing the parametric regression model

When a; follows an inverse-Gaussian distribution with mean one and variance 6,

i/2
1 1 1
glag) = ("mT.g) ‘”‘P{—aa (a-f -2 Q—J)}

and (15.2) becomes
_ 1 1/2
Solt;|x;) = exp {a (1 —[1—20In{S(;|x;)}] )}

As such, when modeling individual heterogeneity, a frailty model is just the standard
parametric model with the addition of one new parameter 8, and a new definition of
the surviver function from which all the likelihood calculations derive in the standard
way. For example, for the Weibull model in the PH metric,

S{tjlx;) = exp{—exp(fo +x;8,)t}}

For the Weibull-PH model with gamma-distributed heterogeneity,

Seltsheg) = {1+ Bexp(o+ xs8,08)

and notice that in this case and in general, Sp(f;]x;) reduces to S{t;|x;) as & goes to
Zero.

15.3.2 Kidney data

In order to illustrate frailty models, we will be analyzing a dataset from a study of 38
kidney dialysis patients. Originally considered in MeGilchrist and Aisbett (1991}, this
study is concerned with the prevalence of infection at the catheter insertion point. Two
recurrence times are measured for each patient. A catheter is inserted, and the first time
to infection {in days) is measured. If the catheter is removed for reasons other than
infection, then the first recurrence time is censored. Should infection occur, the catheter
is removed, the infection cleared, and then after some predetermined time period the
catheter is reinserted. The second time to infection is measured as time elapsed between
the second insertion and the second infection or censoring. The second recurrence time
is censored if either {(a) the catheter is removed for reasons other than infection or (b)
the follow-up peried for the patient ends before infection occurs,
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. use http://www.stata-press.com/data/cgg/kidney, clear
(Kidney data, McGilchrist and Alebett, Biometries, 1991)

. describe
Contains data from http://wuw.stata-press.com/data/cgg/kidney.dta
obs: 38 Kidney data, McGilchrist and
hisbett, Biometrics, 1891
vars: 7 21 Feb 2002 15:37
Bize: 722 (99.9% of memory free)
storage display value
variable name type format label variable label
patient fleoat %7.0g Patient ID
timel int %9.0g recurrence time to first
infection
faill byte %4.0g equals 1 if infectiom, 0 if
censored
time2 int #9.0g recurrence time to second
. infection
fail2 byte %4.0g egquals 1 if infection, 0 if
censored
age float J6.0g Patient age
gender byte ¥6.0g Patient gender (0O=male,
1=female)
Sorted by:
. liat im 21/30
patient timel faill time2 fail? age  gender
21, 21 562 1 162 1 46.5 0
22, 22 24 o 402 1 30 1
23. 23 66 1 13 1 62.5 1
24, 24 39 1 48 o] 42.5 1
25. 25 40 1 12 1 43 ¢
26. 26 113 0 201 1 57.5 1
27. 27 132 1 166 1 10 1
28. 28 34 1 30 1 62 1
29, 29 2 1 2b 1 53 0
30. 30 26 1 130 1 54 1

The variables timel and time2 record the two times to infection or censoring, and
the variables faill and £ail2 are the associated failure indicator variables (1 = failure,
0 = censored). Other covariates that were measured for each patient were patient age,
age, and gender (0 = male, 1 = female).

Before we begin analyzing these data, we note that the data are in wide form and
thus must first be reshaped into long form before we stset the dataset.
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. reshape long time fail, i{patient) j(pat_insert}
(note: j =1 2}
Data widea -> long
Number of obs. a_ - 76
Number of variables T = 6
j variable (2 values} -> pat_insert
xij variables:
timel time2 -> time
faill fail2 -> fail
. list in 1/14, sepby{patient}
patient pat_in-t time fail age  pender
1. 1 1 16 1 28 0
2. 1 2 8 1 28 0
3. 2 1 13 0 48 1
4 2 2 23 1 48 1
5. 3 1 22 1 a3z 0
6. 3 2 28 1 32 o
7. 4 1 318 1 31.%5 1
B. 4 2 447 1 31.5 1
9. 5 1 30 1 10 0
10. 5 2 12 1 10 0
11. [ 1 24 1 16.5 1
12. & 2 245 1 16.5 1
13. 7 1 9 1 b1 0
14, 7 2 7 1 61 0
. summarize, sep(0)
Yariable Obs Mean 5td. Dev. Min Max
patient 76 19.5 11.03872 1 38
pat_insert 76 1.5 5033223 1 2
time 76 97.68421 128.3424 2 562
fail 76 . T631579 . 4279695 0 1
age 76 43.69737 14.73795 10 69
gender 76 . 7368421 4432733 0 1

We note that our data now consist of 76 observations, each observation chronicles a
single catheter insertion, and there are two observations per patient.

