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PREFACE 

 
his handbook is primarily designed for health-related 
Master degree  students, in particular, Master of Public 
Health in Biostatistics at Khon Kaen University, 

Thailand. However, it could be used as a practical guide for 
health science researchers. It is also suitable as a review for 
PhD candidates, i.e., Doctor of Philosophy in Public Health at 
Khon Kaen University  which started in 2001. I summarized 
some important concepts for each topic presented in each 
chapter. However this handbook is really not self-contained. 
Details for each topic can be found in the corresponding 
references given at the end of each chapter. I have tried to 
avoid mathematical notations as possible. Practical 
approaches for each type of problems were illustrated through 
examples. The example data are mostly adapted from many 
books that were related to categorical data analysis in which 
their authors used them to illustrate concepts of statistical 
methods. Most of them were difficult to follow for students 
who had limited mathematical and statistical background. 
Here I tried to provide a complete analysis as it should be 
done in the real world when we analyze the data. All examples 
were organized so that they are easy to follow and logical. 
Readers can also examine further approaches to the same 
problems by other authors that were given in each example. 
Advanced readers, in particular, students in Master of Public 
Health in Biostatistics are expect explore further in other 
related books the theoretical grounds of each statistical 
methods. I did not repeat those in this book but provided the 
references. All of these references are very specific - i.e., page 
numbers were given. By these methods, I hope readers can 
gain more insightful in the statistical methods presented in 
this book although what I had summarized in this book are 
also sufficient to understand the practical approaches that had 
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been followed. Practicing exploring further references is 
believed to serve as a basis of getting update to the most recent 
advanced knowledge in the future.  
 
The approaches of data analysis in this book emphasize in that 
each problem need to be analyzed under a sufficient 
knowledge of the underlying research questions. Then 
showing that descriptive statistics are important and useful. 
The inferential components of statistics has to be provided 
both estimation (ie., confidence intervals) and test hypothesis 
(i.e., p-values). Conclusions need to be based mainly on the 
estimation than the test hypothesis. Thus each of most of the 
examples consisted of four components - i) describing the 
proportions; ii) estimating measure of effect; iii) testing the 
hypothesis; and iv) summary findings.  
 
This book started with describing an overview of categorical 
data analysis in Chapter 1 in which some simple (univariate) 
analyses were discussed. Chapters 2 - 5 involve bivariate 
analysis in several situations. Chapters 6 - 7 related to 
multivariable analysis. References and exercises were 
provided at the end of each chapter. Readers are encouraged 
to try doing the exercise then compare with the detailed 
answers given in the appendix at the end of the book.  
 
I tried to limit the statistical software used in this book so that 
readers can gain concepts underlying the analysis rather than 
the software commands. Stata is my choice because it covers a 
wide range of statistical methods presented in this book yet 
small and affordable. Readers can easily access more 
information about Stata via the internet  at 
http://www.stata.com. Commands are in bold letters following 
a dot. The results are displayed in letters smaller than and 
different fonts from the main texts. This is to enable readers 
repeat the analysis.   
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ในปจจุบันสวนมากเนนหนักทางดานทฤษฎี เต็มไปดวยสูตรทางคณิตศาสตร หรือ
ท่ีพยายามทําใหงายข้ึนก็มีเนื้อหาแยกเปนสวนๆ ยากแกการประสานเชื่อมโยง
ระหวางเนื้อหา และที่ยากยิ่งกวาคือการเชือ่มโยงเนื้อหาทางทฤษฎีกับโลกความ
เปนจริง คือไมเพียงวิเคราะหขอมูล แตตองเขียนออกมาเปนรายงานสรุปผลดวย 
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ในแตละบทของหนังสือเลมนี ้ เริ่มจากการสรุปแนวคิดท่ีสําคัญ โดยได
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ตัวอยางสวนมากอางอิงมาจากตําราของนักสถิติช้ันนําของโลกที่เกี่ยวกับการ
วิเคราะหขอมูลแจงนับพรอมกบัไดดัดแปลงเพื่อใหงายตอการเขาใจและ
สอดคลองกับปญหาในประเทศไทย  ในขณะที่ผูแตงท่ีไดอางอิงไวนั้นใชในการ
แสดงตัวอยางการคํานวณเปนหลัก ในหนังสือเลมนี ้ ตัวอยางเปนมากกวาโจทย
เพื่อแสดงการคํานวณ เชนมีการช้ีใหเห็นวาคําถามการวิจัยและประเภทของการ
วิจัยมีความสําคัญตอการวิเคราะหขอมูล มีการวิเคราะหขอมูลโดยใชวิธีการทาง
สถิติท่ีกลาวถึงในบทนั้น มีการวิเคราะหท่ีมีใหครบองคประกอบทั้งสถิติเชิง
พรรณนาและการอนุมานทางสถิติ และมีการแปลความหมายและนําเสนอผลการ
วิเคราะหในรูปแบบที่ถูกตองตามทฤษฎีและเปนที่ถือปฏิบัติกันทั่วไปใน
วารสารวิชาการตางๆ การวิเคราะหขอมูลแสดงใหเห็นโดยการใชคอมพิวเตอร ซึ่ง
เปนวิธีการท่ีทําในชีวิตจริง การคํานวณจึงดูไมยุงยาก ผูอานสามารถคนควา
เพิ่มเติมถึงรากเหงาการวิเคราะห รวมถึงสตูรท่ีใชในการคํานวณ โดยคนควา
รายการเอกสารอางอิงท่ีใหไวอยางจําเพาะถึงเลขหนาในหนังสือท่ีอางอิงนั้น  
 ความสําคัญอื่นๆ มีกลาวแลวใน Preface ท่ีเสนอไวกอนหนานี้ อนึ่ง การ
เขียนหนังสือเลมนี้เปนภาษาอังกฤษ พึงเปนสวนสําคัญในการวางรากฐานการ
เรียนรูท่ีดีของผูอาน เนื่องจากวิชาการทางดานนี้ มีการพฒันารุดหนาอยางไม
หยุดยั้งและรวดเร็วตามเทคโนโลย ีและลวนเปนภาษาอังกฤษ  

ผูเขยีนขอนอมรับคําแนะนําปรับปรุงแกไขหนังสือเลมนี้ดวยความยินดิ
ยิ่ง เพื่อยังประโยชนแกสังคมแหงการเรียนรู และการพัฒนาองคความรูดาน
วิทยาศาสตรสุขภาพตอไป 

 
บัณฑิต ถิ่นคํารพ 
มกราคม 2544 



 VI 

TABLE OF CONTENTS 
 
 

Chapter 1 : An Overview ......................................................... 1 
Chapter Objectives ...................................................................... 1 
Contents ........................................................................................ 2 

1.1 Ultimate goal of data analysis ........................................... 2 
1.2 Research with categorical outcome .................................. 3 
1.3 An overview of categorical data analysis ......................... 4 
1.4 Estimating proportions for a dichotomous outcome ...... 6 
1.5 Test hypothesis for a proportion..................................... 10 
1.6 Estimating proportions for a polytomous  
      or ordinal outcome........................................................... 12 

Chapter references..................................................................... 13 

Chapter 2 : Analysis of 2-by-2 Tables................................... 15 
Chapter objectives...................................................................... 15 
Contents ...................................................................................... 16 

2.1 Introduction...................................................................... 16 
2.2 Cross-sectional study ....................................................... 19 
2.3 Prospective (cohort or experimental) study .................. 24 
2.4. Case-control study........................................................... 29 
2.5  Matched pairs data ......................................................... 32 
2.6 The evaluation of a screening test................................... 36 
2.7  Stratified analysis............................................................ 43 

Chapter references..................................................................... 52 
Exercise ....................................................................................... 53 

Chapter 3 : Analysis of 2-by-C Tables.................................. 56 
Chapter objectives...................................................................... 56 
Contents ...................................................................................... 59 

3.1 Introduction...................................................................... 59 
3.2 Nominal variable .............................................................. 60 



 VII 

3.2.2 The row and column totals are fixed....................... 60 
3.2.2 The column totals are fixed. ..................................... 64 

3.3 Ordinal variable ............................................................... 65 
3.3.1 Column totals are fixed............................................. 65 
3.3.2 Row totals are fixed................................................... 71 

Chapter references..................................................................... 81 
Exercise ....................................................................................... 82 

Chapter 4 : Analysis of R-by-C Tables ................................. 82 
Chapter objectives...................................................................... 82 
Contents ...................................................................................... 85 

4.1 Introduction...................................................................... 85 
4.2 Measures of Association .................................................. 86 

4.2.1 Odds Ratios................................................................ 86 
4.2.2 Summary measures of association........................... 87 

4.3 Test of Association ........................................................... 89 
4.3.1 Both Sets of Margins Fixed ...................................... 89 
4.3.2  Row Margins Fixed.................................................. 90 
4.3.3  Sample Size Fixed..................................................... 90 

Chapter references..................................................................... 95 
Exercise ....................................................................................... 96 

Chapter 5 : Analysis Square Tables...................................... 94 
Chapter objectives...................................................................... 94 
Contents ...................................................................................... 98 

5.1 Introduction...................................................................... 98 
5.2 Tests of Marginal Homogeneity and Symmetry ........... 99 
5.3 Measuring Agreement ................................................... 101 

Chapter references................................................................... 112 
Exercise ..................................................................................... 113 

Chapter 6 : Logistic Regression .......................................... 111 
Chapter objectives.................................................................... 111 
Contents .................................................................................... 115 

6.1 Introduction.................................................................... 115 



 VIII 

6.2 Overview of methods for dealing with  
      effects from extraneous factors..................................... 115 

6.2.1 Controlling for effects of extraneous factors  
         in the design stage ................................................... 115 
6.2.2 Controlling for extraneous factors  
         in the analysis stage................................................. 117 

6.3  Statistical modeling approach  
       for dealing with effects from extraneous factors........ 119 
6.4 Logistics regression........................................................ 123 

Step 1 Exploring the data and univariate analysis ....... 130 
Step 2 Bivariate (crude) analysis .................................... 132 
Step 3 Stratified analysis ................................................. 142 
Step 4 Multivariable analysis : Logistic regression....... 145 
Step 5 Assessing model adequacy:  
           test for goodness of fit of the model ..................... 149 
Step 6 Obtaining measure of associations  
           from the model ...................................................... 150 
Step 7 Summarize findings.............................................. 153 

Chapter references................................................................... 161 
Exercise ..................................................................................... 163 

Chapter 7 : Log-linear models............................................. 161 
Chapter objectives.................................................................... 161 
Contents .................................................................................... 166 

7.1 Introduction.................................................................... 166 
7.2 Principles and type of log-linear models ...................... 166 

7.2.1  No three-way interaction....................................... 168 
7.2.2  No three-way interaction  
          and one two-way interaction absent ..................... 169 
7.2.3  No three-way interaction  
          and two two-way interactions absent ................... 169 
7.2.4  No three-way and two-way interaction ................ 169 
7.2.5  Non-comprehensive Models .................................. 170 
7.2.6  Collapsibility........................................................... 170 



 IX 

7.3 Fitting Log-Linear Models and Parameter Estimation
................................................................................................ 171 
7.4 Response vs Explanatory Variables ............................. 172 
7.5 Selection of a Model ....................................................... 173 

7.5.1 Goodness-of-Fit Statistics ....................................... 173 
7.5.2 To Compare Models................................................ 173 
7.5.3 Residuals .................................................................. 174 
7.5.4 Useful Guide ............................................................ 175 

7.6 Further readings ............................................................ 189 
Chapter references................................................................... 189 
Exercise ..................................................................................... 190 

Chapter 8 : Special Topics  
                        for Categorical Data Analysis ......................... 186 
Chapter objectives.................................................................... 186 
Contents .................................................................................... 192 

8.1 Tests with continuity correction for 2-by-2 Table....... 192 
8.2 Exact methods ................................................................ 192 
8.3 Odds ratio (OR) as an estimator of relative risk (RR)195 
8.4 Analysis of categorical data from survey data ............ 196 

Chapter references................................................................... 196 
 
BIBLIOGRAPHY .................................................................... 198 
 
APPENDIX............................................................................... 204 

Answers for the exercise in Chapter 2............................... 204 
Answers for the exercise in Chapter 3............................... 234 
Answers for the exercise in Chapter 4............................... 244 
Answers for the exercise in Chapter 5............................... 249 
Answers for the exercise in Chapter 6............................... 254 
Answers for the exercise in Chapter 7............................... 267 

 
 
 
 



 X 

LIST OF TABLES 
 
 
Table 1.1  summary of approaches comomly used  
  for analysis of a categorical outcome. ............................5 
 
Table 1.2  Summary of the example data set ..................................7 
 
Table 1.3  Summary of the variables  
  for the example data set in Example 1.1. .......................8 
 
Table 2.1  Notation of a 2-by-2 Table  
  displaying cell frequencies ............................................17 
 
Table 2.2  Notation of a 2-by-2 Table  
  displaying the population proportions  
  from which the sample was drawn. ..............................18 
 
Table 2.3  Notation of a 2-by-2 Table  
  displaying the population proportions  
  from which the sample was drawn. ..............................19 
 
Table 2.4  Number of smoking status by gender  
  - data for example 2.1 ....................................................20 
 
Table 2.5  Number of outcome by treatment  
  - data for example 2.2 ....................................................25 
 
Table 2.6  Number of lung cancer patients  
  by smoking status - data for example 2.2.....................29 
 
Table 2.7  Number of lung cancer patients  
  by smoking status - data for example 2.4.....................33 
 
Table 2.8  Notation for evaluation of a screening test ..................37 
 
Table 2.9  Number of test results by results from  
 the gold standard - data for example 2.5 .....................39 



 XI 

 
Table 3.1  Notation of observed data .............................................59 
 
Table 3.2  Notation of population proportion ...............................60 
 
Table 3.3  Number of depressive patients by social class  
  - data for example 3.1 ....................................................61 
 
Table 3.4  Notation of population proportion in which  
  the column totals are fixed ............................................64 
 
Table 3.5  Notations for R-by-C Tables  
  where column totals are fixed .......................................65 
 
Table 3.6  Number of tonsilitis patients by type of carriers  
  - data for example 3.2 ....................................................67 
 
Table 3.7  Number of leprosy patients for each degree  
 of infiltration by level of changes in health  
 - data for example 3.3 ....................................................72 
 
Table 4.1  Notation of observed data .............................................85 
 
Table 4.2  Notation of population proportions..............................85 
 
Table 4.3  Number of psychiatric disorder patients  
  by blood group - data for example 4.1 .........................91 
 
Table 4.4  Percentages of psychiatric disorder patients  
  by blood group - from the data of example 4.1 ...........91 
 
Table 4.5  Cell chi-square of psychiatric disorder patients  
  by blood group - from the data of example 4.1 ...........92 
 
Table 5.1  Notation of observed data .............................................99 
 
Table 5.2  Notation of population proportions..............................99 
 
Table 5.3  Number of patients for each level of satisfaction  
 before and after the intervention  
 - data for example 5.1 ..................................................103 



 XII 

 
Table 5.4  Number of specimen in each type  
  of classifications by two laboratory technicians  
  - data for example 5.2 ..................................................106 
 
Table 6.1  Description of the "Example data set" ......................129 
 
Table 6.2  Crude effect of each factor on neonatal dead............154 
 
Table 6.3  Crude and adjusted odds ratio  
  of each factors on neonatal dead ................................155 
 
Table 7.1  Type of the models from  
  a three-way contingency table ....................................171 
 
Table 7.2  Number of subjects by blood pressure level,  
  heart disease status,  and serum cholesterol  
  level - data for example 7.1 .........................................176 
 
Table 8.1  Number of subjects by spectacle wearing status  
  by juvenile delinquents status  
  - data for example 8.1 ..................................................193 
 
Table 8.2  Number of subjects by type of psychiatric  
  disorder by blood group - data for example 8.2........194 
 
 
 



 
    

          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 1 

An Overview 

Chapter Objectives 
 
After completing this chapter, readers should be able 
to: 
• describe goals of data analysis; 
• specify components of statistics needed for 

reporting of health science research; 
• describe type of variables and research with 

categorical outcome; 
• describe general concepts of categorical data 

analysis; 
• specify appropriate statistical methods for analysis 

of research with categorical outcome in relation to 
type of dependent and independent variables; 

• calculate the point estimate of proportions for a 
dichotomous outcome and their confidence 
intervals; 

• test a hypothesis for single proportion; and 
• estimate proportions for a polytomous or ordinal 

outcome. 
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Contents 
 
1.1 Ultimate goal of data analysis 

A key concept underlying the subject of statistics is 
“variability”. Statistical methods can help us to explain 
variation observed in the data being collected. By explaining 
such variation we interpret the results. Reliable results depend 
upon an appropriate research design. If the design of the 
study is unacceptable, the research is rather useless no matter 
how well the data were analyzed.  
 

Statistics is a curious amalgam of mathematics, logic and 
judgement (Altman, 1991). The logical process and judgement 
are more difficult than mathematics. These involve careful 
thought about the topic under investigation, the principles of 
research methodology, the concepts underlying statistical 
methods used, and interpretation of the results. Thus, in data 
analysis, we cannot just looking solely at the data - dumping 
into the computer and take the outputs. 
 

The ultimate goal of most of health research were to obtain 
body of knowledge regarding the study health events. 
Statistics thinking can contribute to every stage of the study. 
The body of knowledge in the sense of statistics is the ultimate 
outcome that answers the research question(s). Since we 
mainly aim to obtain body of knowledge that can be 
generallizeable, statistics should include both descriptive and 
inferential components of statistics. The descriptive 
component is to describe the study sample whereas the 
inferential component involves using information obtained 
from a sample to describe a larger population.  
 

As mentioned that the body of knowledge is universal in 
nature, the inferential component of statistics should be 
presented. There are two sub-components within this 
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component - estimation and hypothesis testing. The estimation 
is presented as the confidence intervals whereas the hypothesis 
testing is presented as p-value. However, a large number of 
researches were misguided to use solely p-value for drawing 
conclusion from. Overemphasizing use of p-value (or the most 
popular term is the significant test) is rather misleading. 
Recent approach advocates use of confidence intervals 
followed by the p-value. A good readings for interpretation of 
confidence intervals is given by Guyatt (1995). 
 
1.2 Research with categorical outcome 

In planning for the research (i.e., preparing the research 
proposal), study variables should be clearly defined. We can 
know from that at least what is the outcome (or response or 
dependent variable) and what is (are) the independent (or 
study factors or explanatory variables). In most cases, there is 
only one outcome and several explanatory variables in a 
study. These variables need to be classified in to at least two 
main types - categorical or continuous. Knowing the types of 
variable will lead to appropriately choosing statistical methods 
for further analysis.  
 

This book focused on a categorical outcome. Categorical data 
could be one of the following types of data.  
 

1.2.1  Nominal data: There could be only two possible values 
of such variable such as DEAD (dead or alive), CURED 
(cured or not cured), TEST (positive, negative), PAIN 
(yes or no), etc. This type of data is called dichotomous. 
If there are three or more possible values, it is called 
polytomous such as DELIVERY (vaginal, caesarian 
section, or others). Note that capital letters are to 
indicate variables’ name. 

1.2.2  Ordinal data: It is the polytomous data that can be 
ranked such as SYMPTOM (severe, moderate, mild). 
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1.2.3  Count data: It is a discrete quantity such as INJURY 

recorded as number of episode of injuries per period, 
EPILEPSY recorded as number of epileptic attack per 
two weeks, etc. 

 

Note that continuous outcome could be grouped then this can 
be analyzed as categorical data. However this practice is not 
recommended as it thrown away some information and thus 
considered less efficient than being analyzed as its original 
continuous data. On the contrary, ordinal and count outcome 
could also be analyzed as if they are continuous. However, this 
approach is acceptable in some certain circumstances. It is 
also often that some higher level of outcome are collapsed so 
that it can be less level such as birth weight in grams are 
grouped into 3 grouped - low, normal, and high, and it can 
then be collapsed into two groups - normal and abnormal. 
This approach also needs a careful though (Stromberg, 1996).  
 
1.3 An overview of categorical data analysis 

Once data had been collected, we need to summarize it before 
further analysis. This serve as the tools for both determine the 
distribution of data and also to describe the characteristics of 
the study sample and estimate statistics of interest.  
 

The analysis of categorical data generally involves the 
proportion of "successes" in a given population. This may 
consist of estimating a single parameter, comparing two 
parameters, or investigating the potential relationship 
between two or more categorical variables. 
 

Aside from type of the data, research design is also an 
important criterion for determining appropriate statistical 
methods. Some approaches for the data analysis were 
summarized in Table 1.1. These approaches are limited only 
to common type of research where there was only one 
outcome and several explanatory variables. If only an outcome 
was analyzed and all explanatory variables were just for 
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describing the study sample, it is termed a univariate analysis 
(Chapter 1 sections 1.4, 1.5, and 1.6). If the outcome was 
analyzed with only one explanatory variable at a time, it is 
bivariate analysis (Chapters 2, 3, 4, and 5). If the outcome was 
analyzed with several explanatory variables at the same time, 
it is a multivariable analysis (Chapters 6, and 7). We will not 
cover multivariate analysis where more than one outcome was 
analyzed at a time (Kleinbaum et al., 1998; page 1 has a 
discussion regarding multivariable and multivariate analysis). 
Chapter 8 presents special issues related to analysis of 
categorical data that were not mentioned in the remaining 
chapters. 
 
 
Table 1.1  summary of approaches comomly used for analysis 

of a categorical outcome. 
 

A dependent variable 
(An outcome) 

 
Independent 
(exploratory) 

variable(s) 
 

Two 
categories(dichotomo

us) 

Three categories or 
more 

(polytomous) 

Three categories or 
more 

(ordinal) 
1. None Estimating 

proportion 
(Chapter 1) next section

Estimating proportions 
(Chapter 1) next section

Estimating 
proportions (Chapter 

1) next section 
2. One variable    
2.1 Two 

categories(dichot
omous) 

2-by-2 Table 
(Chapter 2) 

2-by-C Table  
(Chapter 3) 

2-by-C Table  
(Chapter 3) 

2.2 Three categories 
or 
more(polytomou
s) 

2-by-C Table 
(Chapter 3) 

R-by-C Table  
(Chapter 4) 

R-by-C Table  
(Chapter 4) 

2.3 Three categories 
or more(ordinal) 

2-by-C Table 
(Chapter 3) 

R-by-C Table 
(Chapter 4) 

R-by-C Table 
(Chapter 4) 

2.4 Continuous data Logistic regression 
(Chapter 6) 

Multinomial logistic 
regression 

(Chapter 6) 

Ordered logistic 
regression 

(Chapter 6) 
3. More than one 

variables 
   

3.1 All are 
categorical 

Logistic regression 
(Chapter 6), or Log-

linear model 
(Chapter 7) 

Multinomial logistic 
regression 

(Chapter 6), or Log-
linear model 
(Chapter 7) 

Ordered logistic 
regression 

(Chapter 6), or 
Log-linear model 

(Chapter 7) 
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3.2 All are 

continuous 
Logistic regression 

(Chapter 6) 
Multinomial logistic 

regression 
(Chapter 6) 

Ordered logistic 
regression 

(Chapter 6) 
3.3 Mixed 

(categorical and 
continuous) 

Logistic regression 
(Chapter 6) 

Multinomial logistic 
regression 

(Chapter 6) 

Ordered logistic 
regression 

(Chapter 6) 
Repeated 
measurement of a 
categorical outcome 

Matched 2-by-2 Table 
(Chapter 2) 

or GEE (Chapter 6) 

Squared Table 
(Chapter 5) 

or GEE (Chapter 6) 

Squared Table 
(Chapter 5) 

or GEE (Chapter 
6) 

Outcome as a count 
data 

Poisson regression model 
(Chapter 6) 

 
1.4 Estimating proportions for a dichotomous outcome 

In many health researches, we randomly selected a sample of 
n subjects to determine a number of x subjects who represent 
one of two outcomes so that a statistic “proportion”, denoted 
by p, can be estimated as p = x / n to summarize the data. For 
example, a total of 400 children were randomly selected from 
a community to determine measles vaccine coverage, 320 of 
them were reported vaccinated. Thus the proportion is 0.8 or 
80% which is the vaccine coverage. In this case x follows a 
binomial distribution. A suggested reading for this 
distribution is in Altman (1991); page 63 - 66 and 68 - 70.  The 
same author also provided a readable detail, formula and a 
work example, on obtaining confidence intervals for one 
proportion on page 230. 
 
Here we consider “vaccination” the dichotomous outcome 
since it has two possible categories - vaccinated or non-
vaccinated. All other variables could be also collected but just 
for describing the study samples - not for comparing such 
outcome by groups of these variables. In other words, there is 
no explanatory variable of interest. Richardson (1994) termed 
this a 2-by-1 Table as opposed to 2-by-2 Table where there is a 
dichotomous explanatory variable. 
 
The above example can be calculated using an immediate "ci" 
command of STATA (see StataCorp., 1999; Volume 1: A-G 
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page 194-200) requesting for an estimated proportion and 
binomial exact confidence intervals as shown below.  
 
 
. cii 400 320 
 
                                                   -- Binomial Exact -- 
Variable |     Obs         Mean    Std. Err.       [95% Conf. Interval] 
---------+------------------------------------------------------------- 
         |     400           .8         .02        .7573914    .8381042 

 
 
Now let’s use a data set. The following data set will be used 
throughout the book to avoid confusion that may caused by 
several data sets. We will refer to this data set “The Example 
Data Set”. It was available in the internet which can be 
downloaded directly at the following address: 
 

http:/bandit.mykku.net 
 
The six variables (Table 1.2) denoted by V1, V2, …, and V6 
were modified to suite the topics being discussed. Note that 
“id” stands for the identification number of individual record. 
 