Before we stset the dataset, we need to consider carefully how we want to define
analysis time. Looking at the first patient, we find that the recurrence iimes are 16
and 8. Given what we know about these data, we realize that these times represent two
separate observations that took place on different time lines, and not one observation
of a two-failure process for which failure occurred at time £ = 16 and then 8 days later
at time t = 24 (for instance). We know this from our description of how the data
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were collected: The time to the first infection is measured. and then the infection is
cleared and some additional time is allowed to pass (ten weeks), which essentially resets
the “risk clock” back to zero. The time at which the second catheter insertion takes
place marks the anset of risk for the second infection, and the second recurrence time
is measured as the time that has elapsed from this secand onset of risk.

Thus, analysis time is just recurrence time as measured, and since the time at which
the catheter is inserted marks the onset of risk, _t0 will equal zero for each observation.
It is important to understand that the way we have chosen to measure analysis time
is an assumption we are making. We assume that five days after the first catheter
insertion is, in terms of accumulated risk, indistinguishable from five days after the
second insertion. It is not statistical considerations that force us to make that particular
assumption. Statistically, we must make some assumption in order to measure analysis
time, but we are free to make any assumption we please. We make this particular
assumption because of the substantive arguments given above, because this seems to us
the appropriate way to measure analysis time.

Our assumption does not imply that we must treat each insertion as an independent
observation, and in fact we would not be at all surprised if the two recurrence times for
each paticnt were correlated. What we are saying is that the two recurrence times are
distinct observations on the same failure proecess, and whether these times are correlated
is an issue left to be resolved by our analysis, and not cne we need to concern ourselves
with when stsetting the data.

Therefore, for the purposes of stset we define an “chservation™ {or synonymously
a “subject”) to be a single catheter insertion and not the aggregated data for a single
patient. Using this definition of a subject, we have single-record-per-subject data, and
thus we are not required to stset an id variable that unicuely identifies each subject.
However, it is always good practice to define one anyway, since we may want to stsplit
our records later, and stsplit does require that an id variable be stset.

. gen insert_id = _o

. stset time, failure(fail) id(insert_id)}
{output omitted )

. format _td %4.0g

. format _t %5.0g

. format _d %4.0g

. format gender %6.0g

(Continued on next page)
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. list imsert_id patient pat_insert _t0 _t _d gender ags in 1/10, sepby(patient)

insert-d patient pat_in.t _t0 -t _d pgender age

1. 1 1 1 4] 16 i 0 28
2 i 2 ¢l 8 1 0 28

3. 3 2 1 0 13 0 1 48
4. 4 2 2 o 23 1 1 48
. 5 3 1 o 22 1 0 32
6. & 3 2 o 28 1 a a2
7 T 4 1 0 318 1 1 31.5
8 8 4 0 447 1 1 31.5
9. 2 5 1 ¢ 30 1 0 10
10. 10 B 2 0 12 1 o 10

Satisfied at how our data are stset, we save the data as kidney2.dta.

O Technical Note

Determining what is an “observation” can be confusing. Say that you agree with us
that analysis time ought to be measured as time between insertion and infection. That
definition, we have just argued, will lead us to stset the data by typing

. stset ..., id(imnsert_id) ...
but you may wonder why we could not type
. stset ..., id(patient) exit(time .)

where we would make an “observation™ a patient and include exit(time .) to allow
for multiple failures (two) per patient.

Here is a test that will help you dismiss inconsistent ways of defining “observations™:
Determine the maximum number of potential failures in the dataset at the earliest
possible instance at which failure could occur. In our dataset we have 38 patients,
but in theory, after a short time, there could have been up to 76 failures because each
catheter inserticn for each patient could have developed an infection immediately.

The maximum number of potential failures must equal the number of “observations”,
and so you are lead to a contradiction.,

An “observation”, given our definition of analysis time, is a catheter insertion.

For cases where the observations do represent multiple failures per subject, there
exist a myriad of methods for analysis; however, these methods are beyond the scope of
this introductory text; see Cleves (1999) for a survey of the methodology in this area.