 
Table 1.2  Summary of the example data set     
 

id V1 V2 V3 V4 V5 V6 
1.  1 1 0 2600 30 0 
2.  1 1 0 2900 29 1 
3.  1 1 0 3100 25 0 
4.  1 1 0 3000 21 0 
5.  1 1 0 2600 19 0 

 
--- 457 records were skipped --- 

 
463. 0 0 0 2600 30 0 
464. 0 1 0 3500 30 0 
465. 0 1 0 3200 22 1 
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Example 1.1  
A hypothetical scenario of the following data set is that it is 
from a cross-sectional study was conducted among 465 women 
who have had delivered their children 1 to 6 months before 
the study was started (Table 1.2). It aimed to determine 
prevalence of neonatal death.  
 

Table 1.3  Summary of the variables for the example data set 
in Example 1.1.   

 

Variable 
names 

Descriptions Values 

V1 Dead within the first 
month of life 

1 = Dead 
0 = Alive 
 

V2 Gender  1 = Male 
0 = Female 
 

V3 Mother attending 
antenatal care during 
pregnancy 

1 = Yes 
0 = No 
 

V4 Birth weight Weight in grams 
 

V5 Mother’s age  Age in years 
 

V6 Place of birth 0 = Hospital 
1 = Health center 
2 = Home 
3 = Roadside  
     (During travelling) 

 
Preview: V1 is an outcome, the remaining variables are to 
describe characteristics of the children. We will focus here 
only on analysis of the main outcome. An example of complete 
analysis was demonstrated at the end of Chapter 10.   
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Steps for the data analysis with Stata : 
 
1. Open the example data set in Stata using the “use” 
command. 
 
. use example.dta, clear 

 
2. Examine the data using “summarize” command (see 

StataCorp., 1999; Volume 4: Su-Z page 1-7). 
 
. su 
 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
      id |     465         233   134.3782          1        465   
      v1 |     465    .1397849   .3471372          0          1   
      v2 |     465    .5182796   .5002039          0          1   
      v3 |     465    .0752688   .2641087          0          1   
      v4 |     465    3010.695   437.7349       1850       4000   
      v5 |     465    25.52473   5.362298         17         42   
      v6 |     465     .255914   .5882217          0          3 

 
3. Obtain the frequency, the estimated proportion, and the 
confidence intervals of neonatal dead using the following two 
commands, i.e. "tab" (see StataCorp., 1999; Volume 4: Su-Z 
page 144-152) and "ci" (see StataCorp., 1999; Volume 1: A-G 
page 194-200). 
 
. tab v1 
 
         V1 |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |        400       86.02       86.02 
          1 |         65       13.98      100.00 
------------+----------------------------------- 
      Total |        465      100.00 
 
 
. ci v1 
 
Variable |     Obs         Mean    Std. Err.       [95% Conf. Interval] 
---------+------------------------------------------------------------- 
      v1 |     465     .1397849    .0160981        .1081507    .1714192 

 
4. Summarize findings: 
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Among a total of 465 children, 65 died within the first month 
of life. The prevalence of neonatal dead was 14.0% (95%CI: 
10.8% to 17.1%). 
 
1.5 Test hypothesis for a proportion 

So far we have done both the descriptive (i.e., the estimated 
prevalence of 14.0%) and inferential components (i.e., the 
95%CI) of statistics. For the inferential component, there 
could be a hypothesis testing if the study also aim to compare 
the prevalence in the study area to that of another area or 
other standard value. Altman (1991); page 230-231, provide a 
good summary on the formula and the working example. For 
example, the Ministry of Public Health set the goal to reduce 
the prevalence to be 5.0%. The investigators aim to test if 
their finding different from 0.5%. Of course, the observed 
prevalence of 14.0% is clearly different from the null value of 
5.0%. But whether this difference is due to chance or not is 
the question that needs a test hypothesis. The p-value obtained 
from the test is the probability of having observed the 
prevalence of 0.14 or more when the true prevalence is 0.05. A 
good practical guide for interpretation of p-value is given by 
Altman (1991); page 167. The following "prtest" Stata 
command (see StataCorp., 1999; Volume 3: P-St page 85-88) 
provides the calculation.  
 
. prtest v1 = 0.05 
 
One-sample test of proportion                     v1: Number of obs =      465 
 
Variable |      Mean    Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      v1 |  .1397849    .0160808   8.69267   0.0000       .1082672    .1713027 
 
                         Ho: proportion(v1) = .05 
 
     Ha: v1 < .05            Ha: v1 ~= .05             Ha: v1 > .05 
          z =  8.883               z =  8.883               z =  8.883 
      P < z = 1.0000         P > |z| = 0.0000           P > z = 0.0000 

 
Alternatively, we can use the immediate form of the “prtest” 
command as follows: 
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. prtesti 465 0.14 0.05 
 
One-sample test of proportion                      x: Number of obs =      465 
 
Variable |      Mean    Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
       x |       .14    .0160911   8.70044   0.0000       .1084619    .1715381 
 
                          Ho: proportion(x) = .05 
 
       Ha: x < .05             Ha: x ~= .05              Ha: x > .05 
        z =  8.905               z =  8.905               z =  8.905 
      P < z = 1.0000         P > |z| = 0.0000           P > z = 0.0000 

 
For small sample, the exact binomial probability test should 
be used. Richardson (1994); page 129, suggested that it should 
be used routinely in the analysis of 2-by-1 Tables that are 
derived from fewer than 100 subjects. The “bitest” command 
of Stata (see StataCorp., 1999; Volume 1: A-G page 138-141) 
calculates the exact p-value for this test. 
 
. bitest v1 = 0.05 
 
Variable |        N   Observed k   Expected k   Assumed p   Observed p 
---------+------------------------------------------------------------ 
      v1 |      465         65        23.25       0.05000      0.13978 
 
  Pr(k >= 65) = 0.000000  (one-sided test) 
  Pr(k <= 65) = 1.000000  (one-sided test) 
  Pr(k >= 65) = 0.000000  (two-sided test) 
 
  Note: Lower tail of two-sided p-value is empty. 
 

Alternatively, we can use the immediate form of the “bitest” 
command as follows: 
 
. bitesti 465 65 0.05 
 
        N   Observed k   Expected k   Assumed p   Observed p 
      465         65        23.25       0.05000      0.13978 
 
  Pr(k >= 65) = 0.000000  (one-sided test) 
  Pr(k <= 65) = 1.000000  (one-sided test) 
  Pr(k >= 65) = 0.000000  (two-sided test) 
 
  Note: Lower tail of two-sided p-value is empty. 
 

For large study such as this example, the results from using 
asymptotic methods (i.e., z-test provided by the “prtest” 
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command) and exact test (i.e., Binomial exact probability test 
provided by the “bitest” command) are identical.   
 
Since p-value < 0.001, the null hypothesis is rejected and 
concluded that the prevalence of 14.0% is statistically 
significant different from 5.0% to which the Ministry of 
Public Health aimed to reduce. (Note that we will never quote 
p-value = 0.000000 for our report since this means that it is 
impossible which is not true, at least one study could have 
happened - the study being analyzed here!) 
 
1.6 Estimating proportions for a polytomous or ordinal 

outcome 

Suppose we now have another cross-sectional study where V6 
is an outcome. The variable has 4 levels (Table 1.2). Think of 
these four outcomes as delivery at “hospital”, “health center”, 
“home”, and “road side while travelling”. Even though the 
outcome are coded 0, 1, 2, 3, and 4 the numerical values are 
arbitrary. There was no natural ordering by place of delivery. 
The binomial distribution cannot be assumed but this data has 
a multinomial distribution. Definition of this distribution is 
given by Agresti (1990); page 38 - 39. For additional details of 
calculation of confidence intervals, see Goodman (1965).  
 
For this example, first we can estimate the proportions using 
“svyprop” command (see StataCorp., 1999; Volume 4: Su-Z 
page 18-30) then using “display” command to calculate the 
95% confidence intervals. The formula for such calculation is 
“Estimated proportion ± 1.96(Standard Error)”. 
 
 
. svyprop v6 
 
pweight:  <none>                                Number of obs      =       465 
Strata:   <one>                                 Number of strata   =         1 
PSU:      <observations>                        Number of PSUs     =       465 
                                                Population size    =       465 
Survey proportions estimation 
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      v6      _Obs   _EstProp    _StdErr  
       0       375   0.806452   0.018341   
       1        68   0.146237   0.016404   
       2        15   0.032258   0.008202   
       3         7   0.015054   0.005653   
 
. disp 0.806452 - 1.96 *  0.018341 , 0.806452 + 1.96 *  0.018341     
.77050364 .84240036 
 
. disp 0.146237 - 1.96 *  0.016404 , 0.146237 + 1.96 *  0.016404  
.11408516 .17838884 
 
. disp 0.032258 - 1.96 *  0.008202 , 0.032258 + 1.96 *  0.008202   
. 01618208 .04833392 
 
. disp 0.015054 - 1.96 *  0.005653 , 0.015054 + 1.96 *  0.005653   
.00397412 .02613388 
 
 

The findings can be summarized as follows: 
The cross-sectional study involved 465 subjects. 
The proportions of those who delivered at the 
hospital was 80.6% (95%CI: 77.0% to 84.2%), at 
health center was 14.6%  (95%CI: 11.4% to 
17.8%), at home was 3.2%  (95%CI: 1.6% to 
4.8%), and at the roadside while travelling was 
1.5% (95%CI: 0.4% to 2.6%).    

 
The test hypothesis for this type of outcome in one group is 
uncommon. However, recent approaches emphasize 
estimation as had been presented. Polytomous and ordinal 
outcomes will be dealt with in more details in Chapter 3 - 6. 
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Chapter Objectives 
 

After completing this chapter, readers should be able to: 
• state the null hypotheses and perform appropriate 

tests of these hypotheses for 2-by-2 tables formed by 
the cross-classification of two dichotomous variables 
from cross-sectional studies, prospective (cohort or 
experimental) studies, and retrospective studies; 

• describe appropriate proportions and calculate 
measures of association for 2-by-2 tables and 
corresponding 95% confidence intervals; 

• Analyze data collected from a matched pairs study; 
• define and calculate sensitivity, specificity, negative 

and positive predictive values, and likelihood ratios for 
assessing performance of a diagnostic test; 

• perform stratified analysis and interpret the results; 
and 

• define the concepts and be able to detect confounding 
and interaction. 

Chapter 2 

Analysis of 2-by-2 Tables
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Contents 

 

 
2.1 Introduction 

The 2-by-2 or four-fold Table is formed by the cross-
classification of two dichotomous variables. Practically, one 
variable is an outcome and another variable is an independent 
variable. In this sense, we are dealing with two proportions - 
proportion of an event (eg. disease) for each of the two groups 
of an explanatory variable (eg. study factor).  
 
Generally, this analysis serves as a good explanatory tool for 
the more complicated one that were discussed in Chapter 6 
onward. However in some experimental study such as clinical 
trials, this approach can be the ultimate analysis from which 
the conclusion was drawn. For example, the efficacy of a 
treatment in curing a disease was assessed and effects of all 
other variables such as characteristics of patients and disease 
severity were controlled for by randomization technique.   
 
This chapter presents systematic approaches for analyzing a 
dichotomous outcome with a dichotomous explanatory 
variable for various types of study designs. The notation 
bellow (Table 2.1) will be used throughout. 
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Table 2.1  Notation of a 2-by-2 Table displaying cell 

frequencies 
 
          Variable 1 (Outcome) 
      1       2     Total  
  
        
  Variable 2 1 n n n11 12 1+  
  (Independent   
  variable) 2  n n n21 22 2+  
 
   Total  n n n+ + ++1 2  
 
 
 
In general, Variable 1 is an outcome while Variable 2 is an 
independent variable. However, the format of the table can be 
exchangeable, especially the computer output. Being able to 
classify which variable is the outcome is of great benefit in 
helping us locates appropriate cell frequencies and other 
statistics.  
 
The frequencies in the above table can be generated using 
three different study designs. That is, cross-sectional study, 
cohort study, and case-control study. Details for each study 
can be found in several books, a readable one is Altman 
(1991); page 91-103.  
 
Section 2.2 described the cross-sectional study where the 
grand total (i.e., n++) is fixed. Section 2.3 described the cohort 
study where the row total (i.e., n1+ and n2+) is fixed. The 
clinical trial mentioned above can be classified as a cohort 
study as they are both prospective studies. Section 2.4 
described the case-control study where the column total (i.e., 
n+1 and n+2) is fixed. If either the outcome or the independence 
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variable was matched by another variable, it became a 
matched 2-by-2 Table presented in Section 2.5. The diagnostic 
test is a special type of analyzing a 2-by-2 Table presented in 
section 2.6.  The statistical analysis appropriate to each of 
these and the corresponding interpretation will be described. 
 
Since the analysis of categorical variable involves proportion, 
we denote small letter  “p” as the sample proportion and the 
Greek letter “π” as the population proportion. Below is the 
table displaying the proportions for each cell - Table 2.2 is for 
the sample proportion and Table 2.3 is for the population. 
 
 
Table 2.2  Notation of a 2-by-2 Table displaying the 

population proportions from which the sample was 
drawn. 

 

                       
          Variable 1 (Outcome) 
      1       2     Total 
   
        
  Variable 2 1 +11211 ppp  
  (Independent    
  Variable) 2  +22221 ppp  

 
   Total  ++++ ppp 21  
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Table 2.3  Notation of a 2-by-2 Table displaying the 

population proportions from which the sample was 
drawn. 

 

                       
          Variable 1 (Outcome) 
      1       2     Total 
   
        
  Variable 2 1 π π π11 12 1+  
  (Independent    
  Variable) 2  π π π21 22 2+  
 
   Total  π π π+ + ++1 2  
 
2.2 Cross-sectional study 

Select a total of  n++ subjects from a large population and then 
classify each subject on two dichotomous variables. Only the 
total sample size n++ can be specified in advance and it is said 
to be fixed, i.e., the grand total is fixed. The four cell 
frequencies n11, n12, n21, and n22 are random variables. 
 
Example 2.1 
The following is a hypothetical data (CCEB, 1993) to 
determine if there is an association between gender and 
smoking. A sample of 100 people were interviewed for their 
smoking status. They were then crossed-classified according to 
gender and smoking status as follows: 
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Table 2.4  Number of smoking status by gender - data for 

example 2.1 
 
         Smoker 
             Yes No 
 
     Male  18 37 55 
   Gender 
     Female 15 30 45 
 
       33 67      100 
 
 
 
Ex 2.1-1 Describing the proportions 
In reference to the notation in Table 2.2, the appropriate 
proportion for the cross-sectional survey, where the grand 
total is fixed, is pij  =  nij /n++ where  i = 1, 2 and j = 1, 2. For 
example, the proportion of male who smoked can be 
calculated by 18/100. However, these proportions are difficult 
to interpret. For the purpose of describing the proportions, 
therefore, we need to assume the groups under the 
independent variable known in advance, i.e., row total fixed. 
Therefore, the proportion that will be used for describing this 
data can be calculated as follows: 
 
The proportion of male who smoked :    p1 =  18/55 = 0.327 
The proportion of female who smoked :    p2 =  15/45 = 0.333 
 
Note that the proportions of non-smoker for male and female 
were not presented since they are completely determined by 
that of the smoker. 
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Ex 2.1-2 Estimating measure of effect 
In a cross-sectional study, the appropriate measure of effect is 
the odds ratio (OR) although the risk ratio or relative risk 
(RR) can be used in some certain conditions. These are indices 
of comparison between two proportions relatively. The 
absolute difference between the two proportions (risk 
difference or RD) is rarely used. See Agresti (1990); page 13-
16 for more details about the three measures. For summary of 
formulae and working examples of calculating RR and RR, 
see Altman (1991); page 266-270.  We use a single "csi" 
command of Stata (see StataCorp., 1999; Volume 1: A-G page 
382-384) to do all these as follows. In ovals are RR and OR 
and their confidence intervals. 
 
. csi 18 15 37 30, or 
 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        18          15  |        33 
        Noncases |        37          30  |        67 
-----------------+------------------------+---------- 
           Total |        55          45  |       100 
                 |                        | 
            Risk |  .3272727    .3333333  |       .33 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |        -.0060606       | -.1913915    .1792703   
      Risk ratio |         .9818182       |  .5604726    1.719918   
 Prev. frac. ex. |         .0181818       | -.7199179    .4395274   
 Prev. frac. pop |              .01       | 
      Odds ratio |          .972973       |  .4244507    2.228504  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     0.00  Pr>chi2 = 0.9489 

 
Ex 2.1-3 Testing the hypothesis 
By the definition of independence, characteristics 1 and 2 and 
independent if each joint proportion π11, π12, π21 , π22   is the 
product of the two corresponding total or marginal 
proportions, ie, 
 

H0  :   πij   =   πi+   π+j    i  =  1,2; j = 1, 2. 
 



 22 
This is the hypothesis of independence. This form is a specific 

hypothesis. 
 
For a general hypothesis, we can state that 
 
H0   :   There is no association between gender and smoking  
     
We need to determine how close the πij  are to the expected 

values πi+π+j.   
 
Since only the total sample size  n++ is fixed, the are 
observations from a multinomial distribution with sample size  
n++ and cell probabilities {πij }. Details can be found in Agresti 
(1990); page 39-39. Altman (1991) provided a summary of 
formula and an example on page 250-252. 
 
We test the hypothesis of independence using the Pearson chi-

square statistic 
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This value is compared with a table for the chi-square 

distribution with 1 df. 
  
Note that this formula for χ2  for a 2-by-2 table does not 
require us to calculate expected values for the individual cells. 
Thus always calculate the smallest expected value for the table 
(using the smallest row total and smallest column total).  If it 
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is greater than 5 then go ahead and calculate χ2 . We use Stata 
do the calculation. 
 
First we calculated for a smallest expected frequency as 
follows: 
 
 
. display (33 * 45) / 100  
14.85 
 

It is 14.85 which is larger than 5, then Pearson’s chi-square is 
appropriate. Then we use the immediate form of “tabulate” 
command of Stata (see StataCorp., 1999; Volume 4: Su-Z, 
page 157-174) with the option “chi2” to obtain such test 
statistics as follows: 
 
. tabi 18 37 \ 15 30, chi2 
 
           |          col 
       row |         1          2 |     Total 
-----------+----------------------+---------- 
         1 |        18         37 |        55  
         2 |        15         30 |        45  
-----------+----------------------+---------- 
     Total |        33         67 |       100  
 
          Pearson chi2(1) =   0.0041   Pr = 0.949 

 
Chi-square of 0.0041 with 1 degree of freedom gives p-value = 
0.949. 
 
Ex 2.1-4 Summary findings 
This cross-sectional study involved 100 people. Among a total 
of 55 males, 32.7% were smoked whereas among 45 females, 
33.3 % were smoked. The two proportions were more or less 
the same (OR = 1.0, 95%CI: 0.4 to 2.2) and was not 
statistically significant (p-value = 0.949).   
 
Note that we can obtain all statistics needed for the above 
summaries with a single command that used in Ex1-2. From 
the output, we can get the cell frequencies, appropriate 
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proportions, odds ratio and its confidence intervals, and p-
values of chi-square test.  
 
2.3 Prospective (cohort or experimental) study 

Select n1+ subjects   who are classified as level 1 of variable 2 
(independent variable) and  n2+ subjects who are classified as 
level 2. Then classify them according to variable 1 (outcome).  
Here, one set of margins ( n1+ and n2+ ) is fixed in advance (i.e., 
row totals are fixed) - the cell frequencies n11   and n21   are 
random variables. 
 
Example 2.2  
Data were taken from CCEB (1993) 
Observational study: Identify 80 people with hypertension 

(exposed) and 70 normotension 
(unexposed), then classify them 
according to whether or not they died 
after 10 years (Exposure → 
Outcome). 

 
Experimental study:  A randomized controlled trial with 2 

treatments and a dichotomous 
outcome (dead or alive).  
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Table 2.5  Number of outcome by treatment - data for 

example 2.2 
 
 
       Outcome 
               Dead     Alive 
 
   Treatment  1  32 48 80 
       or 
   Exposure 2  14 56 70 
 
        46 104      150 
 
 
Ex 2.2-1 Describing the proportions 
The proportion of interest are : 
 

p1 =  
32
80

40%=  of people in treatment group 1 (exposed) died,  

 
and 
 

p2 =  
14
70

20%=   of people in treatment group 2 (unexposed) 

died. 
 
(See also the Stata output, in the square, in the next section - 
Ex 2.2-2) 
 
Ex 2.2-2 Estimating measure of effect 
Both the RR and RD are appropriate for a prospective study. 
However the RR does not take baseline risk into account and 
can therefore be misleading for an experimental study such as 
a clinical trial (Jaeschke et al. 1995). Thus RD is most 
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appropriate for this type of study. The RR is appropriate for 
an etiological study which were mostly designed as an 
observation study. Formula and work example can be found 
in Altman (1991); page 233 for RD and page 266-268 for RR. 
A single command that has been used in section Ex 2.1-2 
provides all these (in the oval) as shown below: 
 
. csi 32 14 48 56 
 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        32          14  |        46 
        Noncases |        48          56  |       104 
-----------------+------------------------+---------- 
           Total |        80          70  |       150 
                 |                        | 
            Risk |        .4          .2  |  .3066667 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |               .2       |  .0575049    .3424951   
      Risk ratio |                2       |  1.165562    3.431821   
 Attr. frac. ex. |               .5       |  .1420448    .7086095   
 Attr. frac. pop |         .3478261       | 
                 +----------------------------------------------- 
                             chi2(1) =     7.02  Pr>chi2 = 0.0080  

 
 
RD = 0.2 (95%CI: 0.06 to 0.34) Death rate among the 

treatment group 1 are 20% 
higher than the treatment group 
2. We are 95% sure that the risk 
difference would be between 
6.0% to 34.0% (rounded from 
5.7% to 34.2%). 

  
RR = 2.0 (95%CI: 1.2 to 3.4) Patients in the treatment group 1 

are 2 times more likely to die 
than those who were in the 
treatment group 1. We are 95% 
sure that the relative risk would 
be between 1.2 to 3.4.  
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Note:  As the above which showed that if p1 = 0.4 and p2 = 0.2, 

the RD = 0.2 and RR = 2. Now, lets make a data from 
another study to see how the two measure of effect 
behaves by assuming p1 = .04 and p2 = 0.02. In this 
study, RD = 0.02 and RR = 2. The RR is exactly the 
same as the previous study whereas the RD dropped 
from 20% to 2%. Of course, the former study provided 
a convincing finding for adopting the  treatment group 
1 in replacement of the treatment group 2 whereas the 
later study provide a weak evidence irrespective of the 
p-value or significant results. This conclusion is based 
on RD - not RR. On the other hand, if the two studies 
were etiological study, they concluded the same 
messages that exposed to the factor are 2 time more 
likely to die that not exposed (see more details in 
Jaeschke et al. 1995).  

 
Ex 2.2-3 Testing the hypothesis 
General hypothesis: 
For observational study  
 
H0   :   There is no association between exposure and death
    
 
For experimental study  
H0   :   The death rates of the two treatment groups are the 
same 
 
Specific hypothesis: 

H0 :  π11  = π21 ,  where 

 π11  is estimated by  
+

=
1

11
11 n

n
p ,   and  

π21  is estimated by .
2

21
21

+

=
n
np  
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This is the hypothesis of homogeneity compares the two 
binomial distributions implied by the assumptions. Altman 
(1991); page 234-235 and 250-253 provided formula and work 
examples. 
 
For the analysis of this example, see the Stata output, at the 
last line, provided in the previous section (Ex 2.2-2). 
 
So we reject H0 and conclude that treatment group 2 is 
significantly  better than  treatment group 2 (p-value = 0.008). 
 
Ex 2.2-3 Summary findings 
Observational study: A ten-year follow-up study of 80 

people with hypertension, 40% died 
and 70 people with normotension, 
20% died. Those who were 
hypertension were 2 times more 
likely to die than those who were 
normotension (95%CI: 1.2 to 3.4). 
This is statistically significant (p-
value = 0.008). The findings 
suggested that hypertension is a 
significant predictor of death within 
ten years. 

 
Experimental study:  A randomized controlled trial with 2 

treatments - 80 subjects in group 1 
and 70 subjects in group 2, the death 
rate was 40% and 20% respectively. 
The death rate was 20% higher in 
group 1 than in group 2 (95%CI: 
5.7% to 34.2%). This difference is 
statistically significant (p-value = 
0.008). This suggested a better 
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efficacy of treatment group 2 in 
preventing death.  

 
2.4. Case-control study 

Select n+1 with level 1of variable 1 and n+2 with level 2. 
Determine levels of variable 2. In this case n+1 , n+2 are set in 
advance (i.e., column totals are fixed) and n11 and n12 are 
random variables. 
 
Example 2.3 
A case-control study aimed to determine effect of smoking on 
lung cancer (CCEB, 1993). One hundred and seventy cases of 
lung cancer and 430 appropriate controls were chosen to find 
out whether each person was a smoker or non-smoker in the 
past. The data is given below. 
 
Table 2.6  Number of lung cancer patients by smoking status 

- data for example 2.2 
 
 
            Lung Cancer 
 Cases Controls 
 
 yes 160 320 480  
 Smoker 
  No  10 110 120 
    
   170 430             600 
 
 
Ex 2.3-1 Describing the proportions 
The proportion of interest are : 
 

p1 =  %1.94
170
160

=    proportion of cases exposed, and 
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p2 =  %4.74
420
320

=    proportion of control exposed. 

 
(See also the Stata output, in the square, in the next section - 
Ex 2.3-2) 
 
Ex 2.3-2 Estimating measure of effect 
Only the OR is appropriate for a case-control study. The RR 
cannot be used since it can only be estimated from a cross-
sectional or a prospective study. The RR is the ratio of 
incidence (or prevalence) rates for those with and without the 
exposure whereas the incidence rates cannot be estimated 
from a retrospective (case-control) study. Additional details, 
formula, and work examples can be found in Altman (1991); 
page 268-270. A single "cci" command of Stata (see 
StataCorp., 1999; Volume 1: A-G, page 387-390) provides all 
these (in the oval) as shown below: 
 
 
. cci 160 10 320 110 
 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |       160          10  |       170      0.9412 
        Controls |       320         110  |       430      0.7442 
-----------------+------------------------+---------------------- 
           Total |       480         120  |       600      0.8000 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |              5.5       |  2.831731    10.67328  (Cornfield) 
 Attr. frac. ex. |         .8181818       |  .6468592    .9063081  (Cornfield) 
 Attr. frac. pop |         .7700535       | 
                 +----------------------------------------------- 
                             chi2(1) =    29.55  Pr>chi2 = 0.0000 

 
OR = 5.5 (95%CI: 2.8 to 10.7) The odds of smoking among 

cases is 5.5 times the 
corresponding odds among 
controls. Assuming the lung 
cancer is rare, this can be 
interpreted as the risk. That is, 
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those who smoked are 5.5 times 
more likely to develop lung 
cancer (95%CI: 2.8 to 10.7). 
This association is statistically 
significant (p-value < 0.001).  

 
Note that we will never quote p-value = 0.0000 as suggested by 
last line of the output sine it means impossible which is not the 
case.   
 
Ex 2.3-3 Testing the hypothesis 
General hypothesis: 
H0   :   There is no association between smoking and lung 
cancer, 
 
or  
 
H0   :   Proportion of cases exposed = proportion of controls 

exposed 
 
Specific hypothesis: 

H0 :  π11  = π12 ,  where 

 π11  is estimated by  
1

11
11

+

=
n
np  , and  

π12  is estimated by .
2

12
12

+

=
n
np  

 
This is the hypothesis of homogeneity compares the two 

binomial distributions 
 
For the analysis of this example, see the Stata output, at the 
last line, provided in the previous section (Ex 2.3-2). 
 



 32 
So we reject H0 and conclude smoking is statistically 
significantly associated with lung cancer (p-value < 0.001). 
 
Ex 2.3-3 Summary findings 
A total of 170 case, 94.1% were smokers as compared to 
74.4% of 430 controls. The odds of smoking among cases was 
5.5 times the corresponding odds among controls. If lung 
cancer is rare, this can be interpreted as the risk. That is, 
those who smoked are 5.5 times more likely to develop lung 
cancer (95%CI: 2.8 to 10.7). This association is statistically 
significant (p-value < 0.001). The findings suggested that 
smoking is a significant predictor of lung cancer. 
 
2.5  Matched pairs data 

So far we have covered 2-by-2 Table where the data was 
independent. In some situation, the investigator needs to 
control effect of extraneous variables on the association of the 
two variables - the independent variable and the outcome. 
One approach for such purpose is “matching” study subjects 
on one or more extraneous variables.  
 
An example of matched data in case-control study is that case 
with the disease under study is matched with a control. 
Matching is based on certain criteria such as age, sex, race, 
etc. Each case and control subject is then classified according 
to the presence or absence of the study factor or exposure of 
interest.  Matching is undertaken to increase the validity of 
the inferences by controlling for confounding factors (details 
discussed under the section of stratified analysis). 
 
Matched data in prospective study without randomization 
could be done by that each subject with the risk factor present 
(eg, exposure to an agent) is matched with a control subject on 
the basis of certain matching criteria who does not have the 
factor of interest (eg, no exposure). After a specified follow-up 
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period, each subject is classified according to the presence or 
absence of the response variable (eg, disease). For randomized 
design, each subject randomly drawn from the target 
population is paired on the basis of the matching criteria with 
another randomly selected subject from the target population. 
Within each pair, the two factor levels (eg, treatments) are 
randomly allocated to the two members of the pair using a 
suitable randomization procedure. After a specified follow-up 
period, each subject is classified according to the presence or 
absence of the response variable (eg, disease).  Matching in 
controlled trials increases the precision of the comparisons 
among the treatments. 
 
The correct analysis of a properly matched study retains the 
pairing. Details for analysis of matched study can be found in 
Fleiss (1981); page 113-137.  
 
Example 2.4 
A matched case-control study aimed to determine effect of 
smoking on lung cancer (CCEB, 1993). One hundred and 
seventy cases of lung cancer and 430 appropriate controls 
were chosen to find out whether each person was a smoker or 
non-smoker in the past. The data is given below. 
 
Table 2.7  Number of lung cancer patients by smoking status 

- data for example 2.4 
 
 
                 Without Lung Cancer 
 Smoked Not smoked 
 
 With    Smoked 160 320 480  
 Lung  
 Cancer Not smoked  10 110 120 
    
   170 430             600 
 

Controls 

C
as

es
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Ex 2.4-1 Describing the proportions 
The proportion of interest are : 
 

p1 =  %0.80
600
480

=    proportion of cases exposed, and 

 

p2 =  %3.28
600
170

=    proportion of controls exposed. 

 
(See also the Stata output, in the square, in the next section - 

Ex 2.4-2) 
 
 
Ex 2.4-2 Estimating measure of effect 
Only the OR is appropriate for a matched case-control study. 
More details, formula, and work examples can be found in 
Fliess (1981); page 115-116. A single "mcci" command (see 
StataCorp., 1999; Volume 1: A-G, page 400-402) provides all 
these (in the oval) as shown below: 
 
.  mcci 160 320 10 110 
 
                 | Controls               | 
Cases            |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
         Exposed |       160         320  |       480 
       Unexposed |        10         110  |       120 
-----------------+------------------------+---------- 
           Total |       170         430  |       600 
 
McNemar's chi2(1) =    291.21        Pr>chi2 = 0.0000 
Exact McNemar significance probability       = 0.0000 
 
Proportion with factor 
        Cases             .8 
        Controls    .2833333     [95% conf. interval] 
                   ---------     -------------------- 
        difference  .5166667      .4724295   .5609038 
        ratio       2.823529      2.492651   3.198329 
        rel. diff.  .7209302      .6771888   .7646717 
 
        odds ratio        32      17.17507    67.3789   (exact) 
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OR = 32 (95%CI: 17.2 to 67.4) Those who smoked are 32 

times more likely to develop 
lung cancer (95%CI: 17.2 to 
67.4). This association is 
statistically significant (p-value 
< 0.001).  

 
Ex 2.4-3 Testing the hypothesis 
General hypothesis: 
H0   :   There is no association between smoking and lung 
cancer, or  
 
H0   :   Proportion of cases exposed = proportion of controls 
exposed 
 
Specific hypothesis: 

H0 :  π12  = π21 ,  where 

 π12  is estimated by  
2112

12
12 nn

np
+

= ,  and  

π21  is estimated by 
2112

21
21 nn

np
+

=  

This is the hypothesis of homogeneity compares the two 
binomial distributions 
 
For the analysis of this example, see the Stata output, at the 
line with bold italic letters, provided in the previous section 
(Ex 2.4-2). McNemar's chi-square can be used for this 
example since the sample is sufficiently large. (Large sample is 
defined as n12 + n21 > 20. If this is not hold, Exact McNemar 
significance probability test should be used.) 
 
So we reject H0 and conclude smoking is statistically 
significantly associated with lung cancer (p-value < 0.001). 
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Ex 2.4-3 Summary findings 
A total of 480 cases of lung cancer, 80.0% were smokers as 
compared to 28.3% of 170 controls. The odds of smoking 
among cases was 32 times the corresponding odds among 
controls. If lung cancer is rare, this can be interpreted as the 
risk. That is, those who smoked are 32 times more likely to 
develop lung cancer (95%CI: 17.2 to 67.4). This association is 
statistically significant (p-value < 0.001). The findings 
suggested that smoking is a significant predictor of lung 
cancer. 
 
Note: For matched prospective studies, a comprehensive guide 

is given by Altman (1991); page 235-241. Data analysis 
for this type of design can use the same Stata command 
as that was used in Ex 2.4-2. Proportions used for 
describing the sample and test of hypothesis can quoted 
and interpreted the same manner as that fore the 
matched case-control, except measure of effect where 
the difference between two proportions (RD) is more 
appropriate than OR. 

 
 

2.6 The evaluation of a screening test 

Diagnostic test is another form of the 2-by-2 Table that is 
obtained from a study, the aim of which is to evaluate a 
diagnostic test intended for use in a screening program. A 
recommended reading is Altman (1991); page 409-419. Below 
layouts the table.  
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Table 2.8  Notation for evaluation of a screening test 
 
 
 
               Gold Standard Test 

Result 
         Disease Status 
       D  ⎯D 
    Diagnostic + n11  n12 
    Test  
    Result  - n21  n22 
 
 
 
 
Where positive test result (+) indicates the presence of disease. 
 
Followings are the statistics need to be reported for this type 
of the study. Item 1 to 4 is the must. Items 5 may give further 
inside to the interpretation of the diagnostic test data. The last 
item is optional depending in whether or not the diagnostic 
test has more than 2 categories. 
 
1. Sensitivity = proportion of diseased who have a +ve test 

 which is estimated by  
n

n n
11

11 21+
. 

 
2. Specificity  = proportion of non-diseased who have a 

- ve test 

 which is estimated by  .
2212

22

nn
n
+
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3.  Positive predictive Value (PPV) = proportion of those with 

a +ve test who have the disease. This is estimated by 

.
1211

11

nn
n
+

 

 
4.  Negative Predictive Value (NPV) = proportion of those 

with a -ve test who do not have the disease. This is 

estimated by .
2221

22

nn
n
+

 

  
Note:  PPV and NPV depend on the prevalence of the  

disease (Which may or may not  be 
n n

n
11 21+

++
)  in the 

population. 
5.  Likelihood ratio positive (LRP) =  the ratio of probability 

of getting that result if the patient truly had the condition 
of interest with the corresponding probability if they were 
healthy. This is estimated by sensitivity / (1 - specificity). 

 
6.  Receiver Operating Charateristic (ROC) curve is a method 

of measuring and comparing the accuracy of one or more 
variables at predicting whether each observation is a 
member of one of two groups/categories.  The ROC curve 
plots the Sensitivity (True Positive rate) against 1-
Specificity (False Positive rate).  The larger the Area Under 
the ROC Curve, the better the variable is at predicting 
group membership. Thus this is appropriate for a single 
diagnostic test where there were many cut-off values and 
for the investigator to use for comparing two or more 
competing methods. 

 
Example 2.5 
This data is taken from Fleiss (1981); page 6. Two thousands 
of people were undergone two tests - one is a gold standard 
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test and another is a new diagnostic test. This study aimed to 
evaluate performance of the test. Data is shown below. 
 
Table 2.9  Number of test results by results from the gold 

standard - data for example 2.5 
 
 
       Gold Standard Test 
          D+        D- 
                 +  950            10 
         -              50          990  
       1000    1000 
 
 
Step 1: Create a data file in Stata by using the following 5 

commands. 
 
. tabi 950 10 \ 50 990, replace 
 
           |          col 
       row |         1          2 |     Total 
-----------+----------------------+---------- 
         1 |       950         10 |       960  
         2 |        50        990 |      1040  
-----------+----------------------+---------- 
     Total |      1000       1000 |      2000  
 
           Fisher's exact =                 0.000 
   1-sided Fisher's exact =                 0.000 
 
. rename col  gold 
. rename row test 
. recode gold 1=1 2=0 
(2 changes made) 
 
 
. recode test 1=1 2=0 
(2 changes made) 

 
 
Step 2: Calculate the diagnostic performance using 'diagtest' 

command, available at http://www/sata.com in STB-
56  sbe36, as follows: 

 

D
ia

gn
os

tic
 T

es
t 
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. diagtest  test gold [freq=pop] 
 
           |         gold 
      test |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |       990         50 |      1040  
         1 |        10        950 |       960  
-----------+----------------------+---------- 
     Total |      1000       1000 |      2000  
 
 
True D defined as gold ~= 0                           [95% Conf. Inter.] 
------------------------------------------------------------------------- 
Sensitivity                     Pr( +| D)  95.00%      94.04%   95.96% 
Specificity                     Pr( -|~D)  99.00%      98.56%   99.44% 
Positive predictive value       Pr( D| +)  98.96%      98.51%   99.40% 
Negative predictive value       Pr(~D| -)  95.19%      94.25%   96.13% 
------------------------------------------------------------------------- 
Prevalence                      Pr(D)      50.00%      47.81%   52.19% 
------------------------------------------------------------------------- 
 

We can also do that using 'roctab' command as follows: 
 
. roctab  gold test  [freq=pop], table detail 
 
           |         test 
      gold |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |       990         10 |      1000  
         1 |        50        950 |      1000  
-----------+----------------------+---------- 
     Total |      1040        960 |      2000  
 
 
 
 
Detailed report of Sensitivity and Specificity 
------------------------------------------------------------------------------ 
                                           Correctly 
Cut point     Sensitivity   Specificity   Classified          LR+          LR- 
------------------------------------------------------------------------------ 
( >= 0 )          100.00%         0.00%       50.00%       1.0000      
( >= 1 )           95.00%        99.00%       97.00%      95.0000       0.0505 
( >  1 )            0.00%       100.00%       50.00%                    1.0000 
------------------------------------------------------------------------------ 
 
                      ROC                    -Asymptotic Normal-- 
           Obs       Area     Std. Err.      [95% Conf. Interval] 
         -------------------------------------------------------- 
          2000     0.9700       0.0038        0.96257     0.97743 

 
By the 'roctab' command, we can get the 'Likelihood ratio 
test' and 'Area under ROC and its 95%CI'. This command is 
in STB52: sg120 which can be downloaded from 
http://www/sata.com.  
 
Alternative ways: 
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First, we fit logistic regression model to the data using "logit" 
command (see StataCorp., 1999; Volume 2: H-O, page 228-
239) 
 
. logit gold test [freq=pop] 
 
Iteration 0:   log likelihood = -1386.2944 
Iteration 1:   log likelihood = -394.64103 
Iteration 2:   log likelihood = -281.61583 
Iteration 3:   log likelihood = -259.63674 
Iteration 4:   log likelihood = -256.34487 
Iteration 5:   log likelihood = -256.11912 
Iteration 6:   log likelihood =  -256.1172 
 
Logit estimates                                   Number of obs   =       2000 
                                                  LR chi2(1)      =    2260.35 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -256.1172                       Pseudo R2       =     0.8153 
 
------------------------------------------------------------------------------ 
    gold |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
    test |   7.539559   .3493483     21.582   0.000       6.854849    8.224269 
   _cons |  -2.985682   .1449486    -20.598   0.000      -3.269776   -2.701588 
------------------------------------------------------------------------------ 
 

 
Second, we obtain the test performance (see StataCorp., 1999; 
Volume 2: H-O, page 212) 
 
. lstat 
 
Logistic model for gold 
 
              -------- True -------- 
Classified |         D            ~D         Total 
-----------+--------------------------+----------- 
     +     |       950            10  |        960 
     -     |        50           990  |       1040 
-----------+--------------------------+----------- 
   Total   |      1000          1000  |       2000 
 
Classified + if predicted Pr(D) >= .5 
True D defined as gold ~= 0 
-------------------------------------------------- 
Sensitivity                     Pr( +| D)   95.00% 
Specificity                     Pr( -|~D)   99.00% 
Positive predictive value       Pr( D| +)   98.96% 
Negative predictive value       Pr(~D| -)   95.19% 
-------------------------------------------------- 
False + rate for true ~D        Pr( +|~D)    1.00% 
False - rate for true D         Pr( -| D)    5.00% 
False + rate for classified +   Pr(~D| +)    1.04% 
False - rate for classified -   Pr( D| -)    4.81% 
-------------------------------------------------- 
Correctly classified                        97.00% 
-------------------------------------------------- 
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Third, we can obtain ROC curve (Note that this is just for 
illustration use of the Stata command - not appropriate for 
this example data since the test is dichotomous where is no 
other choice of cut-off value, see StataCorp., 1999; Volume 2: 
H-O, page 213) 
 
. lroc 
 
Logistic model for gold 
 
number of observations =     2000 
area under ROC curve   =   0.9700 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note:  
i)  The 95% confidence intervals for sensitivity, specificity, 

PPV, and NPV should always be reported. Presentation 
the confidence intervals for these statistics had been 
advocated by Harper and Reeves (1999). 

ii) To determine an optimal cut-off value, use “lsens” 
command. The probability for the optimal cut-off value 
refers to the ordinate at the horizontal axis of the graph 

Area under ROC curve = 0.9700
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corresponding to the two graphs cross each other. Then 
use the command “lstat, cutoff( )”. The bracket in the 
option of this command is for the probability mentioned 
earlier.  

iii)  To compare two or more diagnostic tests, use “nproc” 
command. This free program is an automatic do file of 
Stata that can be download from  http://www/sata.com. 
This command calculates nonparametric area under ROC 
curve and standard errors for ROC curves for each test. 
Another useful program is 'roccomp' in STB52: sg120 
which can be downloaded from http://www/sata.com as 
well.  

 

2.7  Stratified analysis 

This methods is to adjust or control for the effects of 
extraneous variables, nuisance factors, confounding variables 
or covariables when assessing the relationship between a 
dichotomous exposure variable (eg, smoker - yes/no) and a 
dichotomous outcome (lung cancer - yes/no). In fact, there are 
several methods for the adjustment (see more details in 
Chapter 10). For the stratification methods, it can be referred 
to both pre and post data collection. Pre-stratification 
randomization is used for controlling effects of extraneous 
variables in the design stage (before data collection) whereas 
the post-stratification is a statistical method to do the same 
purpose in the analysis stage (after data collection).  
 
In general, it is know as stratified analysis. It is performed after 
data has been collected - thus in experimental studies such as 
clinical trials it is known as the post-randomization 
stratification. Theory and examples are best described in 
Kleinbaum, Kupper, and Morgenstern (1986), page 321-376. A 
simpler one is in Fleiss (1981); page 160-187.  
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This involves the formation of similar subgroups (or strata) 
determined by the levels of the extraneous variable(s). The 
association between the risk factor and the response variable 
can be examined within strata or summarized across strata.   
 
This approach is an essential step for the complicated modeling 
approach to be discussed next. Although its major role is for 
exploratory data analysis (EDA), stratified analysis can be a 
final and valid method for a well-designed study. EDA serves as 
not only a tool for assessing roles of the extraneous variables to 
enable investigators to make decision as to how the variables 
will be fitted in the model but also a screening tools for 
candidates from several variables in hand to be entered into the 
model. A practical steps, partly modified from Kleinbaum, 
Kupper, and Morgenstern (1986); page 321-322 and 
Kleinbaum (1994),  involved the following seven steps: 
 
2.7.1 Obtain a measure of association (e.g., relative risk or 

odds ratio as appropriate) quantifying association 
between the exposure of interest and the outcome.     

 
 

2.7.2  Categorize each of the extraneous variables to be 
controlled. The categorization could be a combination 
of two or more variables so that more than one 
extraneous variable could be controlled for their effect 
at a time.  

 
 

2.7.3  For the categories defined in step 1, organize the study 
subjects into combination of categories of each control 
variable - i.e., cross-tabulate the exposure of interest 
with the outcome for each group of the extraneous 
variable. These combinations are called "strata".  

 
 

2.7.4  Carry out simple analysis within each stratum, using a 
Mantel-Haenszel χ2  test for association and an 
measure of association (e.g., relative risk or odds ratio) 
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appropriate for the designed used.  By this methods, we 
have stratum-specific measure of association (e.g., OR1, 
OR2, …, ORk, one for each categories of the k level of 
extraneous variable). 

 

2.7.5  Carried out a test of homogeneity of the measure of 
association across stratum (e.g., Woolf's test).  

 
 

2.7.6 Assessing role of the extraneous variable whether or 
not it is an effect modifier. Determine if there is an 
interaction effect If the test of homogeneity in #2.5 
suggest a significant different (p-value < 0.05), the 
interaction effect is existed. The extraneous variable is 
said to be an effect modifier. If the p-value ≥ 0.05, we 
can only say that the interaction effect cannot be 
detected - there may be or may be not. Since it has been 
known that the test for this effect lack of power, one 
recommendation would be that investigator should 
judged about interaction effect based on the magnitude 
of different of measure of association across stratum. If 
the difference was considerably clinically or socially 
important, then we conclude that there was an 
interaction effect. That is, the association between the 
exposure of interest and the outcome depend on level of 
the extraneous variable. Then we report the stratum-
specific measure of association and their 95% 
confidence intervals. The analysis is complete at this 
step except there was no interaction effect that we need 
to proceed the next step.  

 
 

2.7.7 Assessing role of the extraneous variable whether or 
not it is a confounder. This step is needed only if there 
was no interaction effect. It involves accumulating 
information over the strata to obtain the (summary) 
measure of association - the one that adjusted for effect 
of the extraneous variable. Comparing the adjusted 
measure of association with the crude one obtained at 
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the first step. If they are considerably different and the 
difference is clinically or socially meaningful, then we 
conclude that the extraneous variable is a confounder 
of the association between the exposure of interest and 
the outcome. In this case, we need to report the 
adjusted measure of association and its 95% confidence 
intervals. It they are more or less the same, then the 
extraneous variable plays no role in the association 
between the exposure of interest and the outcome. In 
this case, reporting the crude or adjusted measure of 
association make no difference since they are similar. 
However, the adjusted one is preferred since it has 
been taken into account for effect of the extraneous 
variable. Kleinbaum (1994) suggested that the one with 
a narrow confidence intervals is preferred since it is 
more precise estimates. 

 
Example 2.6 
 
The following example used the example data set described in 
Example 1.1. Here the descriptions of the variable lists are 
slightly different from that in Table 1.2. The investigator 
wanted to examine the effect of V3 (ANC - mother attending 
antenatal care during pregnancy) on V1 (DEAD - dead within 
the first month of life) controlling for the effect of V2 (SMK - 
parents smoking).   
 
Since this is a cross-sectional study, we will use OR as a 
measure of effect. Thus the following Stata commands will be 
"cc" - abbreviated from case-control rather than "cs" - 
abbreviated from cohort study. The different is that the 
former provides OR and the later provides RR. Note that we 
have used these commands, but in the immediate form, in the 
previous section on analyzing data from the three designs - 
cross-sectional, prospective, and case-control studies. Thus 
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Step 1 of this example also serves as the example of using these 
commands for a data set. 
 
Step 1: Performing a crude analysis to examine the association 

between V3 (ANC) on V1 (DEAD) 
 
. use example.dta 
 
. cc v1 v3 
 
                 | V3                     |             Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        21          44  |        65      0.3231 
        Controls |        14         386  |       400      0.0350 
-----------------+------------------------+---------------------- 
           Total |        35         430  |       465      0.0753 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         13.15909       |  6.309044    27.44195  (Cornfield) 
 Attr. frac. ex. |         .9240069       |  .8414974    .9635594  (Cornfield) 
 Attr. frac. pop |         .2985253       | 
                 +----------------------------------------------- 
                             chi2(1) =    66.67  Pr>chi2 = 0.0000 

 
Children whose mothers attended ANC were 13.2 times more 
likely to die within the first month of life than those whose 
mothers did not. This magnitude of association ignored effects 
of other variables. At this stage, we obtained ORcrude = 13.2. 
 
Step 2:  Examining the association between V3 (ANC) on V1 

(DEAD) within each stratum of V2 (SMK) 
 
 
. cc v1 v3 if v2 = = 0 
 
                 | V3                     |             Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |         2          26  |        28      0.0714 
        Controls |         6         190  |       196      0.0306 
-----------------+------------------------+---------------------- 
           Total |         8         216  |       224      0.0357 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         2.435897       |         0    11.25226  (Cornfield) 
 Attr. frac. ex. |         .5894737       |         .     .911129  (Cornfield) 
 Attr. frac. pop |         .0421053       | 
                 +----------------------------------------------- 
                             chi2(1) =     1.19  Pr>chi2 = 0.2763 
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. cc v1 v3 if v2 = = 1 
 
                 | V3                     |             Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        19          18  |        37      0.5135 
        Controls |         8         196  |       204      0.0392 
-----------------+------------------------+---------------------- 
           Total |        27         214  |       241      0.1120 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         25.86111       |  10.08458    66.21777  (Cornfield) 
 Attr. frac. ex. |         .9613319       |  .9008387    .9848983  (Cornfield) 
 Attr. frac. pop |         .4936569       | 
                 +----------------------------------------------- 
                             chi2(1) =    70.82  Pr>chi2 = 0.0000 
 

 
At this step, we obtain OR describing association between 
ANC and DEAD for each group of SMK. That is, ORSmoked = 
25.9 and ORNot smoked = 2.4. In practice, we need not to do this 
since the command used in the next step. This is for 
illustration and displaying the data in two separate tables 
(bold italic letters in the square).   
 
Step 3:  Performing a stratified analysis to examine the 

association between V3 (ANC) on V1 (DEAD) 
adjusted for the effect of V2 (SMK) 

 
. cc v1 v3, by(v2) 
 
              V2 |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   2.435897            0   11.25226      .6964286 (Cornfield) 
               1 |   25.86111     10.08458   66.21777      .5975104 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   13.15909     6.309044   27.44195               (Cornfield) 
    M-H combined |   13.25311     6.309988     27.836                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     5.91  Pr>chi2 = 0.0150 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =     63.22 
                                                Pr>chi2 =    0.0000 

 
In practice, we need only this command for stratified analysis 
since it provides all statistics needed. We will summary only 
the necessary ones - the four components, as follows: 
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1) The crude measure of effect  
 ORcrude  =  13.2  
 
2) The stratum-specific measure of effect  
 OR1  =    2.4  
 OR2  =  25.9  
 
3) The adjusted measure of effect 
 ORadjusted  =   13.3 
 
4) Test of homogeneity of OR across stratum 
 p-value  =  0.015  

 
Following the steps described in 2.7.1 to 2.7.7, we conclude 
that there is a significant interaction effect of SMK on the 
association between ANC and DEAD (p-value = 0.015).  Thus 
the adjusted measure of effect (ORadjusted  =  13.3) is less useful. 
The stratum-specific measure of effects was then more 
appropriate.  
 