0



15.3.3 Testing for heterogeneity

15.3.3 Testing for heterogeneity

285

Continuing our study of the kidney data, we avoid (only for now) the issue of corre-
lation between observations within patient by temporarily confining our analysis only
to consider the first catheter insertion for each patient {pat_insert==1). We begin by
fitting the most general of our parametric models, the generalized gamma:

. use http://www.stata-press.com/data/cgg/kidney2, clear
(Kidney data, McGilchrist and Aisbett, Biometrics, 1991)

. keep if pat_insert==1
{38 observatione deletsd)

. Btrag age gender, 4ist(gamma) nolog

failure _d: fail

analysis time _t: time
id: insert_id

Gamnma regression -— accelerated failure-time form
Hoe. of subjects = 38 Fumber of obs = 38
Ho. of failures = 27
Time at risk = 3630
LR chi2(2) = 4.16
Log likelihood = -48.3764 Prob > chi2 = 0.1247
_t Coef . Std. Err. z P>zl {95% Conf. Imtarvall
age -.0094451 .0148001 -0.64 0.523 ~.0384p27 .1958625
gender 1.219731 -5b47008 2,20 0.028 . 1325372 2.306924
_cons 3.640613 .B041588 4,53 0.000 2.064488 5.216737
/1n_sig . 2113222 . 1347525 1.87 0.117 ~.0627877 4754322
fkappa -.2071561 .B673513 -0.37 0.715 -1.319144 -9048321
sigma 1.23531 .1664611 .9485813 1.60870%

The first thing we notice is that the Wald test of H,: £ = 0 has level of significance
0.715, and thus there is insufficient evidence to reject H,, which in essence says that
a log-normal model would serve our purposes equally well. In fact, out of streg’s six
parametric models, the log-normal gives the highest Akaike information criterion (AIC)

index (see Section 13.7.2 for a description of AIQ).

(Coniinued on next page)



286 Chapter 15. QGeneralizing the parametric regression model

. streg age gender, dist(lnormal) mnolog

failure .d: fail
analyais time _t: time
id: insert_id

Log-normal regression -- accalsrated failure-time form

No. of subjects = a8 Number of ohs = a8
No. of failures = 27
Time at risk - 3630

LR chi2(2) = 4.81

Log likelihood =  -46.456243 Proeb > chi2 = 0.0802

_t Coef, Std. Err. z P>lz| {95% Coni. Intervall

age -.0079733  .0143943 -0.56 0.580 -.0361887 0202402

gender 1.113414  .49481863 2,25 0.024 .1436937 2.083234

_cons 3.779867  .721B081 £.24 0.000 2.366726 5.19398%

/ln_sig 2090131 - 1338573 1.56  0.118 -.0629503 LAT09766

sigma 1.23246t  .1647274 . 9484272 1.601557

With these regression results, we can use stcurve to graph the comparative esti-
mated hazards for males and fernales with age held at its mean value:

. stcurve, hazard atl{gender=0) at2{gender=1)

The result is shown in Figure 15.2.

Log—normal regrassion
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Figure 15.2; Comparison of log-normal hazards for males and females
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The hazard for males is much greater than that for females. The hazard, in any case, is
estimated from the log-normal mode! to rise and then fall, and if we choose to adhere
to the AIC criterion, this is as good an estimate of the hazard as we can get out of using
streg in the standard way.

If we intcrpreted this hazard as the hazard each individual faces, then this says that
as time passes the instantaneous risk of infection falls. If this were indeed the individual
hazard, then physicians should tell their patients that if infection hasn't taken place by
a certain time after the catheter has been inserted, then it is unlikely to happen at
all, and that they need not worry. On the other hand, we obtained these estimates by
assuming that all patients are identical other than in age and gender. If subjects differ
in nnobserved ways in their inherent probability of failure—if some are more robust and
others more frail—then we must be more careful about our interpretation of results and
about how we estimate them.

In frailty models, there is a distinction between the hazard individuals face and the
population hazard that arises by averaging over all the survivors. In a heterogeneous
population, it turns out that the population hazard can fall while the individual hazards
all rise because, over time, the population becomes populated by more and more robust
individuals as the more frail members fail. This is known as the frailty effect, and it
virtually assures that population hazards decline over time, regardless of the shape of
the hazards that individuals face. We will provide evidence that this is indeed oceurring
in these data.

The implicaticn of this is that, under the assumption of a heterogeneous population,
it could actually be the case that each individual's risk rises the longer the catheter
remains inserted, and so the clinical recommendation is to remove the catheter as soon
as possible, even though for the population as a whole, the infection rate falls.

Under the frailty model, the individual hazard function is written h{t;lx;, ;) =
a;h(t;|x;), and the resulting population hazard is written as ha(t;|x;), which is obtained
from (15.2) in the standard way,

he(tilx;) = — {%Se(tjij)} {Se(tsx;)}

It can be shown that as & tends to zero, the population and individual hazard functions
coincide and that limg_,g ha{) = h().