Step 4:  Summary findings 
Ignoring effects of parent smoking status, children whose 
mothers attended ANC were 13.2 times more likely to die 
within the first month of life than those whose mothers did 
not. There is a significant interaction effect of parent smoking 
on the association between mother attending ANC and dead of 
children (p-value = 0.015). That is, the effect of mother 
attending ANC on dead of children depended on whether or 
not their parent smoked. For smoker parents, children whose 
mothers attended ANC were 25.9 times more likely to die 
within the first month of life than those whose mothers did not 
(95%CI: 10.1 to 66.2). For non-smoker parents, children 
whose mothers attended ANC were 2.4 times more likely to 
die within the first month of life than those whose mothers did 
not (95%CI: 0.0 to 11.3). Note that these confidence intervals 
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may not be valid due to small sample, thus exact confidence 
intervals are preferred.  
 
Note: 
1. In the above example, both the crude and the adjusted 

measure of effects are not a valid measure of effect in 
quantifying the association between ANC and DEAD. 
However they should not totally be ignored in drawing the 
conclusion or at least they should be mentioned in the 
discussion section. For example in the above case, 
comparing the crude OR and the stratum-specific OR we 
feel that it is far more to believe the crude OR and that 
GENDER plays a large effects on the association under 
investigation. This is why the table presenting the results 
(see Chapter 10) includes both the crude and adjusted 
measure of effects. 

 
2. The presented analysis is adjusted for effect of only one 

extraneous variable while, in the real world, children death 
is likely to be affected by several variables. Thus conclusion 
drawn from this should be very caution about lacking of 
controlling for effects of several other factors. The most 
efficient analysis will be discussed in Chapter 6.  

 
3. The above example is for observational studies. For 

experimental studies such as clinical trials, however, we are 
interested in the RD rather than RR or OR. Followings are 
some useful Stata commands of doing these. Here we 
assume the example data is from a clinical trial where V1 is 
a treatment outcome (1=cured, 0=not cued) and V2 is a 
treatment (1=drug A, 0=drug B). The investigator 
randomly allocated the patients into each treatment using 
stratified block randomization where the stratified variable 
is V3 which is age group (1= old, 0=young). The trial aims 
to determine the efficacy of drug A as compared to the 
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standard drug B. The first two commands are the crude 
analysis providing identical results, showing how cured 
rates (in oval) for each treatment and the rate difference (in 
the squares) are presented in the outputs. The last 
command is to quantify magnitude of effect, taken into 
account of the effect of V3. 

 
 
. cs v1 v2 
 
                 | V2                     | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        37          28  |        65 
        Noncases |       204         196  |       400 
-----------------+------------------------+---------- 
           Total |       241         224  |       465 
                 |                        | 
            Risk |   .153527        .125  |  .1397849 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |          .028527       | -.0342996    .0913535   
      Risk ratio |         1.228216       |   .778466    1.937803   
 Attr. frac. ex. |         .1858108       | -.2845776    .4839517   
 Attr. frac. pop |         .1057692       | 
                 +----------------------------------------------- 
                             chi2(1) =     0.79  Pr>chi2 = 0.3754 
 
 
 
 
. prtest v1, by(v2) 
 
Two-sample test of proportion                      0: Number of obs =      224 
                                                   1: Number of obs =      241 
 
------------------------------------------------------------------------------ 
Variable |      Mean    Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
       0 |      .125    .0220971   5.65685   0.0000       .0816905    .1683095 
       1 |   .153527    .0232215   6.61141   0.0000       .1080137    .1990403 
---------+-------------------------------------------------------------------- 
    diff |  -.028527    .0320549                         -.0913535    .0342996 
         |  under Ho:   .0321831  -.886396   0.3754 
------------------------------------------------------------------------------ 
 
               Ho: proportion(0) - proportion(1) = diff = 0 
 
       Ha: diff < 0            Ha: diff ~= 0             Ha: diff > 0 
        z = -0.886               z = -0.886               z = -0.886 
      P < z = 0.1877          P > |z| = 0.3754          P > z = 0.8123 
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. cs v1 v2, by(v3) istandard rd 
 
              V3 |       RD      [95% Conf. Interval]        Weight 
-----------------+------------------------------------------------- 
               0 |  -.0362582    -.0934065   .0208901           214  
               1 |   .4537037     .1077276   .7996798            27  
-----------------+------------------------------------------------- 
           Crude |    .028527    -.0342996   .0913535                
 I. Standardized |   .0186338    -.0452218   .0824894 

 
Note that, ignoring effect of age, Drug A was 2.9% higher 
cured rate than Drug B. However, this effect was reverse in 
young age group. That is, Drug B was 3.6% higher cured rate 
than Drug A. On the other hand, among old age group, Drug 
A was 45.4% higher cured rate than Drug B. This suggested 
an interaction effect and the adjusted rate difference of 1.9% 
should be disregarded.     
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Exercise 
  
1. Daniel (1991); page 550 provide a problem that a group of 

350 adults who participated in a health survey were asked  
whether or not they were on a diet.  The responses by 
gender are given in the table below. 

 
 Gender  
 Male Female Total 

On diet 14 25 39 
Not on diet 159 152 311 

Total 173 177 350 
 

Do these data suggest that being on a diet is dependent 
on gender ? 
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i) State what type of study this is and an appropriate 

null    hypothesisgender? 
 
ii) Test the null hypothesis. 
 
iii) Calculate a measure of the association and a 95% 

confidence interval.   
iv) Summarize your findings. 

 
 
2. A retrospective study on deaths in all men aged 50-54 over 

a one month period indicated that of 35 men who died from 
cardiovascular disease (CVD), 5 were on a high salt diet 
before they died, whereas of 25 men who died from other 
causes 2 were on such a diet.  Is there a relationship 
between dying from CVD and a high salt diet.? 

 
3. The following data are from a cases-control study of oral 

contraceptive use in relation to myocardial infarction (MI) 
(Shapiro et al, 1979). 

 
 

OC use Cases Controls 
E+ 29 135
E- 205 1607

Total 234 1742
 
i)  State the null hypothesis.  
 
ii)  Perform a test appropriate to the null hypothesis. 
 
iii) Calculate a measure of association and a 95% 

confidence interval. 
 
iv) Summarize your findings. 
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4. The following table presents data from a matched case-

control study where E denotes exposure to the variable of 
interest and ⎯E denotes no exposure.   

i) State the hypothesis being tested. 
 
ii)  Test this hypothesis. 
 
iii) Calculate the odds ratio and interpret it. 
 
iv) Obtain a 95% confidence interval for the odds ratio. 

What information is conveyed by this interval ? 
 
v) Write a short report summarizing your findings. 

   
 Controls  

Cases E+ E- Total 
E+ 15 20 35 
E- 5 60 65 

Total 20 80 100 
 
 
      
5. Followings are adapted from Kleinbaum, Kupper, and 

Morgenstern (1982); page 363-365. A follow-up study on the 
utilisation of a vaccine at a large hospital. Six hundred 
mothers who delivered their babies at the hospital were 
assessed for their perception of vaccination and then 
followed for one year to find that whether or not their 
children were vaccinated. Perception of vaccination were 
assessed using series of questions and then classify mothers 
into two groups - positive receptive perception, i.e., 
perceived benefit of vaccination, and negative receptive 
perception, i.e., perceived no benefit of vaccination. 
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Vaccination status of children was obtained from their 
Expanded Program on Immunization (EPI) cards. The 
following table summarizes the study children whose 
mothers were recruited in the study, by type of perception 
(R+  versus  R-), vaccination status (V+ versus V-), parents 
living together (YES versus NO) and sex (M versus F.) 

 
 
 
 

Parents  V+ V-  
living 

together 
Sex R+ R- R+ R- Total 

 Male 68 17 172 43 300 
 Female 8 12 52 78 150 
 Male 1 4 9 36 50 
 Female 81 9 9 1 100 

Total 158 42 242 158 600 
 

i) Examine the relationship between vaccine receptive 
perception and vaccine acceptance ignoring the 
effects of parents living together and sex. State the 
null hypothesis being tested. Perform a test of 
significance and obtain a measure of the association.  
Calculate a 95% CI for this measure. 

 
ii) Ignoring parents living together, does sex appear to 

be confounding the association between vaccine 
receptive perception and vaccine acceptance? Explain 
your answer. 

 
iii) Ignoring sex, does parents living together appear to 

be confounding the association between vaccine 
receptive perception and vaccine acceptance? Explain 
your answer. 

Yes

No 
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iv) Stratifying on both parents living together and sex 

simultaneously, how do the resulting stratum-specific 
measures of association compare with the crude 
estimate and the adjusted estimates based on 
controlling for sex and parents living together 
separately? 

 
v) What conclusion can you draw about the effect of 

parents living together and sex on the observed 
relationship between vaccine receptive perception and 
vaccine acceptance?  

 
vi) Based on your results discuss whether or not vaccine 

receptive perception is a determinant of vaccine 
acceptance. 

 
vii)Summarize your findings 
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Chapter Objectives 
 
After completing this chapter, readers should be able 

to: 
• describe appropriate proportions and calculate 

measures of association for 2-by-C tables and 
corresponding 95% confidence intervals; 

• test hypotheses appropriate to 2-by-C Tables; 
• perform a test for trend in the proportions in a 2-

by-C table where the column variable is ordinal and 
i) the column totals are fixed, and ii) the row totals 
are fixed; and 

• interpret the results from the analysis. 
 

Chapter 3 

Analysis of 2-by-C Tables



 59 
 

Contents 
 
3.1 Introduction 

So far we have covered analyzing a dichotomous outcome with 
a dichotomous independent variable. This chapter, we expand 
the type of the independent variable to be more than two 
categories. Tables where one variable (say variable 2 - see 
tables below) has more than two levels are a straightforward 
extension of our analysis of 2-by-2 tables. The general form of 
the test statistics remain the same. The different study designs 
again give rise to the same test statistic. An additional 
consideration is when variable 2 has ordered categories (such 
as severity of disease: none, mild, moderate, severe). The 
question of trend or dose response is a unique issue for this 
type of study. Below is a general form of the 2-by-C Table. 
 
Table 3.1  Notation of observed data 
 
  Variable 2  
  1 2 ... C  
Variable 1 1 n11 n12 ... n1C n1+ 
 2 n21 n22 ... n2C n2+ 
  n+1 n+2 ... n+C n++ 
 
 
Several analytical methods exist to account for the 
quantitative nature of the categories to improve the chi-square 
test. An excellent comprehensive and readable review of 
theories and practical examples was given by Altman (1991); 
page 259-265. At the Stata web site, there is a frequently asked 
questions by Sribney (1999) comparing several methods 
implemented by several software regarding test for trend.    
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Followings we will discuss two main types of the 2-by-C Table 
based on type of Variable 2 in reference to Table 3.1. That is, 
the section of nominal and ordinal variable. Within each 
section, there was 2 type of studies based on that whether row 
or column is fixed. For small sample, assuming both row and 
column total fixed, the exact method is appropriate and it was 
described in Chapter 8.   

 

3.2 Nominal variable 

 
3.2.2 The row and column totals are fixed. 
This type of data is from a cross-sectional design in which n++ 
individuals are chosen. The frequencies (nij where i = 1, 2; j = 
1, ..., c) follow a full multinomial distribution. The null 
hypothesis is that the row variable and column variable are 
independent (see Table 3.2 for notation of the population 
proportions). 
 
H0   :  π11  =   πi+  π+j where π ij

ji
∑∑   =   1  i  =  1, 2 

j  =  1, ..., c 
 
Table 3.2  Notation of population proportion 
 

  Variable 2  
  1 2 ... c  

1 π11 π12 ... π1c   
Variable 1 2 π21 π22 ... π2c  

 
 

Example 3.1 
Five hundred and eleven subjects were recruited to examine 
the relationship between social class (3 levels) and major 
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depression (2 levels). The results are summarized in the 
following table. 
 
Table 3.3  Number of depressive patients by social class - data 

for example 3.1 
 

 
Social class  

Depressed Lower Middle Upper 
 

Total 
Yes 4 13 5 22 
No 159 212 118 489 

Total 163 225 123 511 
 
Ex 3.1-1 Describing the proportions 
For the purpose of describing the proportions, we assume the 
groups under the independent variable known in advance, i.e., 
column totals are fixed. Therefore, the proportion that will be 
used for describing this data can be calculated as follows: 
 
The proportion of the lower class who depressed :    
  p1 =  4/163   = 0.024 
 
The proportion of the middle class who depressed :   
  p2 =  13/225 = 0.058 
 
The proportion of the upper class who depressed :    
  p2 =  5/123   = 0.041 
 
Considering the output in Ex3.1-3, the proportions reported 
here are in the square. 
 
Ex 3.1-2 Estimating measure of effect 
For the 2-by-C Table, we can use "local" odds ratio as the 
measure of effect. By choosing appropriate reference category, 
we can calculate OR for other categories compared with the 
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reference. Here we choose the lower class as it gave the lowest 
proportion of depressed (see EX3.1-1 shown above). For "cci" 
command see StataCorp. (1999), Volume 1: A-G, page 387-
389. 
 
. cci 13   212  4  159 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        13         212  |       225      0.0578 
        Controls |         4         159  |       163      0.0245 
-----------------+------------------------+---------------------- 
           Total |        17         371  |       388      0.0438 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |           2.4375       |   .819265     7.23088  (Cornfield) 
 Attr. frac. ex. |         .5897436       | -.2206063    .8617042  (Cornfield) 
 Attr. frac. pop |         .0340741       | 
                 +----------------------------------------------- 
                             chi2(1) =     2.49  Pr>chi2 = 0.1144 
 
. cci  5  118  4  159 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |         5         118  |       123      0.0407 
        Controls |         4         159  |       163      0.0245 
-----------------+------------------------+---------------------- 
           Total |         9         277  |       286      0.0315 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         1.684322       |  .4784226    5.921692  (Cornfield) 
 Attr. frac. ex. |         .4062893       | -1.090202    .8311294  (Cornfield) 
 Attr. frac. pop |         .0165158       | 
                 +----------------------------------------------- 
                             chi2(1) =     0.60  Pr>chi2 = 0.4397 
 

 
Ex 3.1-3 Testing the hypothesis 
By the definition of independence, characteristics 1 and 2 and 
independent if each joint proportion π11, π12, π21 , π22   is the 
product of the two corresponding total or marginal 
proportions, ie, 
 
H0 : major depression is independent of social class 
 
H0   :  π11  =   πi+  π+j where  π ij

ji
∑∑   =   1 ; i  =  1, 2 

  j  =  1, ..., c 
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This is the hypothesis of independence. This form is a specific 

hypothesis. 
 
For a general hypothesis, we can state that 
 
H0   :   There is no association between social class and 

depressive disorder 
 
For "tabi" command see StataCorp., (1999), Volume 4: Su-Z, 
page 144-152. 
 
. tabi 4   13   5 \ 159  212  118, col chi2 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |         4         13          5 |        22  
           |      2.45       5.78       4.07 |      4.31  
-----------+---------------------------------+---------- 
         2 |       159        212        118 |       489  
           |     97.55      94.22      95.93 |     95.69  
-----------+---------------------------------+---------- 
     Total |       163        225        123 |       511  
           |    100.00     100.00     100.00 |    100.00  
 
          Pearson chi2(2) =   2.5573   Pr = 0.278               
 

 
Chi-square of 2.56 with 2 degree of freedom gives p-value = 
0.278. The null hypothesis is not rejected. We have no 
sufficient information to conclude that there is an association 
between social class and depressive disorder. 
 
Ex 3.1-4 Summary findings 
This cross-sectional study involved 511 people. The lower class 
people had a lowest proportion of being depressed. That is, 
among a total of 163 who were the lower class, 2.5% were 
depressed whereas among 225 who were the middle class, 5.8 
% were depressed and 118 who were the upper class, 4.1% 
were depressed. The middle class was 2.4 times more likely to 
be depressed than the lower class (95%CI: 0.8 to 7.2) while the 
upper class was 1.7 times more likely to be depressed than the 
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lower class (95%CI: 0.5 to 5.9). However, these were not 
statistically significant (p-value = 0.278).   
 
3.2.2 The column totals are fixed. 

 
Table 3.4  Notation of population proportion in which the 

column totals are fixed 
 

 Variable 2  
Variable 1 1 2 ... c Total 

1 π1 π2 ... πc  
2 1 − π1 1 − π2 ... 1 − πc  

Total 1 1  1  
 

This is equivalent to choosing n+1 of type 1 in variables 2, n+2 
of type 2, n+c of type c. We are interested in the proportion 
that fall into level 1 of variable 1. 
 
The null hypothesis is expressed in terms of homogeneity of 
the probabilities        π1, ..., πc. 
 

H0   :  π1  =   π2  = ... =   πc  =   π   
 
nij is binomial with parameters n+j and  πj  thus E[nij]  =  n+j πj . 
So the expected values are the same as those obtained under 
the hypothesis of independence. 
 
The statistical approach for this type of study is similar to 
what has been performed in the above example (Ex 3.1).  
 
Another approach given by Fleiss (1981); page 138 - 143 
considered the above situation as the problem concerning 
comparison of a number of proportions. In this case, it can be 
called the R-by-2 Tables.  
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3.3 Ordinal variable 

3.3.1 Column totals are fixed 
Suppose in a 2-by-C table that the column variable is ordinal. 
A question of interest is whether there is a trend in the 
proportions falling into the first (or second) row across levels 
of the column variable. 
 
In general the groups represented by the column variable may 
correspond to different values of a quantitative variable such 
as age or they may correspond to qualitative categories such 
as severity of disease, which can be ordered, but not 
necessarily assigned as numerical value. One might ask 
whether there is a significant trend in the proportion falling 
into the first row from group 1 to group C. 
 
Assign a quantitative variable x to the groups. The variable x 
takes the value x1,..., xc. For example x may take the integer 
values 1, ..., C or values corresponding to the group defined by 
the categories. The table can be displayed as follows: 
 
Table 3.5  Notations for R-by-C Tables where column totals 

are fixed 
 
 

Group
x

1 
x1 

2 
x2 

... 

... 
c 
xc 

 
Total 

Positive n11 n12 ... n1c n1+ 
Negative n21 n22 ... n2c n2+ 
Total n+1 n+2 ... n+c n++ 
Proportio
n Positive 

p1 p2 ... pc p
n
n

= +

++

1
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The numerator of the χ2 statistic is n p pj j
j

c

+
=

−∑ ( )
1

2 which is a 

weighted sum of squares of the pj about the mean p. It also 
turns out to be a straightforward sum of square (SS), between 
groups, of a variable (y) taking the value 1 for each individual 
classified as positive and 0 for each individual classified as 
negative. This SS can be divided as in ANOVA and regression 
into the SS due to the regression of y on x  and a SS due to 
departures from linear regression. If there is a trend of pj with 
xj we might find the first SS (regression) to be greater than the 
second SS. Dividing the portion of the SS due to regression by 
p(1-p) gives us a chi-square statistic with 1 df which is part of 
the overall chi-square statistic and is particularly sensitive to 
trend. The formula for this χ2 is 
 

χ 1
2 =

( ){ }
n n n x

j
n n x

n n n n n x n x

j j j j

j j j j

++ ++ + +

+ ++ + ++ + +

∑ ∑

∑ ∑

−
⎛

⎝
⎜

⎞

⎠
⎟

− −

1 1

2

1 1
2

2
( )

 

 
The difference between χ c−1

2  and χ 1
2 may be regarded as a χ2 

statistic with (c-2) df testing departures from linear regression 
of pj on xj. These chi-square tests are approximate, but the 
approximation is likely to be adequate if only a small 
proportion of the expected frequencies are less than 5. 
 
Example 3.2  
The data is taken from Holmes and Williams (1954) cited by 
Agresti (1990); page 297. Children on each tonsil size were 
classified on whether they are carriers of the pathogenic virus 
as follows. 
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Table 3.6  Number of tonsilitis patients by type of carriers - 

data for example 3.2 
 
 

 Tonsils  
 Present/Not 

Enlarged 
 

Enlarged
Greatly 

Enlarged 
 

Total 
Carrier 19 29 24 72 
Non-Carrier 497 560 269 1326 
Total 516 589 293 1398 
 
 
 
Ex 3.2-1 Describing the proportions 
 
Clearly this data represents a column total fixed table. The 
proportion of carriers for not enlarge is .0368 or 3.7%, for 
enlarged is .0492 or 4.9%, and for greatly enlarge is .0819 or 
8.2%. They were shown in the rectangular of the "tabi" 
command of Stata shown below.  
 
 
 
. tabi 19 29 24 \ 497 560 269, col chi2 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |        19         29         24 |        72  
           |      3.68       4.92       8.19 |      5.15  
-----------+---------------------------------+---------- 
         2 |       497        560        269 |      1326  
           |     96.32      95.08      91.81 |     94.85  
-----------+---------------------------------+---------- 
     Total |       516        589        293 |      1398  
           |    100.00     100.00     100.00 |    100.00  
 
          Pearson chi2(2) =   7.8848   Pr = 0.019          
 

 
 
Ex 3.2-2 Estimating measure of effect 
As mentioned in EX3.1-2, we can use "local" odds ratio as the 
measure of effect. By choosing not enlarged tonsil as the 
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reference category, we can then calculate OR for enlarged 
(1.4) and greatly enlarged (2.3) as follows: 
 
. cci 29 19 560 497 
 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        29          19  |        48      0.6042 
        Controls |       560         497  |      1057      0.5298 
-----------------+------------------------+---------------------- 
           Total |       589         516  |      1105      0.5330 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         1.354605       |  .7556637    2.427803  (Cornfield) 
 Attr. frac. ex. |         .2617776       | -.3233399     .588105  (Cornfield) 
 Attr. frac. pop |         .1581573       | 
                 +----------------------------------------------- 
                             chi2(1) =     1.02  Pr>chi2 = 0.3125 
 
 
. cci 24 19 269 497 
 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        24          19  |        43      0.5581 
        Controls |       269         497  |       766      0.3512 
-----------------+------------------------+---------------------- 
           Total |       293         516  |       809      0.3622 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |          2.33379       |  1.265725    4.302563  (Cornfield) 
 Attr. frac. ex. |         .5715124       |  .2099393    .7675804  (Cornfield) 
 Attr. frac. pop |         .3189837       | 
                 +----------------------------------------------- 
                             chi2(1) =     7.55  Pr>chi2 = 0.0060 
 

 
 
Ex 3.2-3 Testing the hypothesis 
 
The three steps for hypothesis testing is as follows: 
 
 
Step 1 Overall test for association 
   The overall 2

1−cχ  is 7.88 with C-1 = 3-2 = 2 
df as shown in the oval of the above output from Stata (Ex. 
3.2-1). 
 



 69 
 
Step 2 Test for linear trend 
The chi-square test for trend 2

1χ  is 7.19 with 1 df 
corresponding to p-value = 0.007. Using Stata to get these 
results needs a few commands. First we need to obtain a data 
file. By using "tabi" with "replace option, we can have a 
summary form of the file as listed using the "list" command as 
shown below. 
 
 
. tabi 19 29 24 \ 497 560 269, replace 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |        19         29         24 |        72  
         2 |       497        560        269 |      1326  
-----------+---------------------------------+---------- 
     Total |       516        589        293 |      1398  
 
          Pearson chi2(2) =   7.8848   Pr = 0.019 
 
 
. list 
 
          row       col           pop  
  1.        1         1            19   
  2.        1         2            29   
  3.        1         3            24   
  4.        2         1           497   
  5.        2         2           560   
  6.        2         3           269   
 

 
Note that "row" variable represents carrier status and "col" 
variable represents tonsil size. The "pop" variable is the 
frequency of each combination of "row" and "col" variables. 
The "tabodds" command (see StataCorp., (1999), Volume 1: 
A-G, page 396-397) can be used for testing for linear trend. 
But we need to have the dependent dichotomous variable 
coded as 0 and 1. Thus we first use "recode" command (see 
StataCorp., (1999), Volume 3: P-St, page 136) for that purpose 
and followed by the "tabodds" command as follows:  
 
. recode row 2=0 
(3 changes made) 
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. tabodds row col [freq=pop] 
 
------------+------------------------------------------------------------- 
       col  |      cases     controls       odds      [95% Conf. Interval] 
------------+------------------------------------------------------------- 
         1  |         19          497    0.03823        0.02418   0.06045 
         2  |         29          560    0.05179        0.03565   0.07522 
         3  |         24          269    0.08922        0.05877   0.13546 
------------+------------------------------------------------------------- 
Test of homogeneity (equal odds): chi2(2)  =     7.88 
                                  Pr>chi2  =   0.0195 
 
Score test for trend of odds:     chi2(1)  =     7.19 
                                  Pr>chi2  =   0.0073 
 

Alternatively, one could use the "nptrend" command (see 
StataCorp., 1999, Volume 2: H-O, page 465-468) for 
performing test for trend. 
 
Followings are to show how the results above are achieved. In 
the absence of scores for tonsil size we will use -1, 0, 1. 

 ∴ χ 1
2  = 

[ ]
[ ]

1398 1398 19 24 72 516 293
72 1326 1398 293 516 293

2

2

( ) ( )
( ) (849 ) ( )

− + − − +

+ − − +
 

 

   = 
[ ]

[ ]
1398 1398 5 72 223

72 1326 1398 809 223

2

2

× + ×
× × − −( )

   

 
   = 7.19 
 
Step 3 Test for departure from linear trend 
The test for departures from a linear trend is 
 2

1−cχ  - χ 1
2  =  7.88  -  7.19  =  0.69 

which is clearly non-significant compared with a chi-square 
distribution with (C-1) - 1 = (3-1) - 1 = 1 df which yields p-
value = 0.406. The "disp chiprob()" command shown below 
can be used to obtain the chi-square probability.  
 
. disp chiprob(1, 0.69) 
.40616438 
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Thus there is a definite trend which may result in 
approximately equal increases in the proportion of carriers 
with increasing tonsil enlargement. In other words, almost all 
relationship between carrier status and tonsil size was 
explained by the linear trend. 
 