Just as whenr fitting a model without frailty, you assume a parametric form for the
hazard function, but in models with frailty, you make that assumption about the hazard
function individuals face. The population hazard function is just whatever it turns onut
to be given the estimate of # and the assumed distribution of a;, which in Stata may
be gamma or inverse-Gaussian.

‘We can fit a mode! with log-normal individual hazard and gamma-distributed frailty
by specifying the additional option frailty(gamma) to streg,
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. streg age gender, dist{lnormal) frailty{gamma} nolog

failure _d: fail
analyeis time _t: time
id: insert_id

Log-normal regression -- accelerated failure-time form
Gamma frailty
No. of subjects = 38 Number of obs - 38
No. of fallures = 27
Time at riak = 3830
LR chi2{2} = E.02
Log likelihood =  -45.351289 Prob > chil = 0.0813
_t Coef. Std. Err. z P>zl [95% Conf. Interwvall
age -.0097803 . 0144447 -0.68 0.498 -.0380813 .0186307
gender 1.260102 .B566201 2,26 0.024 . 18601488 2.361057
_cons 3.653898 . 7309858 5.00 0.000 2.221192 6.086604
/ln_eig .1267008 .2199912 0.67 0©.568 -.305474 .BE687ET
/ln_the -1.965189  2.2983B4 -0.86 0.383 -6.45988 2.,839602
Bigma 1.133543 . 2494575 .T36774 1.745214
theta .1401294 .3220669 ,0015494 12.67336

Likelihood-ratic test of theta=0: chibar2(0i) = .21 Prob>=chibar? = 0.324

or if you prefer, a model with inverse-Gaussian distributed frailties:

. streg age gander, dist(lnormal) frailty(invgauss} nolog

failure _d: fail
analysis time _t: time
id: insert_id

Log-normal regression -- accelerated failure-time form
Inverge-Gaussian frailty
Ho. of subjects = 38 Number of chs = s
No. of failures = 27
Time at risk = 3630
LR chi2(2) = 5.03
Log likelihood =  -48.347311 Prob > chi2 = 0.0810
_t Coef. Std. Err. z Prlz| [95% Conf. Intervall
age ~. 009801 .0144568 -0.68 0.4588 -.0381357 0185337
gender 1.265811 5422437 2.32 0.021 1930326 2,318589
_cons 3.648516  .7389398 4.93 0.000 2.19822 5.094811
fln_sig .1186605 . 2374316 0.50 0.617 -. 3466967 5840176
/in_the -1.727669  2,700183 -0.64 (.522 -7.01983 3.564692
sigma 1.125588 . 2673448 .707T0198 1.793228
theta L1777159 4798855 (00894 35.32857

Likelihood-ratio tesat of theta=0: chibar2(01) = {.22 Prob>=chibar2 = 0,321

The choice of frailty distribution has implications iu the interpretation of how the rel-
ative hazard (with respect to the covariates) changes with time; see the technical note
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below. Regardless of the choice of frailty distribution, however, from examining the
likelihood-ratio test of Ha: 6 = 0 at the bottom of each output, we realize that if we are
willing to accept that the individual hazards are indeed log-mormal, then there is not
much evidence pointing towards a population that is heterogeneous.

1 Technical Note

In hazard-metric frailty models, exponentiated coefficients have the interpretation
of hazard ratios at t = 0 only. After that, the effects of covariate differences become
muted as the more frail experience failure and so are removed from the surviving popu-
lation. In gamma frailty models, the effect of covariate differences eventually diminishes
completely in favor of the frailty effect. In inverse-Gaussian frailty models, the effect
of covariate differences never vanishes, going instead to the square root of the hazard
ratio effect at ¢ = 0. For more information, see Gutierrez (2002).

a

Suppose, however, that the science underlying infection duc to catheter insertions
dictated that individual hazards must increase with time. Qur seemingly good results
with the log-normal model would then be an artifact caused by the heterogeneity in the
data. We could examine this possibility by fitting a Weibull individual hazard model
with gamma frailty, and then ask (1} is the Weibull parameter p > 1 (which is to say,
do individual hazard functions monotonically rise), and {2) does this alternate model
fit the data about as well or better?

Let us begin by fitting the Weibull model with gamma frailty:

. streg age gender, dist(weibull) frailty(gamma) nolog time

failure _d: fail
analysis time _t: time
id: imsert_id
Weibull regressjon -- accelerated fallure-time form
Gamma frailty
Wo. of subjects = 38 Number of abs = kL]
No. of failures = 27
Time at risk = 3630
LR chi2(2) = 4.78
Log likelihood =  -48.410832 Prob » chi2 = 0.0917
.t Coef. Std. Err. z P>|z] [95% Conf. Intervall
age -.0109488 L013751 -0.80 0.426 -.0379004 0160026
gender 1.338382 .BO71762 2.6¢ 0,008 .3443351 2,332429
-COns 3.570254 .6510318 5.48 0.000 2.2842565 4,846253
fln_p .4865479  .3129399 1.9 0.113 -.116B032 1.109889
/1n_the .3610338  .TOBT754 0.1 0.509 -1.02422 1.74€288
p 1.643038 -B141727 .BB97603 3.034062
1/p .6086281 .190464 . 3206523 1.123898
theta 1.434812 1.01449 .3590763 5.733282

Likelihood-ratio test of theta=0:

chibar2(01) =

4.20 Frob>=chibar2 = 0.020
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We chose the AFT parameterization of the Weibull for no reason other than to ease the
comparison with the log-normal, which is only available in the AFT metric.

From these results, we see that our alternative theory has some merit:

(1) The point estimate of the Weibull parameter p is greater than one (although the
95% confidence interval includes values below 1).

(2} The fit of this model, as reflected in log-likelihood values, is about the same as
that of the log-normal model (being about —48.4 in both cases).

We will not feel completely comfortable until we see graphs of the population and
individual hazards, and we will be discussing how to obtain those graphs. In the mean-
time, you can look ahead to Figure 15.3 and 15.4. Individual hazards rise monotonically,
and yet the model reproduces the rise-and-then-fall shape of the population hazard pre-
viously exhibited by the log-normal model. (Later, we will also explore what might be
the true shape of the individual hazard.)

Individual hazards rise, and yet, population hazards ultimately fall because of het-
erogeneity, and so we are not surprised to see that in the reported results above, the
likelihood-ratio test for Hy: 6 = 0 would be rejected, in this case at the 0.02 level.

Let us now return to the issue of obtaining graphs of the hazard functions. After
fitting standard (nonfrailty} parametric models, you can type predict ..., hazard to
abtain the estimated hazard function. After fitting a parametric model with frailty, you

type

. predict ..., hazard unconditional
or

. predict ..., hazard alphal

to obtain the estimated hazard functions. With the unconditional option, you obtain
the population hazard function hg(f;[x;}, and with the alphal option, you obtain the
mean individual hazard h(t;|x;). The options unconditional and alphal can also be
used when using predict to obtain other predictions after fitting parametric frailty
maodels.

U Technical Note

For univariate (nonshared) frailty models, the default prediction (that is if neither
unconditional nor alphal is specified)} is the unconditional (population) function. For
shared frailty models, which we discuss later, the default prediciion is the individual
(et; = 1) function. The reason for the change in default behavior has to do with the
interpretation of the results. In the shared frailty case, careful consideration must be
given to the interpretation of the unconditional functions. See Gutierrez {2002) for
further details. In any case, we recommend aiways specifying either unconditional or
alphal when predicting the hazard or survivor function after fitting a frailty model.

Qa




15.3.3 Testing for heterogeneity 201

The alphal and unconditional options may also be specified in stcurve so that
we can easily graph either implementation {conditional or unconditional) of the hazard,
cumulative hazard, and survivor functions. From our Weibull/gamma model, we can
graph the comparative population hazards for males and females,

. Btcurve, hazard unconditional ati{gender=0} at2(gender=1)

which produces Figure 15.3, and the similarity to Figure 15.2 is striking.

L "'We'ib'u'll'regreaision

Figure 15.3: Comparison of Weibull/gamma population hazards

Regardless of which story we believe, whether the log-normal individual hazard with
no frailty (Figure 15.2) or the Weibull individual hazard with significant frailty (Figure
15.3), the estimate of the population hazard is virtually the same.

We can also graph the individual hazards for the Weibull/gamma model,
. stcurve, hazard alphal ati(gender=0Q) at2(gender=1)

which produces Figure 15.4.

(Continued on next page)
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Woeibull regression

gendersd - - gender=1 |

Figure 15.4: Comparison of Weibull/gamma individual (a; = 1) hazards

As expected, the individual hazards are monotone increasing. Thus, if we believe this
model- -that is, if we believe that the science dictates a monotone increasing hazard—
then we must also believe that there is some patient-level effect that we are not mea-
suring. A physician locking at this model would realize that some individuals are just
more susceptible to infection than others for reasons unmeasured, and when consulting
with a patient would actually warn that the risk of infection increases (for that patient)
the longer the catheter remains inserted.