Ex 3.2-4 Summary findings 
Among the three groups based on tonsil size - 516 not 
enlarged, 589 enlarged, and 293 greatly enlarged, the 
proportion of the virus carriers were 3.7%, 4.9%, 8.2% 
respectively. That is, the proportion of the virus carrier 
increase as the tonsil size increased. Those who had enlarged 
tonsil size were 1.4 times as likely to be carriers of the virus as 
those who had not enlarged tonsil size (95%CI: 0.8 to 2.4). 
Likewise, those who had enlarged tonsil size were 2.3 times as 
likely to be carriers of the virus as those who had not enlarged 
tonsil size (95%CI: 1.3 to 4.3). There is a definite trend which 
may result in approximately equal increases in the proportion 
of carriers with increasing tonsil enlargement (The overall 
chi-square test for association = 7.88, p-value =  0.020; the chi-
square test for linear trend = 7.19, p-value = 0.007, and the 
test for departure from linear trend = 0.69, p-value = 0.406.). 
 
 
3.3.2 Row totals are fixed 
Now we demonstrate the approach for that the row totals are 
fixed and the column variable is ordinal. 
 
Example 3.3  
An experiment on the use of sulfones and streptomycin drugs 
in the treatment of leprosy from Cochran (1954) cited by 
Agresti (1990); page 101, leprosy patients with different 
severity levels of disease (little or much infiltration) were 
graded according to their improvement after treatment as 
follows. 
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Table 3.7  Number of leprosy patients for each degree of 

infiltration by level of changes in health - data for 
example 3.3 

 
Changes in Health  Degree of 

Infiltration Marked Moderate Slight Stationary Worse Total 
Little 11 27 42 53 11 144 
Much 7 15 16 13 1 52 
Total 18 42 58 66 12 196 

 

There are two questions of interest: 
i) Are the two groups (little vs much) homogeneous in their 

degree of improvement? 
 
ii) Is the degree of improvement the same in the two groups? 
 
Ex 3.3-1 Describing the proportions 
Followings are the row proportions. 

 
Little 0.076 0.188 0.292 0.368 0.076 1.0 
 
Much 0.135 0.288 0.308 0.250 0.019 1.0 

 
We can obtain these proportions using "tabi" command as 
follows: 
 
. tabi 11 27 42 53 11 \ 7 15 16 13 1, row chi2 
 
           |                          col 
       row |         1          2          3          4          5 |     Total 
-----------+-------------------------------------------------------+---------- 
         1 |        11         27         42         53         11 |       144  
           |      7.64      18.75      29.17      36.81       7.64 |    100.00  
-----------+-------------------------------------------------------+---------- 
         2 |         7         15         16         13          1 |        52  
           |     13.46      28.85      30.77      25.00       1.92 |    100.00  
-----------+-------------------------------------------------------+---------- 
     Total |        18         42         58         66         12 |       196  
           |      9.18      21.43      29.59      33.67       6.12 |    100.00  
 
          Pearson chi2(4) =   6.8807   Pr = 0.142 
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We can see that subjects with much infiltration are more 
likely to show an improvement than subjects with little 
infiltration. This suggests that the degree of improvement is 
differ. (The test hypothesis can provide how likely this 
difference could happen by chance - see Ex 3.3-3 below.) 
 
Ex 3.3-2 Estimating measure of effect 
Similar to the previous two examples, the "local" odds ratios 
might be used as the measure of association for the 2-by-C 
Table where the row total is fixed. Additionally, we can think 
of this problem as comparing continuous outcome between the 
two groups. One way of examining this is to score the 
categories of improvement and compare the mean scores 
across the two groups. One scoring scheme is to grade the 
responses 5, 4, 3, 2, and 1 corresponding to marked 
improvement through to a worsening of infiltration. The mean 
scores are given by 

f xi j ij
j

c

=
=

∑ π
1

   i  =  1,2 

where xj is the score corresponding to categories j. The higher 
score, the more the improvement. 
 
 
. tabi 11 53 42 27 11 \ 1 13 16 15 7, replace 
 
           |                          col 
       row |         1          2          3          4          5 |     Total 
-----------+-------------------------------------------------------+---------- 
         1 |        11         53         42         27         11 |       144  
         2 |         1         13         16         15          7 |        52  
-----------+-------------------------------------------------------+---------- 
     Total |        12         66         58         42         18 |       196  
 
          Pearson chi2(4) =   6.8807   Pr = 0.142 
 
 
. list 
 
          row       col           pop  
  1.        1         1            11   
  2.        1         2            53   
  3.        1         3            42   
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  4.        1         4            27   
  5.        1         5            11   
  6.        2         1             1   
  7.        2         2            13   
  8.        2         3            16   
  9.        2         4            15   
 10.        2         5             7 
 
 
. expand pop 
(186 observations created) 
 

At this stage we have a data file of 196 records where "row" 
variable refers to infiltration groups (i.e., 1= Little, 2=Much) 
and "col" is the degree of improvement (i.e., 1=Marked, 2=
 Moderate, 3=Slight, 4=Stationary, and 5=Worse).  
 
To estimate fj use 

$f x p
j

i j ij= ∑  

where p
n
nij

ij

i
=

+

 represents the proportion in row i falling into 

level j of variable 2. 
 
 

For simplicity of calculation, another scoring scheme is to 
grade the responses 3, 2, 1, 0, and -1 corresponding to marked 
improvement through to a worsening of infiltration. Thus the 
mean score for each group can be calculated as follows: 
 
$f1 = 3(.076) + 2(.188) + 1(.292) - .076   =  0.819 

 
$f 2  = 3(.135) + 2(.288) + 1(.308) - (.019)   =  1.269 
 
 

The difference of mean score between the two groups is $f 2  - $f1 
= 0.819 - 1.269 = 0.45. We can also think of this as using two-
sample t-test as follows. 
 
 
. replace row = 0 if row == 2 
(52 real changes made) 
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The above command is needed for coding the dependent 
variable to be 0 and 1 so that the difference is not negative and 
it is necessary for further analysis using "tabodds" command 
discussed in EX3.3-3 below. 
 
 
We now use "ttest" command (see StataCorp., (1999), Volume 
4: Su-Z, page 225-232) to estimate the difference of mean 
score between the two group. 
 
 
 
 
. ttest col, by(row) 
 
 
 
Two-sample t test with equal variances 
 
------------------------------------------------------------------------------ 
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
       0 |      52    3.269231     .145613    1.050031      2.9769    3.561561 
       1 |     144    2.819444    .0890535    1.068643    2.643413    2.995476 
---------+-------------------------------------------------------------------- 
combined |     196    2.938776    .0771119    1.079566    2.786695    3.090856 
---------+-------------------------------------------------------------------- 
    diff |            .4497863    .1721066                .1103461    .7892265 
------------------------------------------------------------------------------ 
Degrees of freedom: 194 
 
                      Ho: mean(0) - mean(1) = diff = 0 
 
     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0 
       t =   2.6134                t =   2.6134              t =   2.6134 
   P < t =   0.9952          P > |t| =   0.0097          P > t =   0.0048 
 

 
 
The difference of the mean score is 3.269231 - 2.819444 = 0.45. 
The mean score for each group were different from that were 
obtained previously (i.e., $f 2  - $f1 = 0.819 - 1.269) due to 
different scoring scheme while the difference is exactly the 
same (i.e., 0.45). This difference can be used as the magnitude 
of the effect. That is, the mean score of degree of improvement 
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of the "much infiltration" group was 0.045 greater than that 
of the " little infiltration" group (95%CI: 0.11 to 0.79). 
 
 
Note that the score is arbitrary. Thus it is difficult to interpret. 
This approach is much useful in the situation where the C 
variable is quantitative such as   diameter of leprosy wound 
classified as less the 10, 10 to 20, and 20 or more centimeters. 
Here in the current example it was a qualitative C variable. 
The local odds ratios could be used as the interpretation is 
straight forwards. Assign the "little infiltration" as a 
reference group, the local odds ratios for improvement were 
as follows: 
 
 
 
  . cci    13    1    53   11 
 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        13           1  |        14      0.9286 
        Controls |        53          11  |        64      0.8281 
-----------------+------------------------+---------------------- 
           Total |        66          12  |        78      0.8462 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         2.698113       |  .4015869           .  (Cornfield) 
 Attr. frac. ex. |         .6293706       | -1.490121           .  (Cornfield) 
 Attr. frac. pop |         .5844156       | 
                 +----------------------------------------------- 
                             chi2(1) =     0.89  Pr>chi2 = 0.3454 
 
 
 
. cci    16    1    42   11 
 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        16           1  |        17      0.9412 
        Controls |        42          11  |        53      0.7925 
-----------------+------------------------+---------------------- 
           Total |        58          12  |        70      0.8286 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         4.190476       |  .6288552           .  (Cornfield) 
 Attr. frac. ex. |         .7613636       | -.5901912           .  (Cornfield) 
 Attr. frac. pop |         .7165775       | 
                 +----------------------------------------------- 
                             chi2(1) =     2.00  Pr>chi2 = 0.1568 
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. cci    15    1    27   11 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        15           1  |        16      0.9375 
        Controls |        27          11  |        38      0.7105 
-----------------+------------------------+---------------------- 
           Total |        42          12  |        54      0.7778 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         6.111111       |  .8989672           .  (Cornfield) 
 Attr. frac. ex. |         .8363636       | -.1123876           .  (Cornfield) 
 Attr. frac. pop |         .7840909       | 
                 +----------------------------------------------- 
                             chi2(1) =     3.36  Pr>chi2 = 0.0670 
 
. cci   7    1    11   11 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |         7           1  |         8      0.8750 
        Controls |        11          11  |        22      0.5000 
-----------------+------------------------+---------------------- 
           Total |        18          12  |        30      0.6000 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |                7       |  .9089896           .  (Cornfield) 
 Attr. frac. ex. |         .8571429       | -.1001226           .  (Cornfield) 
 Attr. frac. pop |              .75       | 
                 +----------------------------------------------- 
                             chi2(1) =     3.44  Pr>chi2 = 0.0637 

 
Again, subjects with much infiltration are more likely to show 
an improvement than subjects with little infiltration. That is, 
the odds of improvement among "much infiltration" as 
compared to that of among "little infiltration" group was 2.7, 
4.2, 6.1, and 7.0.  
 
Ex 3.3-3 Testing the hypothesis 
The null hypothesis of no difference is 

H0 : f1 = f2 = f  
The estimate fj use the formula shown above, for the variance 
of $f   we use 

var$ ( $ )

$

f

x p f
j

ni

j ij i

i
=

−∑

+

2 2

 

 
The test statistic based on the Neyman chi-square is 
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f f
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=
−

+
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$ ( $ ) $ ( $ )

1 2
2

1 2var var
 

 
which has a chi-square distribution with 1 df. 
Followings are the example of calculating for the Neyman chi-
square.  

var$ ( $ )f1 =
1

144
{[9(.076) + 4(.188) + (.292) + (.076)] - .8192} 

    = 0.0079 
 
var$ ( $ )f 2 =0.0208 
 
The Neyman chi-square can be calculated as  

   Q = 
(. . )
(. . )
819 1269
0079 0208

2−
+

  =  7.06 

 
Comparing this with chi-square distribution of 1 df leads us to 
reject H0 and conclude that subjects with much infiltration 
show a greater degree of improvement (p-value = 0.007). 
 
. disp chiprob(1, 7.06) 
.0078824 

 
Analyzed these data using the chi-square test for trend (that 
is, assuming that the column totals are fixed), the method 
gives χ 1

2 = 6.63 (p-value = 0.01 as shown below. 
 
. tabodds row col 
------------+------------------------------------------------------------- 
       col  |      cases     controls       odds      [95% Conf. Interval] 
------------+------------------------------------------------------------- 
         1  |         11            1   11.00000        1.42017  85.20081 
         2  |         53           13    4.07692        2.22272   7.47791 
         3  |         42           16    2.62500        1.47591   4.66874 
         4  |         27           15    1.80000        0.95755   3.38365 
         5  |         11            7    1.57143        0.60918   4.05364 
------------+------------------------------------------------------------- 
Test of homogeneity (equal odds): chi2(4)  =     6.85 
                                  Pr>chi2  =   0.1443 
 
Score test for trend of odds:     chi2(1)  =     6.63 
                                  Pr>chi2  =   0.0100 
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Alternatively, the test for trend can be obtained by comparing 
the median (rank) score of tonsil enlargement between the two 
groups of degree of infiltration. The score of 1 to 5 can be best 
using Mann-Whitney-U-test. The command "ranksum" (see 
StataCorp., (1999), Volume 3: P-St, page 316-322)can handle 
this. 
 
. ranksum col, by(row) 
Two-sample Wilcoxon rank-sum (Mann-Whitney) test 
     row |      obs    rank sum    expected 
---------+--------------------------------- 
       0 |       52        5993        5122 
       1 |      144       13313       14184 
---------+--------------------------------- 
combined |      196       19306       19306 
 
unadjusted variance   122928.00 
adjustment for ties    -9209.14 
                     ---------- 
adjusted variance     113718.86 
 
Ho: col(row==0) = col(row==1) 
             z =   2.583 
    Prob > |z| =   0.0098 
 
 

Since Z is equivalent to chi-square with one degree of 
freedom, thus given Z of 2.583, the equivalent χ 1

2 is 6.67, as 
computed below. 
 
. disp 2.583^2 
6.671889 
 
 

This ( χ 1
2 = 6.67) was slightly different from chi-square test for 

trend ( χ 1
2= 6.63) obtained using the "tabodds" command as 

shown above. They lead to the same p-value of 0.01. 
For the overall test for association (using Pearson’s chi-
square) is 2

1−cχ = 6.88 with 4 df (see the output in Ex.3.3-1 
shown in the rectangular) which is non-significant (p-value = 
0.14). These results are identical to those obtained using the 
second method described above if the Pearson chi-square is 
used (based on the variances of $f1 and $f 2  calculated under H0) 
instead of the Neyman chi-square as calculated here. 



 80 
 
Test for departure from linear trend is 6.88 - 6.67 = 0.21. The 
degree of freedom is (C-1) - 1 = (5-1) - 1 = 3. The p-value is 
0.976 as shown below.  
 
. disp chiprob(3, 0.21) 
.97595904  

 
This suggested that almost all observed variation between the 
group of degree of infiltration were attributed to the linear 
trend in changes of degree of improvement. 
 
 
Notes: 
i)  Ignoring the ordinality of the degree of improvement, the 

test suggested no sufficient evidence of the association  (p-
value = 0.14) whereas the test for trend (i.e., accounted for 
the ordering) suggested a strong evidence (p-value = 0.01). 
Thus it is necessary to consider the ordinal nature of the C 
variable. 

ii) We can fail to reject H0 of homogeneity but reject the 
hypothesis of no difference in degree of improvement. This 
will occur when one hypothesis is global with many df and 
the other is specific with few df. The consensus is that the 
more specific hypothesis is more sensitive and therefore 
more appropriate. 

iii) Choice of scores is arbitrary - here we assumed that the 
levels of improvement were equally spaced. The Neyman 
chi-square will not change as long as this assumption is met 
regardless of the actual values of the scale. If the scale is not 
equally spaced the statistic will be affected. If the ordinal 
variable represents a continuous variable that has been 
categorized, then the midpoint of each interval defining the 
categories could be used as the scores. 
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Ex 3.3-4 Summary findings 
Among 144 patients who had little infiltration, the proportion 
of marked improvement through to a worsening of infiltration 
were 7.6%, 18.8%, 29.2%, 36.8%, and 7.6% respectively. 
Whilst for the patients who had much infiltration, the 
corresponding proportion were 13.5%, 28.8%, 30.8%, 25.0%, 
and 1.9% respectively. The odds of improvement from 
worse to stationary, slightly, moderate, and marked 
improvement among "much infiltration"  as compared to that 
of among "little infiltration" group was 2.7, 4.2, 6.1, and 7.0 
respectively. The degree of improvement between the two 
groups was statistically significant (p-value = 0.01). Almost all 
observed variations between the group based on degree of 
infiltration were attributed to the linear trend in changes of 
degree of improvements. Overall chi-square test for 
association = 6.88 with 4 df, the chi-square-test for trend = 
6.67 with 1 df, and thus the chi-square test for departure from 
linear trend = 0.21 with 3 df. 
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Exercise 
 
 
1. Helmes and Fekken (1986) cited by Agresti (1990); page 

72 reported the numbers of psychiatric patients by their 
diagnoses and by whether or not their treatment included 
drugs. The data are  shown in the table. 

 
Diagnosis Drugs No Drugs 

Schizophrenia 
Affective disorder 
Neurosis 
Personality 
disorder 
Special symptoms 

105 
12 
18 
47 
0 

8 
2 
19 
52 
13 

 
i) Test the hypothesis of independence between 

diagnosis and prescription of drugs. 
 
ii) Comment on the appropriateness of the test you 

used. 
 
iii) Summarise your findings. 

 
 
 
2.  Doll and Hill (1952) cited by Agresti (1990); page 31 

presented data from a case-control study of lung cancer 
and tobacco smoking among patients in hospitals in several 
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English cities. The table compares male lung cancer 
patients with control patients having other diseases, 
according to the average number of cigarettes smoked daily 
over a ten-year period preceding the onset of the disease. 

 
 Disease Group 

Av. No. cigarettes 
per day 

Lung Cancer 
Patients 

Control 
Patients 

None 
<5 

5-14 
15-24 
25-49 
50+ 

7 
55 
489 
475 
293 
38 

61 
129 
570 
431 
154 
12 

 
i) Is there an association between disease group and 

cigarette smoking? 
 
ii) Perform a test of trend to determine whether or not 

lung cancer patients tend to smoke more than control 
patients. 

 
iii) Calculate the odds ratio for each level of smoking 

using ‘None’ as the reference category. Comment on 
the results. 

 
iv) Compute the odds ratios for each pair of adjacent 

levels of smoking. Comment on the pattern of 
association. 

 
v) Comment on the choice of controls in this study. Is it 

likely to bias the results? Explain your answer. 
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Chapter Objectives 
 
After completing this chapter, readers should be able 

to: 
• state the null hypothesis and statistical test 

appropriate to an R-by-C  table in the case of i)
 row and column totals fixed; ii) row totals 
fixed; and iii) sample size only fixed; 

• describe and interpret measures of association 
suitable for R-by-C  tables when:  i) the 
variables are nominal; and ii) the variables are 
ordinal; 

• explore patterns  of association in an R-by-C 
table using cell proportions, cell chi-square, and 
local odds ratios; and 

• interpret the results from the analysis. 
 

Chapter 4 

Analysis of R-by-C Tables
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Contents 
 

4.1 Introduction 

An R-by-C Table refers to the contingency tables with more 
than two rows and two columns. The interpretation of the 
patterns of association is less clear and more detailed analysis 
may be necessary to decide where in the table any departures 
from independence arise. In addition, one or both variables 
may be ordered. 
 

Below is a general form of the R-by-C Table. 
 

Table 4.1  Notation of observed data 
  Variable 2  
  1 2 ... c  
 1 n11 n12 ... n1c n1+ 
 2 n21 n22 ... n2c n2+ 
Variable 1 … ... ... ... ... ... 
 r nr1 nr2 ... nrc nr+ 
  n+1 n+2 ... n+c n++ 
 
Table 4.2  Notation of population proportions  
  Variable 2  
  1 2 ... c  
 1 π11 π12 ... π1c π1+ 
 2 π21 π22 ... π2c π2+ 
Variable 1 … ... ... ... ... ... 
 r πr1 πr2 ... πrc πr+ 
  π+1 π+2 ... π+c π++ 
where  nij  are observed cell counts  i  = 1, ..., r and  j  =  1, ..., c. 
 

[see details in Everitt (1977); page 16-21] 
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4.2 Measures of Association 

A large number of measures of association for R-by-C  tables 
have been proposed. Statistical packages print out a number 
of them. A section of Everitt (1977); page 56-66 describes some 
to them. Selvin (1995); page 273-288 provide an example and 
computer output using Stata. Followings are  summaries of 
the most common use measure of associations.  
 
4.2.1 Odds Ratios 
Agresti (1990); page 18-19 described the odds ratio for R-by-C 
Tables quite comprehensive. Odds ratios are also useful for 
describing contingency tables larger than 2 × 2. Odds ratio for 
R-by-C  tables can use each of the ( )r

2  = r(r - 1)/2 pairs of rows 
in combination with each of the ( )c

2  = c(c - 1)/2 pairs of 
columns. For  rows i and i’ and columns j and j’, the odds 
ratio πijπi’j’ /πij’ πi’j uses four cells in a rectangular pattern. 
There are  ( )r

2 ( )c
2   odds ratios of this type. 

 
However this set of odds ratios contains much redundant 
information. Consider the subset of (r - 1)(c - 1) ‘local’ odds 
ratios. 
 

 ψ
π π
π πij

i j i j

i j i j
=

+ +

+ +

, ,

, ,

1 1

1 1
 

i r
j c

= −
= −

1 1
1 1

,... ,
,... ,

 
These ‘local’ odds ratios use cells in adjacent rows and 
adjacent columns. These (r-1)(c-1) odds ratios determine all 
( )r

2 ( )c
2  odds ratios formal by pairs of rows and pairs of columns 

(see example below). 
 
The construction for a minimal set of odds ratios is not 
unique. Another basic set is: 
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icrj

rcij
ij ππ

ππ
ψ =  

i r
j c

= −
= −

1 1
1 1

,... ,
,... ,

 
Each odds ratio uses the rectangular pattern of cells 
determined by rows i and r and columns j and c. 
 
In summary for R-by-C  tables, it is rarely possible to 
summarize association by a single number without some loss 
of information. However, summary indices can describe 
certain features of the association. 
 
4.2.2 Summary measures of association 
While there are more than one local odds ratios to indicate the 
degree of association for a R-by-C Table, a single 
measurement is needed to summarize as a global association. 
Some of these had been described in Agresti (1990); page 18-
19, page 19-26. Selected measures of association which are 
commonly used, by each situation, are as follows: 
 

4.2.2.1  One or both variables are nominal 
 
i) Cramer's V 

It is a transformation of chi-square statistics. It has no 
probabilistic interpretation. That is, we cannot 
express in words in terms of probability or errors in 
prediction (Everitt, 1977, page 63). For complete 
association, it may not be equal to 1.0. Thus it has a 
little useful. The formula and a computational 
example can be found in Selvin (1995); page 273. 

  
ii) Lambda (λ) 

It involves two estimate probabilities - one is the 
maximum probability of predicting that an 
observation belongs to a specific row and another is 
the maximum probability of predicting that an 
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observation belongs to a specific row given that the 
observation belongs to specific column. Everitt (1977); 
page 60-61 classify the lambda into two main 
categories - asymetric (λR and λC) and symmetric (λ) 
depending on that whether or not we have an 
explanatory and a dependent variable, i.e., row or 
column variable is given beforehand or either one, 
respectively. The value of λ is 0 if the row variable 
cannot be predicted from knowledge of the column 
variable. Thus the value of λ different from 0 
indicates the degree of association. In other words, it 
is simply the proportional reduction in error. 
Formula and a work example is given by Selvin 
(1995); page 273-275. 

 
4.2.2.2  Both of the variables are ordinal 
i) Kendall's Tau statistics (τ) 

It is a measure of correlation between two sets of rank 
data. This statistics have no obvious probabilistic 
interpretation. Its value may not ranged from -1 to 1. 
There are three type of Tau statistics - τa is not 
applicable for contingency table data;  τb and τc may 
have the value ranged between -1 and 1 only in 
certain situation such as when the sample size is 
sufficiently large (Everitt, 1977, page 63). 

ii) Gamma coefficient (γ) 
It is a special case of rank correlation coefficient 
which has probabilistic interpretation. That is, its 
value ranged from -1 to 1 where 1 indicates a 
complete association that all data are on the main 
diagonal and -1 also indicates a complete association 
but that all data are on the other diagonal of the table. 
Value of  γ near 0 indicates weak association (see 
Everitt, 1977, page 63). The γ is suitable for qualitative 
ordinal variables where the score is arbitrary such as 
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disease improvement, level of severity, etc. The 
coefficient is based on rank. Formula and a work 
example is given by Selvin (1995); page 276-278. 

 
iii) Somer's d (dyx) 

It is suitable for asymmetric situation where we have 
an explanatory variable and a dependent variable. 
This coefficient has similar interpretation to that of γ 
(see Everitt, 1977, page 63). 

 
iv) Correlation coefficient (r) 

This is Pearson's correlation coefficient. It has the 
properties similar to rank correlation but this not 
based on rank but on the meaningful numerical 
values. Thus it is suitable for quantitative ordinal 
variable such as age, blood pressure, etc. Formula and 
a work example is given by Selvin (1995); page 278-
279. 

 
Stata provides Crames'V, Gamma, and  τb (see later in the 
example).  
 
4.3 Test of Association  

Followings are summaries of test statistics for R-by-C Tables. 
They lead to the same conclusion for large sample. For small 
sample, caution is needed in choosing the appropriate 
methods. Details can be found in Agresti (1990); page 47-49. 
 
4.3.1 Both Sets of Margins Fixed 

H0  is the hypothesis of randomness 
Distribution  - multivariate hypergeometric 
 
Test Statistic  
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- Large sample : Q  =  
( )n

n p
++

++

−1 2χ  

   where χ p
2  is the usual Pearson chi-square. 

 
- Small sample : Freeman Halton Conditional Exact Test 
 

4.3.2  Row Margins Fixed 
H0 is the hypothesis of row homogeneity 
Distribution - product multinomial 
Test Statistic - Pearson chi-square ( χ p

2 ) or 
Likelihood ratio test (G2) 

 
4.3.3  Sample Size Fixed 

H0 is the hypothesis of independence 
Distribution - full multinomial 
Test Statistic - Pearson chi-square ( χ p

2 ) or 
Likelihood ratio test (G2) 

 
Note that the three large sample models (Q, χ p

2 , and G2)lead 
to the same expected cell frequencies and the same test 
statistics. The exact test can be found in Agresti (1991); page 
59-67 and also the last chapter of this book.  
 
 
 
Example 4.1  
 
Hypothetical data of a study to determine the association 
between blood group and psychiatric disorder among 200 
psychiatric patients at a hospital. The data are as follows: 
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Table 4.3  Number of psychiatric disorder patients by blood 

group - data for example 4.1 
 

Blood group Psychiatric 
disorder A B AB O 

 
Total 

Schizophrenia 7 25 20 28 80 
Neurosis 12 20 16 10 58 

Depressed 30 10 10 12 62 
Total 49 55 46 50 200 

 
 
Note that these data have no natural ordering although 
psychiatric disorder may be considered an ordinal variable. 
(The exercise at the end of this Chapter involves two ordinal 
variables.) 
 