The guestion then becomes, which model better fits the data? Do individual hazards
monotonically rise, and is the fact that we see hazards falling in the data merely an
artifact of the heierogeneity, or do individual hazards rise and then fall in lock step with
the population hazard? Clearly, patients are heterogeneous—we would never argue that
age and sex fully describe the differences. In the two extremes we have posed, we are
really asking whether that heterogeneity is so great that it dominates the production of
population hazards from individual hazards, or if, instead, for this particular problem,
that heterogeneity can be ignored.

Which of our two alternate theories is better supported by the data? Recall that
throughout this section we have confined the analysis to the first infection time for cach
patient, and thus we wish to consider the full dataset {both infection times) to answer
this question.

15.3.4 Shared frailty models

In Section 15.3.3, we confined our analysis to the first time to infection for each patient
hecause we wished to investigate the existence of a latent patient frailty in the univariate
case. We now consider both infection times for each patient:
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. use http://www.stata-press.com/data/cgg/kidney2, clear
(Kidney data, McGilchrist and Aisbett, Biomatrics, 1891)

- list insert_id patient pat_insert _t0 _t _d gendsr age in 1/6, separator{0}

insert.d patisnt pat_.in.t _t0 _t _d pgender age
1. 1 1 1 0 16 1 0 28
2. 2 1 2 0 B i 0 28
3. 3 2 i ¢ 13 0 1 48
4. 4 2 2 o 23 1 1 48
5. 5 3 1 o 22 1 0 az
6. 5 3 2 o 28 1 v} 32

Realizing that the two recurrence times for each patient are probably correlated,
we could take one of our standard parametric survival models and adjust the standard
errors to take inte account the intra-patient correlation.

. 8treg age gender, dist{weibull} cluster(patient) time nohr nolog

failure .d: fail
analyais time _t: time
id: insert_id

Weibull regression -- accalerated failure-time form
No. of subjects = 78 Number of obs = i
No. of failures = 58
Time at risk = 7424

Wald chi2{2) = 3.38
Log pseudo-likelihood = -103.44362 Prob > chi2 = 0.1848

(standard errors adjusted for clustering on patient)

Robuet

_t Coef. Std. Err. z P>zl [95% Conf. Intervall

age -. 004559 L 0097206 -0.47 0.6839 -.0236111 . 0144932
gender .9194971 5413807 1.70 0.089 -. 1416092 1,980803
_cons 4.30243 LTOTH207 6.08 0.000 2,915715 5.680145
fln_p -. 1028083 0798087 ~1.29 0.198 -.2582306 053614
P L9023 0720114 7716451 1.085077

1/p 1.108279 .0884503 . 8477979 1.285933

By specifying cluster (patient), we are saying that we do not believe these to be 76
independent observations but rather 38 independent “clusters” of observations. When
you specify cluster(), you get robust standard errors, those obtained via the Hu-
ber/White /sandwich estimator of variance. Should there exist intra-cluster correlation,
the robust standard errors are better indicators of the sample-to-sample variability of
the parameter estimates and thus produce more accurate tests of the effects of covari-
ates, For more details on the sandwich estimator of variance, see [P] _robust. We
do not want te make much of such an analysis here, since for most situations we can
imagine where observations are correlated within groups, they are usually correlated
due to some overall group characteristic (a frailty) that is not being measured. What
we instead want to do is to model the correlation using a shared frailty model.
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Shared frailty models are the survival-data analog to random-effects models. A
shared frailty is a frailty model where the frailties are no longer observation specific,
but instead are shared across groups of observations, thus cansing those observations
within the same group to be correlated. In our example, the two infection times for
each patient share the same frailty because we assume the frailty to be a characteristic
of the patient, not of the catheter insertion.

The generalization of (15.1) to a case where frailty is assumed to be shared across
groups of observations is

h{tij|%ij, 06) = oghitij|x;;)

for data consisting of n groups with the ith group comprised of n; observations. The
index i denotes the group (i = 1,...,n), and j denotes the observation within group,
j ==1,...,?1p

The frailties, o4, are shared within each group and are assumed to follow either a
gamma or inverse-Gaussian distribution (as before}. The frailty variance, 8, is estimated
from the data and measures the variability of the frailty across groups.

To fit a shared frailty model, one need only add the option shared(varname) to
streg, frailty(), where varname is an id variable describing those groups wherein
frailties are shared. Returning to our example, we again compare the log-normal and
Weibull meodels, and since this time we are considering both catheter ingertions for each
patient, we assume that the frailty is shared at the patient level.