Ex 4.1-1 Describing the proportions 
Assuming the column totals are fixed, the proportions of each 
type of psychiatric disorders for each group of blood group 
(shown below) suggest a rough meaningful magnitude and 
pattern of the association.  
 
Table 4.4  Percentages of psychiatric disorder patients by 

blood group - from the data of example 4.1 
 

Blood group Psychiatric disorder 
A B AB O 

Schizophrenia 8.8% 31.3% 25.0% 35.0% 
Neurosis 20.7% 34.5% 27.6% 17.2% 

Depressed 48.4% 16.1% 16.1% 19.4% 
Total 24.5% 27.5% 23.0% 25.0% 

 
 
The "tabi" command (see StataCorp., 1999, Volume 4: Su-Z, 
page 144-152) can be used to obtained these proportion as 
follows: 
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. tabi 7 25 20 28 \ 12 20 16 10 \ 30 10 10 12, row  
 
           |                     col 
       row |         1          2          3          4 |     Total 
-----------+--------------------------------------------+---------- 
         1 |         7         25         20         28 |        80  
           |      8.75      31.25      25.00      35.00 |    100.00  
-----------+--------------------------------------------+---------- 
         2 |        12         20         16         10 |        58  
           |     20.69      34.48      27.59      17.24 |    100.00  
-----------+--------------------------------------------+---------- 
         3 |        30         10         10         12 |        62  
           |     48.39      16.13      16.13      19.35 |    100.00  
-----------+--------------------------------------------+---------- 
     Total |        49         55         46         50 |       200  
           |     24.50      27.50      23.00      25.00 |    100.00  
 

 
 
Cell chi-square were as follows:  
 
Table 4.5  Cell chi-square of psychiatric disorder patients by 

blood group - from the data of example 4.1 
 
 

Blood group Psychiatric 
disorder A B AB O 

Schizophrenia 8.10 0.41 0.14 3.20
Neurosis 0.34 1.03 0.53 1.40
Depressed 14.44 2.92 1.27 0.79

 
Comparing these with 1 degree of freedom, only the two cells 
(displayed in italic bold letters) are significant. This suggested 
that Blood group A with Schizophrenia or Depressed 
contribute greatly to the association between "blood group" 
and "psychiatric disorder". 
 
Note :  Example  of  calculating  the  cell  chi-square  for  the  

first  cell is    [(O- E)2 / E] = {[7- (49×80/200)]2} / 
(49×80/200)} = 8.1. The chi-square which greater than 
a critical value of 3.84 (i.e., χ 1

2 at α = 0.05) is said to 
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be significant. That is, the observed frequency is 
different, beyond chance, from what would be 
expected if there was no association between the two 
variables.   

 
 
Ex 4.1-2 Estimating measure of effect 
 
Calculating “local” odds ratios for adjacent rows and columns 
for the 3-by-4 Table we can have 6 odds ratios altogether. It is 
not easy to interpret all these in words since they are almost 
another raw data. Thus odds ratios are not useful in this 
situation. However we will illustrate their calculations as 
follows: 
 

47.0
2512
207

11 =
×
×

=OR  47.0
2012
167

12 =
×
×

=OR      

21.0
2812
107

13 =
×
×

=OR  

 

20.0
2030
1012

21 =
×
×

=OR  25.0
1630
1012

22 =
×
×

=OR      

48.0
1030
1212

23 =
×
×

=OR  

 
 
Thus, in all case, those who have blood group A are less likely 
to get severe psychiatric disorder than those whose blood 
group is B, AB, or O. 
 
Now consider a "single" summary measure of association. The 
following Stata command provides some of them. 
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. tabi 7 25 20 28 \ 12 20 16 10 \ 30 10 10 12, row all 
 
           |                     col 
       row |         1          2          3          4 |     Total 
-----------+--------------------------------------------+---------- 
         1 |         7         25         20         28 |        80  
           |      8.75      31.25      25.00      35.00 |    100.00  
-----------+--------------------------------------------+---------- 
         2 |        12         20         16         10 |        58  
           |     20.69      34.48      27.59      17.24 |    100.00  
-----------+--------------------------------------------+---------- 
         3 |        30         10         10         12 |        62  
           |     48.39      16.13      16.13      19.35 |    100.00  
-----------+--------------------------------------------+---------- 
     Total |        49         55         46         50 |       200  
           |     24.50      27.50      23.00      25.00 |    100.00  
 
          Pearson chi2(6) =  34.5648   Pr = 0.000 
 likelihood-ratio chi2(6) =  34.4582   Pr = 0.000 
               Cramer's V =   0.2940 
                    gamma =  -0.3707  ASE = 0.082 
          Kendall's tau-b =  -0.2683  ASE = 0.061 
 

From the above output, neither Gamma nor Kendall's tau-b 
can be used for this problem since these two measures of 
association regards the blood group and psychiatric disorder 
as continuous which is not appropriate. Only Cramer's V can 
be used. We can also use Lambda coefficient (λ) which did not 
provided by Stata. However it can be easily calculated. 
 
The problem illustrates a situation where the row variable 
(i.e., Psychiatric disorder) can be predicted from knowledge of 
the column variable (i.e., Blood group). Therefore, the λc is an 
appropriate measure of association (see Selvin, 1995, page 274 
for more details). This data gives λc = [(30+25+20+28)-80] / 
(200-80) = 0.19. The Cramer's V = 0.29. These are slightly 
different from 0 indicating a weak association.  
 
Ex 4.1-3 Testing the hypothesis 
Based on the above Stata output, the 2

6χ  = 34.56. Thus there is 
a statistically significantly association between blood group 
and psychiatric disorder (p-value < 0.001).  
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Ex 4.1-4 Summary findings 
Those who have blood group A are less likely to get severe 
psychiatric disorder than those whose blood group is B, AB, 
or O (see the proportions and odds ratios shown earlier. There 
is a statistically significantly association between blood group 
and psychiatric disorder (p-value < 0.001). Blood group A 
with "Schizophrenia" or "Depressed" contributed greatly to 
the association. However the magnitude of such association is 
small. That is, knowing blood group can predict a little about 
whether or not people has psychiatric disorder (λc = 0.19). 
Cramer's V of 0.29 also suggested a weak association between 
the two variables. 
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Exercise 
Senie et al (1981) studied factors related to breast self-
examination (BSE) among 1216 women with breast cancer. 
The data for age group and frequency of BSE are given below. 

 
Frequency of BSE Age 

Monthly Occasional Never 
Total 

< 45 91 90 51 232 
45 - 59 150 200 155 505 
60 + 109 198 172 479 
Total 350 488 378 1216 

 
i)  Is frequency of BSE dependent of age? 
ii)  Describe the patterns of association between age and 
frequency of BSE.  
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Chapter Objectives 
 
After completing this chapter, readers should be able 

to: 
• describe the properties of marginal homogeneity 

and symmetry for a K-by-K Table; 
• identify appropriate tests for the hypotheses of 

marginal homogeneity and symmetry for a K-by-K 
Table; 

• calculate a measure of agreement for two observers 
and test whether the observed agreement is better 
than that expected by chance for i) for a nominal 
classification scale and  ii) for an ordinal 
classification scale; 

• interpret the results from the analysis. 
 

Chapter 5 

Analysis of Square Tables
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Contents 
 
5.1 Introduction 

A square table is the contingency tables with more than two 
rows and two columns where the cell frequencies represent the 
number of pair for each combination of the independent 
variable. I can be referred to the K-by-K Table where K is the 
number of categories of the dependent variable. The data are 
obtained by that the same subjects are measured twice or a 
measurement is made on a paired of subject. Thus the number 
of rows and columns is automatically equal. It is a general 
form of the matched contingency tables. The matched 2-by-2 
Table described in Chapter 2 is a special case of the square 
tables. In such case, the outcome is dichotomous. This Chapter 
involves polytomous outcome. Note that the R-by-C Table 
where R is equal to C such as a 3-by-3 Table as shown in the 
exercise of the previous Chapter cannot be considered a 
square table. The main distinction here is that the data is not 
from a matched study.  
 
There are two main types of data for the square tables: 
 
5.1.1  Observer agreement data - two observers each classify 

the same subjects using k- point categorical scale.  Two 
questions are of interest : 
i)  Do the observers use the categories of the scale with 

the same frequency?  This is marginal 
homogeneity. 

ii) What is the extent of the agreement  between the 
observers ? 

 
5.1.2 Repeated measures data - patients classified on a k-

point scale before and after treatment. The question of 
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interest is that whether there is improvement after 
treatment? So the data off the diagonal (indicating 
change) are concentrated in the appropriate triangle 
(lower left or upper right)?  This  is symmetry. 

 
Below is a general form of the square Table. 
 
 
Table 5.1  Notation of observed data 
 

  Obsever 2  
  1 2 ... k  
 1 n11 n12 ... n1k n1+ 
 2 n21 n22 ... n2k n2+ 
Observer 1 … ... ... ... ... ... 
 k nk1 nk2 ... nkk nk+ 
  n+1 n+2 ... n+k n++ 

 
Table 5.2  Notation of population proportions 
   

  Obsever 2  
  1 2 ... k  
 1 π11 π12 ... π1k π1+ 
 2 π21 π22 ... π2k π2+ 
Observer 1 … ... ... ... ... ... 
 k πk1 πk2 ... πkk πk+ 
  π+1 π+2 ... π+k π++ 

where  nij  are observed cell counts  i  = 1, ..., k and  j  =  1, ..., 
k. 

 
 
5.2 Tests of Marginal Homogeneity and Symmetry 

For the 2-by-2  Tables, the hypothesis of marginal 
homogeneity is  
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HM  :  πi+ =   π+i , i = 1, 2.  

 
Thus π11  + π12   =  π11   +  π21. That is, π12  =    π21   and this is 
symmetry (HS).  
Similarly, π21   + π22   =  π12   +  π22,  ie π21   =  π12  which is 
the same as the above case. In other words, it lead to  

 
HS: π12  =    π21.  

 
So HM ≡ HS. McNemar’s chi-square test can be used to test 
this hypothesis 
 
For the K-by-K Tables where K is greater than 2, marginal 
homogeneity can be addressed via symmetry and asymmetry. 
Total symmetry (or interchangeability) is given by 
    
 HS  :  πij = πji  for  i, j  =  1, ..., k 
 
Homogeneity of marginal distributions is given by 
 
 HM :  πi+   =  π+i  for  i  =  1, ..., k 
 
Thus if there is symmetry, there has to be marginal 
homogeneity. But if there is marginal homogeneity, it is not 
necessary symmetry. 
 
Symmetry  refers to that the probability that an observation 
falls in the (i, j) cell of a square table is the same as the 
probability that it falls in the (j, i) cell of the table. It requires 
that the expected marginal total for any one row of the table, 
say the kth row, is the same as the expected marginal total for 
the corresponding kth column (Stasny and Bauer, 1990). The 
hypothesis of symmetry is thus very restrictive. A more useful 
concept is that of quasi-symmetry. The quasi-symmetry does 
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not require the equality of expected row and column totals. It 
is a useful method for studying marginal homogeneity.  
Symmetry is equivalent to quasi symmetry and marginal 
homogeneity holding simultaneously. The interpretation of the 
quasi-symmetry is that there is symmetry in the observed data 
once one has taken into account the difference in the row and 
column totals (Stasny and Bauer, 1990). Agresti (1990); page 
347-365 provide details on the test for Marginal Homogeneity 
and Symmetry. 
 
 
5.3 Measuring Agreement 

Details of measuring agreement described in the whole 
Chapter 13 of Fleiss (1981); page 212-236 is recommended. 
Another approaches were given by Agresti (1990); page 365-
373. Altman (1991); page 403-409 provided a practical guide 
of the analysis, reporting, and interpretation. Followings is 
summary of important issues.  
 
When two (or more) observers are asked to allocate subjects 
to two or more categories, we may be interested in the level of 
agreement (or concordance) between the observers. By 
agreement we mean the extent to which the observers both 
allocated a subject to the same category.  We are not 
interested in association (the degree to which one observer’s 
ratings predict or are associated with the other observers) but 
the extent to which they are the same. 
 

5.3.1 Nominal Scale : Responses on the main diagonal 
indicate agreement. If the observers act independently 
and allocate categories at random according to their 
marginal distributions, then the amount of agreement 
that ‘can occur by chance’. We need a ‘chance corrected 
measure of agreement’ called "Kappa" statistics. The 
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kappa statistic measure of agreement is scaled to be 0 
when the amount of agreement is what would be 
expected to be observed by chance and 1 when there is 
perfect agreement.  

 
5.3.2 Ordinal Data : Kappa does not give any partial credit for 

disagreements at different levels. For example, 
disagreements that involve only one category compared 
to disagreements involving distant categories. Thus we 
need a weighted kappa. 

 
For intermediate values, Landis and Kock (1977); page 165 
suggest the following interpretations of agreement: 
 

Below 0.0 Poor 
0.00 – 0.20 Slight 
0.21 – 0.40 Fair 
0.41 – 0.60 Moderate 
0.61 – 0.80 Substantial 
0.81 – 1.00 Almost perfect 

 
 
Example 5.1  
We use a hypothetical data set adapted from Selvin (1995); 
page 274 to illustrate the concepts of analysis the repeated 
measurement data. We suppose the data is from a study to 
determine effect of an intervention on patients' satisfaction. 
One hundred and fifty subjects were asked their level of 
satisfaction (1= dissatisfy, 2=neutral, and 3=satisfy) before and 
after implementation of the intervention. The data are shown 
below. 
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Table 5.3  Number of patients for each level of satisfaction 

before and after the intervention - data for 
example 5.1 

 
After  

Before dissatisfy neutral satisfy 
 

Total 
dissatisfy 7 25 20 52 
neutral 12 20 16 48 
satisfy 30 10 10 50 

Total 49 55 46 150 
 
 
Ex 5.1-1 Describing the proportions 
About one third of patients rated themselves similarly in 
dissatisfy, neutral, and satisfy to the standard procedure 
before the intervention (i.e., 34.7%, 32.0%, and 33.3% 
respectively) and after the intervention (i.e., 32.7%, 36.7%, 
and 30.7% respectively). Note than for "tabi" command see 
StataCorp. (1999), Volume 4: Su-Z, page 144-152. 
 
 
 
. tabi 7 25 20 \ 12 20 16 \ 30 10 10, row col 
 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |         7         25         20 |        52  
           |     13.46      48.08      38.46 |    100.00  
           |     14.29      45.45      43.48 |     34.67  
-----------+---------------------------------+---------- 
         2 |        12         20         16 |        48  
           |     25.00      41.67      33.33 |    100.00  
           |     24.49      36.36      34.78 |     32.00  
-----------+---------------------------------+---------- 
         3 |        30         10         10 |        50  
           |     60.00      20.00      20.00 |    100.00  
           |     61.22      18.18      21.74 |     33.33  
-----------+---------------------------------+---------- 
     Total |        49         55         46 |       150  
           |     32.67      36.67      30.67 |    100.00  
           |    100.00     100.00     100.00 |    100.00 
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Among a total of 150 patients, 25 (16.7%) change from the 
dissatisfy to the neutral response while there were only 12 
(8.0%) changes in the opposite direction. For the change 
between dissatisfy and satisfy, 20 (13.3%) change from the 
dissatisfy to the satisfy response whereas there were 30 
(20.0%) changes in the opposite direction. For the change 
between satisfy and neutral, 16 (10.7%) change from the 
neutral to the satisfy response whereas there were 10 (6.7%) 
changes in the opposite direction. If we consider the change 
between dissatisfy and satisfy the most important (i.e., more 
weight) we conclude that the intervention tend to reduce the 
patients' satisfaction.  
 
Ex 5.1-2 Testing the hypothesis 
 
There was a significant change in patients' satisfaction  
(symmetry test chi-square (3df) = 7.95; p-value = 0.047). This 
result is from asymptotic (i.e., large sample) test which is the 
same as that from the exact test. In a small sample size we 
need to quote the exact test results. 
 
As indicated by the black arrow shown below, cell n12 and n21 
contribute most to the symmetry chi-square. These 
correspond to changes between the dissatisfy and neutral 
categories. That is, among a total of 150 subjects, 25 (16.7%) 
change from the dissatisfy to the neutral response while there 
were only 12 (8.0%) changes in the opposite direction.  
 
. tabi 7 25 20 \ 12 20 16 \ 30 10 10, replace 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |         7         25         20 |        52  
         2 |        12         20         16 |        48  
         3 |        30         10         10 |        50  
-----------+---------------------------------+---------- 
     Total |        49         55         46 |       150  
 
          Pearson chi2(4) =  27.1285   Pr = 0.000 
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. list 
 
          row       col           pop  
  1.        1         1             7   
  2.        1         2            25   
  3.        1         3            20   
  4.        2         1            12   
  5.        2         2            20   
  6.        2         3            16   
  7.        3         1            30   
  8.        3         2            10   
  9.        3         3            10 
 
 
 
 
 
. symmetry row col [freq=pop], contrib mh trend exact 
 
----------+--------------------------- 
          |            col             
      row |   1      2      3    Total 
----------+--------------------------- 
        1 |    7     25     20     52  
        2 |   12     20     16     48  
        3 |   30     10     10     50  
          |  
    Total |   49     55     46    150  
----------+--------------------------- 
 
                  Contribution 
                   to symmetry 
   Cells           chi-squared 
--------------   -------------- 
 n1_2 & n2_1          4.5676 
 n1_3 & n3_1          2.0000 
 n2_3 & n3_2          1.3846 
 
                                        Chi-Squared    df      Prob>chi2 
--------------------------------------+--------------------------------- 
Symmetry (asymptotic)                 |      7.95      3         0.0470 
Marginal homogeneity (Stuart-Maxwell) |      0.80      2         0.6714 
Marginal homogeneity (Bickenboller)   |      0.73      2         0.6937 
Marginal homogeneity (no diagonals)   |      0.73      2         0.6949 
--------------------------------------+--------------------------------- 
Linear trend in the (log) RR          |      0.00      1         0.9508 
--------------------------------------+--------------------------------- 
Symmetry (exact significance probability)                        0.0473 
 

 
Note that for "symmetry" command see StataCorp., (1999), 
Volume 4: Su-Z, page 112-119. 
 
Ex 5.1-3 Summary findings 
On average, about one third of patients rated themselves 
similarly in dissatisfy, neutral, and satisfy to the standard 
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procedure before the intervention (i.e., 34.7%, 32.0%, and 
33.3% respectively) and after the intervention (i.e., 32.7%, 
36.7%, and 30.7% respectively). Among a total of 150 
patients, 25 (16.7%) change from the dissatisfy to the neutral 
response while there were only 12 (8.0%) changes in the 
opposite direction. For the change between dissatisfy and 
satisfy, 20 (13.3%) change from the dissatisfy to the satisfy 
response whereas there were 30 (20.0%) changes in the 
opposite direction. For the change between satisfy and 
neutral, 16 (10.7%) change from the neutral to the satisfy 
response whereas there were 10 (6.7%) changes in the 
opposite direction. There was a significant change in patients' 
satisfaction  (symmetry test chi-square (3df) = 7.95; p-value = 
0.047). However the largest contribution to the symmetry chi-
square test was the changes between the dissatisfy and 
neutral. If we consider the change between dissatisfy and 
satisfy the most important (i.e., more weight) we conclude that 
the intervention tend to reduce the patients' satisfaction.  
 
 
Example 5.2  
We use a hypothetical data by supposing that the data is from 
a study to determine how close the results of the two 
laboratory technicians in classifying type of a pathogen. One 
hundred and fifty specimens were examined independently by 
each technician and classified it into the three type - A, B, or 
C.  The data are shown below. 
 
 
 
Table 5.4  Number of specimen in each type of classifications 

by two laboratory technicians - data for example 
5.2 
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Technician 2  

Technician 1 A B C 
 

Total 
A 30 20 10 60 
B 12 25 16 53 
C 7 10 20 37 

Total 49 55 46 150 
 
 
 
Ex 5.2-1 Describing the proportions 
Technician 1 tended to classify the pathogen to type A (40.0%) 
and B (35.3%) more than type C (24.7%) while technician 2 
classified the pathogen to the three types similarly, i.e.,  A 
(32.7%), B (36.7%) and C (30.7%).  
 
 
 
 
. tabi 30 20 10 \ 12 25 16 \ 7 10 20, row col 
 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |        30         20         10 |        60  
           |     50.00      33.33      16.67 |    100.00  
           |     61.22      36.36      21.74 |     40.00  
-----------+---------------------------------+---------- 
         2 |        12         25         16 |        53  
           |     22.64      47.17      30.19 |    100.00  
           |     24.49      45.45      34.78 |     35.33  
-----------+---------------------------------+---------- 
         3 |         7         10         20 |        37  
           |     18.92      27.03      54.05 |    100.00  
           |     14.29      18.18      43.48 |     24.67  
-----------+---------------------------------+---------- 
     Total |        49         55         46 |       150  
           |     32.67      36.67      30.67 |    100.00  
           |    100.00     100.00     100.00 |    100.00 

 
 
Ex 5.2-2 Estimating measure of effect 
 
Observed agreement: 
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P0 = ∑
=
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= (30 + 25 + 20) / 150  

 
= 0.5 

 
 
Chance-expected agreement: 
 

Pe = ∑
=

++++

k

i
ii nnn

1

2/  

 
= [(49×60) + (55×53) + (46×37)] / 1502  

 
= 0.336   

 
Chance-corrected agreement or kappa: 
 

Kappa =
e

e

P
PP

−
−

1
0  

 
= (0.50 - 0.33) / (1 - 0.33)  

 
= 0.247 

 
Stadard error of kappa : 
 

SE(Kappa) = 2
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)1(
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PP

−
−

++
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= 2)336.01(150
)5.01(5.0

−
−    

 
= 0.0615 

 
Therefore    95%CI (Kappa) =  0.247 ± (1.96×0.0615)  

 
= 0.126 to 0.308 

 
 
Tips: We can use Stata as a hand calculator for calculating the 

above statistics as follows:  
 
 
. disp (30+25+20)/150 
.5 
 
 
. disp ((49*60)+(55*53)+(46*37)) / (150^2) 
.33586667 
 
 
. disp (0.50 - 0.336) / (1 - 0.336)  
.24698795 
 
 
. disp sqrt( (0.5*(1-0.5)) / (150*((1-0.336)^2)) ) 
.06148318 
 
 
. disp 0.247 - 1.96*0.0615,  0.247 + 0.0615  
.12646 .3085 
 
 
 

Thus kappa is 0.25 (95%CI: 0.13 to 0.31). We conclude that 
the level of agreement achieved by the technicians is just fair 
(see the below outputs kappa statistics within the ovals). 
 
Stata commands:  
To obtain a data file, we type 
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. tabi 30 20 10 \ 12 25 16 \ 7 10 20, replace 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |        30         20         10 |        60  
         2 |        12         25         16 |        53  
         3 |         7         10         20 |        37  
-----------+---------------------------------+---------- 
     Total |        49         55         46 |       150  
 
          Pearson chi2(4) =  22.4418   Pr = 0.000 
 

 
Then use "kap" command (see StataCorp., 1999, Volume 2: 
H-O, page 132-143) to estimate kappa statistics (in oval). The 
test statistics also provided (in rectangular and were discussed 
in the next section).  
 
 
 
. kap row col [freq=pop], tab 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |        30         20         10 |        60  
         2 |        12         25         16 |        53  
         3 |         7         10         20 |        37  
-----------+---------------------------------+---------- 
     Total |        49         55         46 |       150  
 
             Expected 
Agreement   Agreement     Kappa         Z         Pr>Z 
------------------------------------------------------ 
  50.00%      33.59%     0.2471       4.30      0.0000 
 

 
Only the kappa statistics estimated by the above command is 
needed for the present study since the pathogen classification 
is nominal. For illustration purpose, if the scale A, B, and C 
are considered to be ordinal, we could estimate weighted 
kappa as well. Several type of weights can be applied. The 
following two commands are weight assigned automatically by 
Stata (see StataCorp, 1999; page 132-143 of Volumn 2 : H-O). 
 
 
. kap row col [freq=pop], wgt(w) 
 
Ratings weighted by: 
   1.0000   0.5000   0.0000 
   0.5000   1.0000   0.5000 
   0.0000   0.5000   1.0000 
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             Expected 
Agreement   Agreement     Kappa         Z         Pr>Z 
  69.33%      56.63%     0.2929       4.65      0.0000 
 
 
. kap row col [freq=pop], wgt(w2) 
 
Ratings weighted by: 
   1.0000   0.7500   0.0000 
   0.7500   1.0000   0.7500 
   0.0000   0.7500   1.0000 
 
             Expected 
Agreement   Agreement     Kappa         Z         Pr>Z 
  79.00%      68.15%     0.3406       4.23      0.0000 
 

 
 
Weight can be specify arbitrarily, we can define our own 

weight as follows: 
 
. kapwgt weight 1 \ .8 1 \ 0 .8 1 
 
. kap row col [freq=pop], wgt(weight) 
 
Ratings weighted by: 
   1.0000   0.8000   0.0000 
   0.8000   1.0000   0.8000 
   0.0000   0.8000   1.0000 
 
             Expected 
Agreement   Agreement     Kappa         Z         Pr>Z 
  80.93%      70.46%     0.3546       4.08      0.0000 
 

 
Ex 5.2-3 Testing the hypothesis 
 
Taken the variance of the kappa calculated later in section 
Ex5.2-2, Z-test = 0.247 / 0.0615 = 4.02 corresponding to p-
value = 0.00003 
 
We can use Stata as a hand calculator for calculating the 
above statistics as follows:  
 
. disp 0.247 / 0.0615  
4.0162602 
 
. disp 1-normprob(4.02) 
.0000291 
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Thus we reject Ho and conclude that the level of agreement 
achieved by the technicians is statistically significantly better 
than that expected by chance (see also the above outputs p-
values within the rectangular).  
 