We first fit a log-normal with gamma-shared frailty:

. streg age gender, dist(lnormal) frailty(gamma) shared(patient) noclog

failure _d: fail
analysiz time _t: time
id: insert_id

Log-noymal regression --

accelerated fajlure-time form Number of obs = 76
Gamma shared frailty Number of groups = 38

Group variable: patient
No. of subjects = T8 Obs per group: min = 2
Ko. of failures = 58 ayg = 2
Time at risk = 7424 max = 2
LR chi12(2) = 16.68
Log likelihoocd = -97.B94E7H Prob > chi2 = 0.0002
_t Ceaf. Std. Err. z Prlz!| [95% Conf. Intervall
age -.0067002 0098278 -0.68 0.495 -.0269623 .0126619
gender 1.422234 3343644 4.26 0.000 .7669111 2.077E56
_cons 3.331102  .4911662 6.78 0.000 2.368434 4.20377
fln_sig 0670784 1187767 06.56 0.572 -.1667197 2998764
/ln_the -1.823692 .995803 -1.83 0.067 ~3.77633 .1281455
sigma 1.069378  .1270173 . 8472837 1.345692
theta .1614447 . 1607671 .0229285 1.138718

Likelihood-ratic test of theta=0: chibar2{01l) =

1.57 Prob>»=chibar2 = 0,105
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From the likelihood-ratio test of H,: ¢ = 0, we find the frailty effect to be insignificant
at the 10% level. This is not the overwhelming lack of evidence of heterogeneity that we
had before in the univariate case, but the effect of frailty is still small in this model. If the
individual hazards are indeed log-normal, then there is little evidence of a heterogeneous
poputation of patients.

If we fit a Weibull with gamma shared frailty,

. streg age gender, dist(weibull) fr{gamma) shared(patient) time nohr nolog

failure _d: fail
analysis time _t: time
id: insert_id

Weibull regression --

accelerated failure-time form Nunber of obs = 76
Gamma shared frailty Number of groups = a8

Group variable: patient
No. of subjects = T6 Obs per group: nmin = 2
No. of failures = 58 avg = 2
Time at risk = 7424 max = 2
LR chi2(2) = 14.81
Log likelihood =  -98.008831 Prob > chi2 = 0.0006
_t Coaf. Std. Err. z P>zl [95Y Conf. Interval])
age -. 0087052 -0102377 -¢.66 0.512 ~-. 0267707 .0133602
gender 1.506616 .36559201 4.12 0.000 . 7894085 2.233824
_cons 3.5567985 5224117 6.81 0.000 2.534077 4.58185%4
/ln_p .2410369 . 1336503 1.80 0.071 ~. 0208129 5029866
fln_the -.4546298 4747326 ~0.96 0.338 -1.38508% 475829
P 1.272568 1700791 ,9793043 1.653653
1/p . 7858127 . 1060241 .6047219 1,021133
theta 6346829 3013047 . 2603016 1.609348

Likelihood-ratic test of theta=0: chibar2{01) = 10.87 Prob>»=chibar2 = 0.000

we see a significant frailty effect. Thus, if we believe the individual hazard to be Weibull,
then we must also be willing to beliove in an unobserved patient-level effect. Also, we
estimated p = 1.27; that is, the estimated individual hazard for this model is monotone
increasing.

This is the same situation we were in before in the unshared case, and if we used
stcurve to plot and compare the hazard functions as we did before, we would see the
same phenomena.

To help us settle the issue of which of the two competing models is preferable, we will
use our favorite trick of fitting a piecewise exponential model (piecewise constant hazard)
with a gamma-shared frailty model. By splitting titme into several discrete intervals and
fitting a separate hazard on each, we are being more flexible in our specification of the
individual hazard, and by being more flexible we are allowing the data, if not to entirely
speak for themselves, at least to get a word in as to what the individual hazard and
level of heterogeneity are.
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In order to fit the piecewise exponential model, we will generate a set of indicator
variables that comprise a grid of ten intervals spanning [0, 60),[60,120),...,[540, oc)
(note that _t==562 is the largest valve in our data). Before we define our intervals,
however, we need to stsplit our data at the appropriate times.

. stsplit my_t, at(80(60)562)
(92 observations (episcdes) created)

. forvalues k = 1/9 {
2. gen in_‘k’ = {(‘k’-1)+80 <= my_t) & {my.t < ‘k’'=60}
3.}
The indicators are constructed so that the baseline interval (that for which all the
indicators equal zero) is the interval [ 540, o).