Ex 5.2-4 Summary findings 
Technician 1 tended to classify the pathogen to type A (40.0%) 
and B (35.3%) more than type C (24.7%) while technician 2 
classified the pathogen to the three types similarly, i.e.,  A 
(32.7%), B (36.7%) and C (30.7%).  Kappa is 0.25 (95%CI: 
0.13 to 0.31) suggesting the level of agreement achieved by the 
technicians is just fair. This level of agreement is statistically 
significantly better than that expected by chance (p-value < 
0.001). 
 
Chapter references 
 
Agresti, A. (1990). Categorical data analysis. New York: John Wiley 

& Sons.   

Altman, D.G. (1991). Practical statistics for medical research. 
London: Chapman and Hall. 

Everitt, B.S. (1977). The Analysis of Contingency Tables. London: 
Chapman and Hall. 

Fleiss, J.L. (1981). Statistical methods for rates and proportions. 2nd 
edition. New York: John Willey & Sons. 

Landis, J.R. and Cock, G.G. (1977). The measurement of observer 
agreement for categorical data. Biometrics. 33:159-174.  

Stasny, E.A. and Bauer, H.R. (1990). Symmetry and quasi-
symmetry: an example in modeling pairs of sounds from 
children's early speech. Stat. Med. 9:1143-1155. 

StataCorp. (1999). Stata statistical software: Release 6.0. College 
Station. TX: Stata Corporation. 

 



 113 
 

Exercise 
 
Two anesthetists independently classified each of 45 patients 
as to their suitability for general anaesthetic. They used a 3-
point categorical scale ranging from 1=entirely suitable to 
3=unsuitable. The results are summarised in the following 
table : 
 

Technician 2  
Technician 1 A B C 

 
Total 

A 15 3 0 18 
B 1 12 8 21 
C 0 0 6 6 

Total 16 15 14 45 
   
a) Do the anaesthetists tend to use the categories of the scale 

in the same way? 
 
b) Do the anaesthetists tend to agree on their classification? 
 
c) Comment on the reliability of the classification scale they 

are using. 
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Chapter Objectives 
 
After completing this chapter, readers should be able to: 
• describe methods for dealing with effects from 

extraneous factors; 
• describe statistical modeling approach for dealing 

with effects from extraneous factors; 
• describe the logistic regression model; 
• interpret the coefficients for the logistic regression 

model and calculate odds ratios and confidence 
intervals corresponding to independent variables 
included in the model; 

• fit logistic regression models appropriate for 
situations where confounding or interactions are 
present; 

• describe and perform appropriate model-fitting 
strategies; 

• describe, perform, and interpret goodness-of-fit tests 
and diagnostics; and 

• interpret the results from the analysis. 
 

Chapter 6 

Logistic Regression 
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Contents 
 

6.1 Introduction 

So far we have discussed the analytical methods concerning an 
outcome and one independent variable at a time. Most outcomes 
in medical science are usually caused by several factors. There 
might be also an inter-correlated among those factors. In 
quantifying the magnitude of association between a factor of 
interest and the outcome, researchers need to consider effects of 
the other “extraneous” factors. To do this, several methods had 
been proposed. This Chapter focused on a method called 
"logistic regression". Summaries of some other commonly used 
methods were also provided with a reference for advance 
readers. The first section of this chapter provided a brief 
method for dealing with effects of other variables. Then 
summary of key concepts of logistic regression was presented. 
The main part of the chapter was to demonstrate useful 
practical steps for such approach via an example. To do this we 
need to repeat some methods discussed in Chapter 2, readers 
are encourage to see section "stratified analysis" in that 
Chapter for more details. Note 2 at the end of this Chapter 
provided an example of how similar the results from stratified 
analysis compared to logistic regression. 
 
6.2 Overview of methods for dealing with effects from 

extraneous factors   

6.2.1 Controlling for effects of extraneous factors in the design 
stage 

i) Randomization 
-  A process for assigning patients to a test or control 

treatment that is free of selection bias (Meinert and 
Tonacia, 1986, page 90).   
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- Applicable only in experimental study. 
 

-  Characteristics of the study subjects that are not 
measured or cannot be measured that could be 
predictive of the outcome of interest are randomly 
distributed across groups being compared. Thus they 
should be as similar as possible regarding factors that 
could affect the outcome - the potential confounders. 

 

- Simple randomization may not guarantee 
comparability. Stratified block randomization could be 
used to assure comparability for a few variables, but 
the distribution with regards to others must be left to 
chance (Meinert and Tonacia, 1986, page 91 - 96). This 
is sometimes called "pre-randomization stratification 
whereas the stratified analysis is a post-randomization 
stratification". 

 

- Although this has a major role in the design stage, 
ignoring method of randomization in the analysis could 
lead to an inefficient. Fleiss (1986) provided a good 
guideline for both the design and the appropriate 
analysis. For example, stratified block randomization 
should be analyzed using methods that accounted for 
stratification as described on pages 149 - 185.  

 
ii) Restriction in the study design 

- Specify narrow ranges of values for one or more 
extraneous variables as criteria for admissibility into 
the study  - e.g., study only males or to ages between 40 
to 50. " 

 

- A homogeneous study group will provide a poor basis 
of generalization of the study results (Rothman and 
Greenland, 1998, page 145).      

 
iii) Matching  

- Each subject in one group was matched to one or more 
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specific subjects in the other group, so that all members 
of a pair or set are similar on the extraneous factors 
that could effect the outcome - e.g., match each male 
case to a male non-case. 

 

- The idea is to obtain an identical match on all variables 
except for the risk factor under investigation. 

  

- In the analysis each matched set of subjects is regarded 
as a stratum and the same methods as for the analysis 
of stratified data can be applied. 

 

- Might not practical if there were several extraneous 
variables to be controlled for. 

 
6.2.2 Controlling for extraneous factors in the analysis stage 

i) Post hoc restriction or matching - rarely used, since usually 
involves discarding data 

 
ii) Subgroup analysis 

- The investigator looks specifically at the intervention-
control comparison within one or more particular 
subgroup rather than the overall comparison 
(Friedman, Furberg, and DeMets, 1996, page 304 - 
306).  

 
 

- It is used to answer the questions of this kind: "Among 
which group of the participants is the intervention most 
beneficial or harmful?".  

 
 

- It is dangerous if subgrouping based on any outcome 
variable. Only baseline factors are appropriate for use 
in defining subgroups. (Meinert and Tonacia, 1986, 
page 194 provided a good example.) 

 

- Generalization of findings could be limited.  
 

- Data can apparently show one thing when they are in 
aggregate and show something quite different when 
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they are disaggregated. This phenomenon is sometimes 
called Simpson's Paradox. 

 
iii) Stratified analysis (Details has been discussed in Chapter 

2) 
-  Involved pooling of the information over all strata if 

there is no interaction. 
 

- Kleinbaum, Kupper, and Morgenstern (1986), page 
321, suggested that stratification become worthwhile 
under the three following conditions: i) There are 
sufficient number in all strata, ii) An appropriate 
choice of control variables can be made., iii) An 
appropriate categorization scheme for each variable 
can be identified (ie., categories are meaningful and 
there is no residual confounding). 

 

- Advantages: i) easy to understand and easy to 
interpret, ii) direct and logical strategies, iii) 
computationally simple, not require sophisticated 
software, iv) analyst usually sees intermediate data: 
e.g., stratum-specific effects of exposure, and iv) 
minimum assumption required.  

 

- Limitations: i) difficult to deal with multiple potential 
confounders simultaneously: some strata may drop out 
of the analysis because a row or column total is zero, 
and ii) requires that all potential confounders be 
treated as categorical (discrete) variables, even if they 
are intrinsically continuous (e.g., age). If categories are 
too wide, can have residual confounding. If categories 
are too numerous, strata can again be lost from the 
analysis altogether, face problem of deciding how to 
form the categories, fairly simple dose-response 
relationship may be obscured. 
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iv) Multivariable analysis (This was discussed in the next 

section on "statistical modeling approach") 
- In many cases, the methods at the design stage are 

impractical. It is sometime impossible in the situation 
where there were several prognostic factors for the 
outcome of interest. In this case, the methods at the 
analysis stage are preferred.  

 
These methods have both advantages and disadvantages 
application. Summary of this issue was given by Kleinbaum, 
Kupper, and Morgenstern (1986), page 317.  
 
6.3  Statistical modeling approach for dealing with effects 

from extraneous factors   

This allows investigators control effects of several extraneous 
factors simultaneously at the same time. Ignoring effects of some 
important factors could lead to serious bias and misleading 
conclusion. We call this type of bias the "Simpson's paradox". 
Appleton, French, and Vanderpump (1996) demonstrated a 
very convincing example for this bias. Followings are some 
selected multivariable data analysis for dealing with effects from 
extraneous factors. 

i)  Logistic regression (details provided in the next section) 
ii) Conditional logistic regression (the above discussions 

concerned unconditional logistic regression).   
-  Used when study design involved matching of 

individuals into pairs or small sets or a study 
involved small sample size (Kleinbaum, 1994, page 
105-108).  

 

- Kleinbaum, 1994, page 108 suggests a rule of thumb 
where the unconditional questionable and the 
conditional one preferred: 10 to 15 confounders and 
10 to 15 product terms (We will discuss about the 
product term in the example at the next section).  
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-  Modeling strategies and interpretation of results are 

similar to those for unconditional logistic regression. 
Similar to the ordinary logistic regression, it yields 
measure of association as "odds ratio" associated 
with a particular explanatory variable of interest.    

 

- An excellent introductory for conditional logistic 
regression was given by Kleinbaum, 1994, page 228-
242. A simple and practical  analysis was given by 
Rabe-Hesketh and Everitt (1998); page 145 - 147.  

- Stata command for data analysis using this method 
is "clogit" (see StataCorp., 1999, Volume 1: A-G, 
page 201-261). 

 
iii)  Cox’s regression, or survival analysis under the 

proportional hazards model. 
-   Used for studies where time to onset of the outcome 

is of interest. For example, the outcome is not "dead 
or alive" but "they can survive for how long". In this 
case, not all subjects can be followed until event 
occurred - some lost to follow-up, missing, 
withdrawals, or dead due to other cause. Survival 
analysis can handle this efficiently, and thus it is 
more efficient than logistic regression in this 
situation. 

 

- Suitable with cohort studies (or randomized trials) 
using the “hazard rate” (roughly, incidence density 
for an individual) as the outcome.  

 

-  Also yields estimate of "Hazard Ratio or Incidence 
Rate Ratio", adjusted for potential confounding 
factors. 

 

-  Modeling strategies and interpretation of results are 
similar to those for logistic regression.  

 

- A self-learning text by Kleinbaum (1996) provided a 
very good introductory. 
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- Stata commands for data analysis using this method 

are the "stset" command (see StataCorp., 1999, 
Volume 3: P-St, page 491-530) followed by "cox" 
(see StataCorp., 1999, Volume 1: A-G, page 264-
269). 

 
iv) Multinomial logistic regression 

-  An extension of logistic regression to accommodate 
polytomous (i.e.., more than two categories) outcome 
and the outcome have no nature ordering. For 
example, a study to determine factors affecting 
choice of health seeking behavior taken the value of 
"self treatment", "private clinic", and "public 
health care provider". 

 

- One can estimate the "relative risk ratio" associated 
with a particular explanatory variable of interest 
from the model (StataCorp, 1999, page 403).    

 

-  Modeling strategies and interpretation of results are 
more difficult than those for ordinary logistic 
regression since there are multiple equation. Some 
investigators dichotomize the outcome so that 
ordinary logistic regression can be used. This 
practice might be acceptable provided that lost of 
information by such dichotomization is not obvious. 

 

- For the introduction, see Hosmer and Lemeshow 
(1989); page 216 - 238.   

- Stata command for data analysis using this method 
is "mlogit" (see StataCorp., 1999, Volume 2: H-O, 
page 379-412). 

 
v)  Ordered logistic regression or proportional odds model 

-  An extension of logistic regression as described 
above to accommodate ordinal (three or more 
categories that can be ranked) outcome. For 
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example, a study to determine factors affecting 
clinical outcome taken the value of "poor", "fair", 
"average", "good", and "excellent". 

 

- The model yields "probability" of a subject having an 
outcome, associated with a particular explanatory 
variable of interest.    

 

-  Modeling strategies are similar to those for 
multinomial logistic regression but provide a mean 
to exploit the ordering information.  

 

- Basic concepts and an example of data analysis can 
be found at Rabe-Hesketh and Everitt (1998); page 
79 - 90. 

- Stata command for data analysis using this method 
is "ologit" (see StataCorp., 1999, Volume 2: H-O, 
page 473-481). 

 
vi)  Poisson regression 

-  A regression model for a "Poisson" count outcome, 
i.e., a count of the number of occurrences of an event 
of interest, such as the number of case of a disease 
that occurred over a given follow-up time period. 

 

- The natural measure of association is a "rate ratio" 
associated with a particular explanatory variable of 
interest.    

 

- It expressed the log outcome (e.g., disease) rate as a 
linear function of a set of explanatory variables, the 
same principle as Log-linear model (see Agresti, 
1990, page 130 - 152 and page 210 - 250). 

 

-  Modeling strategies and interpretation of results are 
similar to those for logistic regression.  

 

- Details of this method was exclusively discussed in 
Kleinbaum, et al. (1998); page 689 - 709. 
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- Required some assumption about the distribution 

that need to be hold. An alternative methods if the 
data is severely sparse is the negative binomial 
regression (see StataCorp, 1999)  

- Stata command for data analysis using this method 
is "poisson" (see StataCorp., 1999, Volume 3: P-St, 
page 25-34). 

 
vii)  Generalized linear model using Generalize Estimating 

Equations (GEEs) 
-  A statistical modeling suitable for any type of 

outcome with repeated measurements or other type 
of correlated data. It was proposed by Liang and 
Zegar (1986). 

 

-  Modeling strategies and interpretation of results are 
similar to those for logistic regression.  

 

- The natural measure of association depend on type 
of the outcome and study design such as odds ratio 
or relative risk.  

 

- An excellent example is given by Rabe-Hesketh and 
Everitt (1998); page 119 - 136. 

- Stata commands for data analysis using this method 
are series of commands under the "xt" group of 
command (see StataCorp., 1999, Volume 4: Su-Z, 
page 317-359). 

 
6.4 Logistics regression 

The logistic regression model has become the standard 
method of analysis for the situation in which the relationship 
between a response (outcome) variable and one or more 
explanatory (predictors or covariates) variables is of interest 
and the outcome variable is categorical (taking on two or 
more possible values). 
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The goal of the analysis is to find the best fitting and most 
parsimonious, yet biologically reasonable model to describe 
the relationship between the outcome variable and a set of 
independent variables. 
 

For fuller details, a self-learning text by Kleinbaum (1994) is 
highly recommended. Followings are some important concepts.  
 

Denoted “P” be probability of developing disease in a given 
individual (i.e, risk) and “x1, x2, ..., xk” are several 
characteristics of an individual (e.g., gender - whether male or 
female, exposure - smoker or non-smokers, etc.) We can write 
 

P   =   f(x1, x2, ..., xk)     (1) 
 
That is, P is a function of the characteristics x1, x2, ..., xk.  But 
what is the nature of the function f( )? Lets take a simple linear 
model. 
 

P = a + b1 x1+ b2x2 +…+ bk xk                         (2) 
 
where a, b1, b2,..., bk are coefficients whose values are to be 
estimated from the data. By such estimation, we say "fit the 
model" to the data. There are several methods for the 
estimation procedure, almost all methods cannot be done 
without computer. 
 
Each "b" coefficient represents the size of the effect of the 
corresponding "x" variable. It represents the change in "P" 
associated with a one-unit change in the corresponding "x". 
 
The value "a" is a fitted constant (intercept), also estimated 
from the data, representing "P" for a person with x1 = x2 = ... = 
xk = 0. 
 
For some individuals, the right side of equation (2) may evaluate 
to less than 0, or to greater than 1. It is suitable for continuous 
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outcome. But for categorical outcome such as disease or non-
disease, it needs to be between 0 and 1 so that it can be interpret 
as disease risks. That's the value of "P". The logistic model 
accomplishes this purpose.  

 )...11(
1

1

kxkbxba
e

P
+++

+

=    (3) 

By equation (3), any values for a, b1... bk and x1 ... xk will yield a 
value of  "P" between 0 and 1: i.e., a legitimate numerical value 
for disease risk. Some algebra shows that equation (3) can be 
solved for making "P" more interpretable as: 

log ( )
P

P1−
 =   a + b1 x1+ b2x2 +…+ bk xk  

   

Where  ( )
P

P1−
 can be seen to be the odds of developing disease, 

and log ( )
P

P1−
 is the log odds of developing disease, or the logit 

of P. (All logarithms are taken to the base e: i.e., natural logs.)   
 
The model-fitting method then chooses the values for a, b1 ... bk  
that maximize agreement between the predicted value of P and 
the observed disease status of each  subject. 
 
One of the most useful properties of the logistic model is the 
interpretability of the b-coefficients. Say we are mainly 
interested in the characteristic x1 (e.g., smoking), coded as 
follows: 
 x1  = 1  if exposed, and 
     x2 = 0   if not exposed 
but that we must also consider another characteristic, x2 (e.g., 
age) as a potential confounder.  The logistic model is  

 log ( )
P

P1−
  =   a + b1 x1+ b2x2  
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The effect of exposure to x1, controlling for the effect of x2, can 
be assessed by comparing disease risk in two persons who have 
different values of x1 but the same value of x2.   
 
Denote “Pe” be the disease risk in the exposed person and “Pu”  
be the disease risk in the unexposed person.  We get the log odds 
of exposed as: 

 log ( )
Pe

Pe1−
  =  a + b1 (1) + b2 x2   (4) 

         =  a + b1 +  b2 x2  
and we get the log odds of unexposed as: 

 log ( )
Pu

Pu1−
 =  a + b1 (0) + b2 x2   (5) 

  =  a  + 0  +  b2 x2  
Subtracting equation (5) from equation (4) we get : 

log ( )
Pe

Pe1−
 - log ( )

Pu
Pu1−

 = b1 

Because of the properties of logarithms, this is the same as : 

 log 
Pe/( -Pe)

Pu/( -Pu)

1

1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 = log (OR)  =  b1 

where OR= odds ratio. It is the odds of exposed divided by the 
odds of unexposed. By taking antilogs of both sides, 

 e log(OR)   =  OR  =  e
b( )1     (6) 

 
Hence the adjusted OR for the effect of exposure to x1 on disease 
risk, controlling for the effect of x2, is simply e(b1). This is 
sometimes also denoted exp(b1), meaning "e to the b1 power." 
One can also simply take e = 2.71828 and thus OR = 2.71828(b1). 
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Equation (6) would also hold if there had been an arbitrary 
number of additional x's (e.g., x3, x4..., xk) whose value had been 
the same for the two individuals being compared. Kleinbaum 
(1994) termed this "unspecified but fixed". Thus we call this OR 
the “adjusted OR” or “OR adjusted for <X>” where <X> is/are 
extraneous factors that we want to control for its/their effect(s). 
 
If x1 had been a continuous variable, then exp(b1) would 
represent the adjusted OR for a one-unit change in x1- e.g., a 
one-year increase in age. 
 
From the model, one can test the statistical significance of each 
x-variable's contribution to the overall model, by determining 
whether the corresponding b-coefficient is statistically 
significantly different from zero. Confidence intervals can be 
obtained for the adjusted OR's, based on confidence limits for 
the corresponding b-coefficients, which the model-fitting 
method yields automatically. The extent to which x2, say, 
confounds the association between x2 and disease risk can be 
assessed by comparing the OR’s for x1 in two models: one which 
includes x2, and one which omits x2. If these OR’s are similar, 
then x2 is not an important confounder. This follows the 
standard practice of inferring whether confounding is present 
by comparing crude and adjusted measures of effect in 
stratified analysis. Test for modification of the effect of x1 by x2. 
Briefly, this is done by : i) creating a new variable, x3 , as the 
product of x1 and x2; ii) fitting a model which contains x1, x2, and 
x3; iii) determining the size and statistical significance of the 
coefficient b3, which reflects the magnitude of effect 
modification. The “pattern” of the relationships between an 
exposure and disease risk, by comparing the fit of alternative 
models using different ways of operationalizing exposure. For 
example, disease risk may increase or decrease linearly with 
exposure (a straight line graph), or exponentially (a S- or J-
shaped curve), or it may be a U- shaped curve, etc. In the 
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situation where the main aim is not for assessing the disease risk 
but for prediction, one can construct an receiver-operative 
characteristic (ROC) curve and determine the prognostic 
performance of the model. In such case, the confounding or 
interaction effect is not of interest. Thus investigator should be 
clear the main objective before fitting the model whether it is a 
risk assessment goal or a prediction goal (Kleinbaum, 1994).  
Model fitting strategies are quite different for each goals. This 
paper focused only on the risk assessment goal. For prediction 
goal, a good introductory reading was given by Kleinbaum, et 
al. (1998); page 386 - 403. 
 
Example 6.1 
The following example has been adapted from an unpublished 
study conducted in Indonesia (CCEB, 1993). Some modification 
to the data were made to enable experiencing most common 
steps of the analysis and using all necessary commands for the 
analysis. All the analysis was performed using Stata. Steps of the 
analysis involved univariate, bivariate or crude analysis, 
stratified analysis, and multivariable analysis which use logistic 
regression. The first three steps serve as an exploratory data 
analysis. The last step is the one from which the conclusion will 
be drawn. Below is the description of the data set to be used in 
this example. 
 
A cross-sectional study was conducted among 465 women who 
have had delivered their children 1 to 6 months before the 
study was started. It aimed to determine the effect of antenatal 
care (ANC) on neonatal death. The mothers were randomly 
selected and interviewed using a structural questionnaire. The 
data file is available at http://web.kku.ac.th/~bandit/data. Below 
is the description of the variables. 
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Table 6.1  Description of the "Example data set"  
 
Variable 

names 
Descriptions Values 

DEAD Dead within the first 
month of life 

1 = Dead 
0 = Alive 

ANC Mothers having 
antenatal care  

1 = Yes 
0 = No 

SMK Parents’ smoking status 1 = Smoker 
0 = Non-smoker 

BWT Birth weight Weight in grams 
MAGE Mother’s age  Age in years 
PLACE Place of birth 0 = Hospital 

1 = Health center 
2 = Home 
3 = Road side  
     (During travelling) 

 
 
Preview of the problem: 
Based on the research question that "Does ANC affect 
neonatal death?", we should know that this is the question for 
"risk assessment" where "ANC" is the "risk of interest". 
(Detailed discussion was provided in the next section.) On the 
contrary, if the research question is that "What is the best 
prediction model for neonatal death?" or more general "How 
neonatal dead is predicted?", it is the question for 
"prediction". Classifying the two different goals of analysis is 
necessary as mentioned above that modeling for risk 
assessment goal is different from for prediction goal. 
 
The followings are steps commonly performed for most of 
data analysis. To be complete, there are computer outputs, 
using smaller and different letter fonts from the main text, 
inserted throughout the presentation. The lines in bold letter 
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following a "dot" before each outputs are the Stata commands 
so that one can repeat these and should get the same outputs. 
The outputs within ovals were to be quoted in the research 
report.   
 
Step 1 Exploring the data and univariate analysis  
To get familiar with the data set, we can display them in a 
listing form of data records as follows: 
 
 
. list  dead anc smk bwt mage place 
 
           dead      anc       smk      bwt       mage      place  
  1.        1         1         0      2600        30         0   
  2.        1         1         0      2900        29         1   
  3.        1         1         0      3100        25         0   
 

 --- skip 460 records --- 
 
464.        0         1         0      3500        30         0   
465.        0         1         0      3200        22         1 

 
 
Note that, to stop displaying all data records, we need to hold 
down the key <Ctrl> then press <Break> once. 
 
The data file can also be summarized as follows: 
 
 
. summarize 
Variable |     Obs        Mean   Std. Dev.       Min        Max 
---------+----------------------------------------------------- 
    dead |     465    .1397849   .3471372          0          1   
     anc |     465    .5182796   .5002039          0          1   
     smk |     465    .0752688   .2641087          0          1   
     bwt |     465    3010.695   437.7349       1850       4000   
    mage |     465    25.52473   5.362298         17         42   
   place |     465    .2408602   .5273217          0          3   
  

At a first look at the data description and outputs from the 
two commands above, we should be able to classify type of 
variables. That is, "DEAD" is the dependent or response 
variable which is in nominal scale or two possible values. In 
other words, this study has a dichotomous outcome. The other 
five variables are the independent or explanatory variables. 
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Someone called these the (exposing) factors or predictors. 
Among these, "ANC" is the exposure of interest based on the 
research question. If the research objective changed from "to 
determine the effect of "ANC" on neonatal dead" to that "to 
determine factors affecting neonatal dead", there will be no 
exposure of interest. Classifying the two different type of 
explanatory variables is necessary for further analysis which 
is quite different from one another.  
 
The real analysis begins with the univariate analysis - analyze 
one variable at a time. For this study, it is a cross-sectional 
study. We need to know the overall proportion, or more 
specifically - the prevalence, of neonatal dead. This is 
important for interpretation of odds ratio which is 
approximate the relative risk if the event is rare. Two simple 
Stata commands for this purpose are as follows: 
 
. tab dead 
 
       dead |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          0 |        400       86.02       86.02 
          1 |         65       13.98      100.00 
------------+----------------------------------- 
      Total |        465      100.00 
 
 
. ci dead 
 
Variable |     Obs         Mean    Std. Err.       [95% Conf. Interval] 
---------+------------------------------------------------------------- 
    dead |     465     .1397849    .0160981        .1081507    .1714192 
 

 
The prevalence of 0.13 is not too bad to assume to be rare 
event. Thus we can validly interpret the odds ratio as for the 
relative risk. The full format of reporting the above result is : 
"Among a total of 465 children, 65 died within one month of 
age. The neonatal dead rate was 14.0% (95%CI: 10.8% to 
17.1%)". 
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Step 2 Bivariate (crude) analysis 
This section is to determine, separately, the effect of each 
factor on DEAD ignoring the effect of other factors. This is an 
important steps for the study with several factors involved. It 
serve as a good tools for screening potential predictors to be 
the candidate to be entered into the initial model. As the rule 
of thumb, variables that have the p-value of 0.2 or lower will 
be considered to be the candidate. However, variables that 
have the p-value exceed 0.2 but were known to have an effect 
on the outcome were also considered to be the candidate. 
Commands and outputs were shown below. Some results from 
these outputs which are in the ovals will be reported in the 
table at the end of this paper. 
 