We now fit the piecewise exponential model] with gamma-shared frailty by including
the indicator variables in the covariate list:

. s5treg age gender in_+, dist(exp) fr{gamma) shared{patient) nolog nohr time

failure _d: fail
apalysis time _t: time
id: insert_id

Exponential regression --

accelerated failure-time form Number of obs = 168
Gamma shared frailty Number of groups = 38

Group variable: patient
No. of subjects = 76 Obsz per group: min = 2
No. of faillures = 58 avg = 4.421083
Time at risk = T424 max = 14
LR ¢hi2(11) = 20.80
Log likelihood = -95.241838 Prob > chi? = 0.0344
_t Coef. 5td. Err. z Pxlz| [05% Conf. Intervall
aga -.0060301 .0119445 -0.50 0.614 -.0294409 .Q173807
gonder 1.416426 4525747 3.13  0.002 .5203953 2.303456
in_1 2,566041 1.350038 1.90 0,057 -.0799864 5.212067
in 2 3.226574  1.339194 2.41 0.016 6048016 5.864347
in_3 2.366064 1.29651 1.82 0.088 -.1758328 4.907961
in_4 2.1349  1.305189 1.64 0.102 -.4232243 4.693024
in_5 2.44806  1.373428 1.78  0.075 -.2438189 5.139519
in_6 2,788362 1.52622 1.83 0.068 -, 2029743 5.779697
in_7 2.6B977T 1.518689 1.75 0.080 -.3168189 5.636373
in_8 2.31978B4  1.501516 1.64 0.122 -.6231325 5.262701
in_9 1.233349  1.29695%1 0.85 0.342 -1,308628 3.776326
-CORB 1.057467  1.488013 0.71  0.477 -1,858986 3.97351%
/1ln_the -.8007126 .Bb27655 -1.45 0.147 -1.8840584 . 2826683
theta . 4490089 .2481921 16132667 1.326665
Likelihood-ratio test of theta=0: chibar2(01) = 6.62 Prob»=chibar2 = 0.005

The first thing we notice is the likelihood-ratio test of H,: # = 0. By not specifying
a strict parametric form for the individual hazard, but instead leaving the model to its
own devices with a more flexible specification, we still find evidence of a heterogeneous
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population of patients. In terms of our previous debate over the form of the individual
hazard, this leads us to initially favor the Weibnll model over the log-normal model,
since for the Weibull we also have significant heterogeneity.

Note also the similarity in estimation results between the piecewise exponential
shared frailty model and the Cox shared frailty model {which makes no assumption
about the functional form of the hazard) as fitted to the same data in Section 9.4. In
the Cox shared frailty model, 8 = 0.475 versus @ = 0.449 for the piecewise exponential.
The magnitudes of the coefficients on age and gender are also similar across both
models, yet the signg are reversed. The sign reversal is due to the fact that we fit the
piecewise exponential model in the AFT metric, whereas the Cox model is inherently a
PH model.

We can use predict followed by line to examine the estimated individual hazards
for males and females from the piecewise exponential model. Note that stcurve won’t
wark here because we have indicator variables that vary over time, and stcurve likes
to hold things constant. Because we are generating our own graph, and because of the
sparseness of the data in the right tail of the distribution, we generate our own plotting
grid rather than use the existing _t in our data with

. drep _all

. set obs 400
cbs was 0, now 400

. gen time = _n

. stset time

failure event: {assumed to fail at time=time)
obs. time interval: (0, time)
axit on or before: failure

400  total obs.
0 exclusions

400 obs. remaining, representing
400 failures in single record/single failure data

80200 total analysis time at risk, at risk from t = 1]
earliest obsarved entry t = 0
last cobserved exit t = 400
. forvalues k = 1/9 {
2. gen in_‘k’ = ({‘k’-1)#60 <= _t) & (_t < ‘k’'+60)
3.}

. gen age = 43.7 /% mean age */
. gen gender = 0

. predict h_male, hazard alphal

. label var h_male "males"

. replace gender = 1
{400 real changes made)

. predict h.female, hazard alphal
. label var h_female "femalas”
. line bh_female h_male _t, sort lltitle("bhazard")
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which praduces Figure 15.5.

S 4

hazard
females/mates
b
b
!
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1
|
1

females ————- males 1

Figure 15.5: Comparison of piecewise-constaut individual (e = 1) hazards

Even though the piecewise exponential model features a similar level of heterogeneity
than the Weibull, the hazard is by no means monotone increasing, and in fact begius
to decrease steadily at about time £ = 200. Admittedly, the data are pretty sparse
past this point, so we should not make too much of the estimated hazards at the later
time points. In any case, our model-agnostic, piecewise-constant hazard offers little in
the way of a scientific interpretation, but fitting this model at least served to further
coufirm that, whatever the form of the individual hazard, there is evidence of patient
heterogeneity.

The answer to the first part of our question is that heterogeneity cannat simply
be ignored for this problem. In terms of the second part of our question—whether
individual hazards are rising or falling—-we have inconclusive evidence. In the absence
of a strong theory to answer that question, we would need more data.
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