Section 2.1 Crude effect of ANC on DEAD 
ANC is a dichotomous predictor. Odds ratio is an appropriate 
measure of association since it is a cross-sectional study.  
 
. cs dead anc, or 
 
                 | anc                    | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        37          28  |        65 
        Noncases |       204         196  |       400 
-----------------+------------------------+---------- 
           Total |       241         224  |       465 
                 |                        | 
            Risk |   .153527        .125  |  .1397849 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |          .028527       | -.0342996    .0913535   
      Risk ratio |         1.228216       |   .778466    1.937803   
 Attr. frac. ex. |         .1858108       | -.2845776    .4839517   
 Attr. frac. pop |         .1057692       | 
      Odds ratio |         1.269608       |  .7512221    2.145309  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     0.79  Pr>chi2 = 0.3754 

 
Among a total of 241 children with ANC mothers, 15.4% of 
their children died whereas among 224 children with non-
ANC mothers, 12.5% of their children died. Children whose 
mothers had ANC were 1.26 times more likely to die than 
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those had not (95%CI: 0.8 to 2.1). However, this is not 
statistically significant (p-value = 0.375).  
 
Note that, based on the objective of the study, this is an 
exposure of interest. Although its crude effect yields p-value > 
0.2, it has to be a candidate variable unless the research 
question will not be answered. Note also that this is a cross-
sectional study and so the grand total only (465) is fixed. But 
the proportion reported here is assuming the column totals to 
be fixed. This is for simplicity of interpretation. 
 
Section 2.2 Crude effect of SMK on DEAD 
 
Similar to ANC, the SMK is a dichotomous predictor which 
can use the same command for analysis. 
 
. cs dead smk, or 
 
                 | smk                    | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        21          44  |        65 
        Noncases |        14         386  |       400 
-----------------+------------------------+---------- 
           Total |        35         430  |       465 
                 |                        | 
            Risk |        .6    .1023256  |  .1397849 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |         .4976744       |  .3328653    .6624835   
      Risk ratio |         5.863636       |  3.972854    8.654289   
 Attr. frac. ex. |         .8294574       |  .7482918    .8844504   
 Attr. frac. pop |         .2679785       | 
      Odds ratio |         13.15909       |  6.309044    27.44195  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =    66.67  Pr>chi2 = 0.0000 
 
 
Among 35 children with smoker parents, 60% of their 
children died as compared to the corresponding rate of 10.2% 
for 430 children with non-smoker parents. There is a 
statistically significant association between parent smoking 
and children dead (p-value < 0.001). That is, children whose 
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parents smoked were 13.2 times more likely to die than those 
whose parents did not smoke (95%CI: 6.3 to 27.4).  
 
Note that this variable is undoubtedly a candidate variable for 
the initial model. Also the output gave p-value of 0.0000 but 
we cannot quote so which means impossible. Quoting this as 
p-value < 0.001 or even p-value < 0.01 is recommended.   
 
Section 2.3 Crude effect of BWT on DEAD 
 
BWT is a continuous variable. To be able to assess some trend 
of its effect and perform a stratified analysis in further steps, 
we need to categorize it. Based on empirical knowledge, we do 
that into three groups using the first four commands. Then we 
perform an overall test for association as well as the 
appropriate proportions to be quoted in the report. Finally we 
obtain the “local odds ratios” for each 2 by 2 table using 
appropriate reference category of BWT. We may choose 
“Lower than 2500 grams” as the reference group as it is easy 
to examine the trend.  
 
 
 
 
 
. gen bwtg = . 
(465 missing values generated) 
 

 
 
. replace bwtg = 1 if bwt < 2500 
(39 real changes made) 
 

 
 
. replace bwtg = 2 if bwt >= 2500 & bwt <= 3000 
(213 real changes made) 
 

 
 
. replace bwtg = 3 if bwt > 3000 
(213 real changes made) 
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. tab  bwtg dead, row chi2 exact 
 
           |         dead 
      bwtg |         0          1 |     Total 
-----------+----------------------+---------- 
         1 |        27         12 |        39  
           |     69.23      30.77 |    100.00  
-----------+----------------------+---------- 
         2 |       175         38 |       213  
           |     82.16      17.84 |    100.00  
-----------+----------------------+---------- 
         3 |       198         15 |       213  
           |     92.96       7.04 |    100.00  
-----------+----------------------+---------- 
     Total |       400         65 |       465  
           |     86.02      13.98 |    100.00  
 
          Pearson chi2(2) =  20.3082   Pr = 0.000 
           Fisher's exact =                 0.000 

 
 
The next two commands are immediate commands for 
analysis of 2 by 2 table. One need to be very careful about how 
to enter the four cell frequencies so that the odds ratio is 
meaningful and remain the same as what appeared in the 
main table above. 
 
 
 
. csi 38 12 175 27, or 
 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        38          12  |        50 
        Noncases |       175          27  |       202 
-----------------+------------------------+---------- 
           Total |       213          39  |       252 
                 |                        | 
            Risk |  .1784038    .3076923  |  .1984127 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |        -.1292886       | -.2829945    .0244174   
      Risk ratio |         .5798122       |  .3338618     1.00695   
 Prev. frac. ex. |         .4201878       |   -.00695    .6661382   
 Prev. frac. pop |         .3551587       | 
      Odds ratio |         .4885714       |  .2294889    1.037412  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     3.46  Pr>chi2 = 0.0627 
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. csi 15 12 198 27, or 
 
 
 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        15          12  |        27 
        Noncases |       198          27  |       225 
-----------------+------------------------+---------- 
           Total |       213          39  |       252 
                 |                        | 
            Risk |  .0704225    .3076923  |  .1071429 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |        -.2372698       |  -.386141   -.0883985   
      Risk ratio |         .2288732       |  .1161831    .4508654   
 Prev. frac. ex. |         .7711268       |  .5491346    .8838169   
 Prev. frac. pop |         .6517857       | 
      Odds ratio |         .1704545       |  .0730813    .3964905  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =    19.40  Pr>chi2 = 0.0000 

 
 
 
Clearly, BWT is a candidate variable for entering the initial 
model. From the odds ratio for the three group of BWT on 
DEAD, they suggested no obvious departure from linear 
trend, i.e, the odds ratio decrease as the BWT increase (from 1 
to 0.5 and then to 0.2 for BWT of <2500, 2500-3000, and 
>3001, respectively). Another useful command to examine 
linear trend is the "lintrend" command (see below for more 
details) as follows: 
 
. lintrend dead bwt, groups(12) plot(log) xlab ylab 
   
   
The proportion and log odds of dead by categories of bwt 
   
  (Note: 12 bwt categories of equal sample size; 
     Uses mean bwt value for each category) 
 
       bwt       min        max      d    total    dead  logodds  
    2162.8      1850       2400     12       39    0.31    -0.81   
    2544.1      2500       2600     14       62    0.23    -1.23   
    2695.3      2650       2700      5       32    0.16    -1.69   
    2858.1      2750       2900      8       43    0.19    -1.48   
    2998.0      2950       3000     11       76    0.14    -1.78   
    3099.1      3060       3100      3       46    0.07    -2.66   
    3196.9      3150       3200      4       32    0.12    -1.95   
    3293.5      3250       3300      1       23    0.04    -3.09   
    3473.7      3380       3500      6       73    0.08    -2.41   
    3761.5      3600       4000      1       39    0.03    -3.64   
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The “lintrend” command is an batch file containing series of 
Stata commands, called an automatic do or “ado”  file. The 
program was written by Garrett J. M. (3/96 STB Reprints 
Volume 5, pages 152-160) available at http://www.stata.com. It 
graphically examines the relationship between the log odds of 
a binary outcome by categories of an ordinal or interval 
independent variable. Similar to the previous approach, the 
graph suggested that there is a linear trend. 
 
Knowing about linear relationship between the continuous 
exposure and the outcome enables analyst in making decision 
on whether the exposure will be entered into the model as 
continuous or categorical form. If it is linear, the exposure can 
be modeled as either continuous or categorical form. The 
former is the most efficient but difficult  interpretation. The 
later is less efficient since it threw away some information 
resulting from categorization, but it is easy to interpret and 
more clinically meaningful. However this might not be 
practical for small sample since it could lead to several 
dummy variables for polytomous variable after such 
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categorization. For this example, if we decide to use the 
BWTG rather than the BWT, the BWTG has to be entered as 
the two dummy variables. On the contrary, the exposure 
needs to be categorized if there is non-linear relationship.  
 
In this example, BWT can be entered as either the continuous 
or categorical variable. However, it is more clinically 
informative if we dichotomize it into “Low” and “Normal” 
birth weight. We can do so as follows: 
 
 
. replace bwtg = . 
(465 real changes made, 465 to missing) 
 

 
. replace bwtg = 1 if bwt < 2500 
(39 real changes made) 
 
 

. replace bwtg = 0 if bwt >= 2500 
(426 real changes made) 
 
 
Note that we assigned 1 = Low birth weight and 0 = Normal 
birth weight.     
 
 
. cs dead bwtg, or 
 
                 | bwtg                   | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        12          53  |        65 
        Noncases |        27         373  |       400 
-----------------+------------------------+---------- 
           Total |        39         426  |       465 
                 |                        | 
            Risk |  .3076923    .1244131  |  .1397849 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |         .1832792       |  .0350754    .3314829   
      Risk ratio |         2.473149       |  1.449993    4.218275   
 Attr. frac. ex. |         .5956573       |  .3103413    .7629363   
 Attr. frac. pop |         .1099675       | 
      Odds ratio |         3.127883       |  1.513083     6.47943  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     9.98  Pr>chi2 = 0.0016 
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Section 2.4 Crude effect of MAGE on DEAD 
 
MAGE is a continuous variable. The same approach for BWT 
can also be applied here. There is no obvious departures from 
linear trend (outputs not shown). In this case we can do either 
as dichotomous or contintinuous. We dichotomize it as it is 
clinically relevant, i.e, teenage pregnancy is at high risk (and 
the maximum age of 42 is not too bad to have a child!?). 
 
. gen mageg = . 
(465 missing values generated) 
 
. replace mageg = 1 if mage < 20 
(46 real changes made) 
 
. replace mageg = 0 if mage >= 20 
(419 real changes made) 
 
 
. cs dead mageg, or 
 
                 | mageg                  | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |         7          58  |        65 
        Noncases |        39         361  |       400 
-----------------+------------------------+---------- 
           Total |        46         419  |       465 
                 |                        | 
            Risk |  .1521739    .1384248  |  .1397849 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |         .0137491       | -.0951896    .1226878   
      Risk ratio |         1.099325       |  .5336421    2.264657   
 Attr. frac. ex. |         .0903512       | -.8739152     .558432   
 Attr. frac. pop |         .0097301       | 
      Odds ratio |         1.117153       |  .4874978    2.567507  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     0.07  Pr>chi2 = 0.7985 

  
 
Note that, based on the above tables,  MAGE can be ignored 
in model fitting. However, it is known to have a strong effect 
on pregnancy outcome. Thus we will consider as the candidate 
variable based on clinical grounds. In this study, it is also 
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justifiable since the number of variable is not many relative to 
the sample size. 
   
 
Section 2.5 Crude effect of PLACE on DEAD 
 
PLACE is a polytomous predictor. First we need an overall 
test for association as well as the appropriate proportions to 
be quoted in the report.  
 
 
 
. tab place dead, row chi2 exact 
 
           |         dead 
     place |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |       337         38 |       375  
           |     89.87      10.13 |    100.00  
-----------+----------------------+---------- 
         1 |        47         21 |        68  
           |     69.12      30.88 |    100.00  
-----------+----------------------+---------- 
         2 |        11          4 |        15  
           |     73.33      26.67 |    100.00  
-----------+----------------------+---------- 
         3 |         5          2 |         7  
           |     71.43      28.57 |    100.00  
-----------+----------------------+---------- 
     Total |       400         65 |       465  
           |     86.02      13.98 |    100.00  
 
          Pearson chi2(3) =  24.0179   Pr = 0.000 
           Fisher's exact =                 0.000 
 
 
 
 

From the above result, there are four cells, highlighted in bold 
letters, with very small numbers. This could cause a problem 
in modeling. Aside the two categories can be collapsed without 
so much loss the information and still meaningful. Therefore 
we do that and obtain the new result as follows: 
 
 
 
. replace place = 2 if place == 3 
(7 real changes made) 
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. tab place dead, row chi2 exact 
 
           |         dead 
     place |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |       337         38 |       375  
           |     89.87      10.13 |    100.00  
-----------+----------------------+---------- 
         1 |        47         21 |        68  
           |     69.12      30.88 |    100.00  
-----------+----------------------+---------- 
         2 |        16          6 |        22  
           |     72.73      27.27 |    100.00  
-----------+----------------------+---------- 
     Total |       400         65 |       465  
           |     86.02      13.98 |    100.00  
 
          Pearson chi2(2) =  24.0035   Pr = 0.000 
           Fisher's exact =                 0.000 
 

 
Although there were a cell with only 6 children, we will keep 
on analysis this until we found problem at the next stage of 
analysis where we will consider collapsing the category again. 
Then we calculate the “local odds ratios” for each 2 by 2 table 
using appropriate reference category of PLACE. We may 
choose “delivery at the hospital” as the reference group as it is 
more relevant, ie. the lowest risk. The next two commands are 
immediate commands for analysis of 2 by 2 table. Again, be 
very careful about how to enter the four cell frequencies so 
that the odds ratio is meaningful and remain the same as what 
appeared in the main table above. 
 
. csi 21 38 47 337, or 
 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        21          38  |        59 
        Noncases |        47         337  |       384 
-----------------+------------------------+---------- 
           Total |        68         375  |       443 
                 |                        | 
            Risk |  .3088235    .1013333  |  .1331828 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |         .2074902       |  .0935114     .321469   
      Risk ratio |         3.047601       |  1.912134    4.857333   
 Attr. frac. ex. |          .671873       |   .477024    .7941257   
 Attr. frac. pop |         .2391412       | 
      Odds ratio |         3.962486       |  2.156189    7.289677  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =    21.47  Pr>chi2 = 0.0000 
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. csi 6 38 16 337, or 
 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |         6          38  |        44 
        Noncases |        16         337  |       353 
-----------------+------------------------+---------- 
           Total |        22         375  |       397 
                 |                        | 
            Risk |  .2727273    .1013333  |  .1108312 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |         .1713939       | -.0171971     .359985   
      Risk ratio |         2.691388       |  1.276449     5.67478   
 Attr. frac. ex. |         .6284444       |  .2165766    .8237817   
 Attr. frac. pop |          .085697       | 
      Odds ratio |         3.325658       |  1.268007    8.771802  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     6.19  Pr>chi2 = 0.0128 
 

Note that PLACE is also undoubtedly a candidates variable 
for entering to the initial model.  
 
Step 3 Stratified analysis 
Ideally, one should examine confounding and interaction 
effect using stratified analysis for all possible combination of 
explanatory variables. By this analysis, any joint effect of the 
variables could be detected and thus they can be entered into 
the initial model appropriately. More details about this matter 
could be found at Kleinbaum (1994); page 164 – 173.  
 
For this study, there is an exposure of interest - ANC. Thus all 
stratified analysis will be mainly to assess the effect of 
extraneous variables on the association between ANC and 
DEAD. The “extraneous variable” is sometime called the 
“stratified variable” in this analysis. More attention should be 
made on interaction effect than confounding effect. Once any 
variables were in the model, their confounding effects were 
controlled. Whilst the interaction effects are the one that 
researchers try to discover and explain – not to control. If they 
exist, the terms to be put into the model are the product of the 
two or more variables or interaction terms – not a single 
variable or main effect. Thus we will look at first the p-value 
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of the test for homogeneity of odds ratios across stratum. If 
the p-value is 0.2 or less we will consider putting such 
interaction in the initial model for further model fitting. By 
this process, we identify three interaction terms- i) 
ANC*SMK; ii) ANC*MAGE; iii) ANC*PLACE. Detail 
outputs are shown below. The black arrows point to the p-
values that were used for this purpose.   
 
Section 3.1 Effect of  SMK on the association between ANC 

and DEAD 
 
 . cc dead anc, by(smk) 
 
 
             smk |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   .6711146     .3590862   1.254787      11.85116 (Cornfield) 
               1 |      7.125     1.297704   37.58284      .4571429 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.269608     .7512221   2.145309               (Cornfield) 
    M-H combined |   .9108184     .5136778   1.615001                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     5.91  Pr>chi2 = 0.0151 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.11 
                                                Pr>chi2 =    0.7453 
 
 

 
The following two commands are for obtaining proportions to 
be reported in the last table at the end of this paper. 
 
 
. tab anc dead if smk == 0, row chi2 exact 
 
           |         dead 
       anc |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |       190         26 |       216  
           |     87.96      12.04 |    100.00  
-----------+----------------------+---------- 
         1 |       196         18 |       214  
           |     91.59       8.41 |    100.00  
-----------+----------------------+---------- 
     Total |       386         44 |       430  
           |     89.77      10.23 |    100.00  
 
          Pearson chi2(1) =   1.5385   Pr = 0.215 
           Fisher's exact =                 0.265 
   1-sided Fisher's exact =                 0.140 
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. tab anc dead if smk == 1, row chi2 exact 
 
           |         dead 
       anc |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |         6          2 |         8  
           |     75.00      25.00 |    100.00  
-----------+----------------------+---------- 
         1 |         8         19 |        27  
           |     29.63      70.37 |    100.00  
-----------+----------------------+---------- 
     Total |        14         21 |        35  
           |     40.00      60.00 |    100.00  
 
          Pearson chi2(1) =   5.2932   Pr = 0.021 
           Fisher's exact =                 0.039 
   1-sided Fisher's exact =                 0.030 
 

 
 
Section 3.2 Effect of  BWTG on the association between ANC 

and DEAD 
 
. cc dead anc, by(bwtg) 
 
            bwtg |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   1.339792     .7542532   2.379341      9.934272 (Cornfield) 
               1 |        .49     .1209808    1.95487      2.564103 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.269608     .7512221   2.145309               (Cornfield) 
    M-H combined |   1.165453     .6827702   1.989367                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     1.62  Pr>chi2 = 0.2026 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.32 
                                                Pr>chi2 =    0.5728 
 

 
Section 3.3 Effect of  MAGEG on the association between 

ANC and DEAD 
 
. cc dead anc, by(mageg) 
 
           mageg |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   1.599555     .9133475   2.800384      9.661098 (Cornfield) 
               1 |   .1571429     .0305953   .8318563      3.043478 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.269608     .7512221   2.145309               (Cornfield) 
    M-H combined |   1.254014     .7442425   2.112957                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     5.93  Pr>chi2 = 0.0149 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.75 
                                                Pr>chi2 =    0.3867 
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Section 3.4 Effect of  PLACE on the association between ANC 

and DEAD 
 
 
. cc dead anc, by(place) 
 
           place |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   .7952381     .4090156   1.546609          9.52 (Cornfield) 
               1 |       3.74      1.13241   12.16321      1.470588 (Cornfield) 
               2 |   .7777778     .1316856   4.564086      1.227273 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.269608     .7512221   2.145309               (Cornfield) 
    M-H combined |   1.147927     .6675961   1.973853                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(2) =     4.84  Pr>chi2 = 0.0888 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.25 
                                                Pr>chi2 =    0.6185 

 
Step 4 Multivariable analysis : Logistic regression 
 
The first step is to prepare the variables in appropriate forms 
based on findings from the previous crude and stratified 
analysis. The first three following commands are to generate 
the interaction terms. For the "generate" command see 
StataCorp (1999); page 517-520 of Volumn 1 : A-G. 
 
. gen a_smk = anc * smk 
 

. gen a_mageg = anc * mageg 
 

. gen a_place = anc * place 
 
 
Section 4.1. The initial model – the full model 
 
For details of the "logit" command see StataCorp (1999); page 
228-239 of Volumn 2 : H-O. 
 
. xi: logit dead  anc smk  bwtg mageg i.place  a_smk a_mageg 
i.a_place 
i.place               Iplace_0-2   (naturally coded; Iplace_0 omitted) 
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i.a_place             Ia_pla_0-2   (naturally coded; Ia_pla_0 omitted) 
 
Iteration 0:   log likelihood =  -188.1264 
Iteration 1:   log likelihood = -158.90781 
Iteration 2:   log likelihood = -151.19391 
Iteration 3:   log likelihood = -150.81363 
Iteration 4:   log likelihood =  -150.8124 
Iteration 5:   log likelihood =  -150.8124 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(10)     =      74.63 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -150.8124                       Pseudo R2       =     0.1983 
 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |  -.5413629   .4338548     -1.248   0.212      -1.391703    .3089768 
     smk |   .8913886   .9323986      0.956   0.339      -.9360792    2.718856 
    bwtg |   1.117437   .4577921      2.441   0.015       .2201811    2.014693 
   mageg |   1.439287   .6143028      2.343   0.019       .2352758    2.643299 
Iplace_1 |   .5058782   .6178105      0.819   0.413      -.7050082    1.716765 
Iplace_2 |   1.306483   .7715727      1.693   0.090      -.2057713    2.818738 
   a_smk |   2.086607   1.073441      1.944   0.052      -.0172996    4.190513 
 a_mageg |  -1.630821   1.032344     -1.580   0.114      -3.654178    .3925359 
Ia_pla_1 |   .8395218   .8137985      1.032   0.302      -.7554939    2.434537 
Ia_pla_2 |   .2971595   1.080756      0.275   0.783      -1.821084    2.415403 
   _cons |   -2.38564   .2742555     -8.699   0.000      -2.923171   -1.848109 
------------------------------------------------------------------------------ 

 
. lrtest, saving(0) 
 
For details of the "lrtest" command see StataCorp (1999); 
page 246-250 of Volumn 2 : H-O. 
 
 
Among all interaction terms (in italic bold letters), the 
ANC*PLACE will be removed due to the highest p-value (in 
oval). We need to remove both dummy variables of this term 
as it is the principle of hierarchical well-formatted model (see 
more detail in Kleinbaum, 1994, page 171 – 173).  
 
Note that the “xi” before the command “logit” is to inform 
Stata that there are some polytomous variables in the model 
so that the “i.” before the polytomous variable can tell Stata 
create dummy variables automatically for those variables (see 
more details in StataCorp, 1999 Volume 4, page 306 - 314) .  
The “lrtest, saving(0)” command is for performing further 
likelihood ratio test to assessing the effect of deleting terms 
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from the model. The “saving(0)” option tell us that the 
estimation belongs to the full model. 
 
Section 4.2. Model without ANC*PLACE 
 
. xi: logit dead  anc smk  bwtg mageg i.place  a_smk a_mageg 
i.place               Iplace_0-2   (naturally coded; Iplace_0 omitted) 
 
Iteration 0:   log likelihood =  -188.1264 
Iteration 1:   log likelihood = -159.76855 
Iteration 2:   log likelihood = -151.72756 
Iteration 3:   log likelihood = -151.36622 
Iteration 4:   log likelihood = -151.36543 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(8)      =      73.52 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -151.36543                       Pseudo R2       =     0.1954 
 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |   -.310655    .355062     -0.875   0.382      -1.006564    .3852538 
     smk |   .9825991   .9336054      1.052   0.293      -.8472338    2.812432 
    bwtg |   1.040474   .4492353      2.316   0.021        .159989    1.920959 
   mageg |    1.55312   .6067453      2.560   0.010       .3639209    2.742319 
Iplace_1 |   .9748812   .3862543      2.524   0.012       .2178366    1.731926 
Iplace_2 |   1.452425    .539014      2.695   0.007       .3959774    2.508873 
   a_smk |   2.045493   1.077159      1.899   0.058      -.0657009    4.156686 
 a_mageg |  -1.861715   1.004119     -1.854   0.064      -3.829751    .1063217 
   _cons |  -2.487954   .2633255     -9.448   0.000      -3.004063   -1.971846 
------------------------------------------------------------------------------ 
 
. lrtest, using(0) 
Logit:  likelihood-ratio test                         chi2(2)     =       1.11 
                                                      Prob > chi2 =     0.5752 
 
. lrtest, saving(1) 
 
 
 

The “lrtest, using(0)” command is for performing the 
likelihood ratio test to assessing the effect of deleting 
ANC*PLACE from the model. The “using(0)” option tell us 
that the test compared the current model against the full 
model which have previously been saved in 0. The test 
suggests that deleting the ANC*PLACE cause no effect to the 
model (p-value = 0.575). Now the next candidate term to be 
deleted is ANC*MAGEG. 
 

Note that the likelihood ratio of this model is saved in 1. 
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Section 4.3. Model without ANC*MAGE 
 
. xi: logit dead  anc smk  bwtg mageg i.place  a_smk 
i.place               Iplace_0-2   (naturally coded; Iplace_0 omitted) 
 
Iteration 0:   log likelihood =  -188.1264 
Iteration 1:   log likelihood = -161.37036 
Iteration 2:   log likelihood = -153.53573 
Iteration 3:   log likelihood = -153.25674 
Iteration 4:   log likelihood = -153.25615 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(7)      =      69.74 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -153.25615                       Pseudo R2       =     0.1854 
 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |  -.5590873   .3350725     -1.669   0.095      -1.215817    .0976429 
     smk |   .8722993   .9317147      0.936   0.349      -.9538279    2.698427 
    bwtg |   1.047556   .4440794      2.359   0.018       .1771763    1.917935 
   mageg |   .7140317   .4804309      1.486   0.137      -.2275954    1.655659 
Iplace_1 |   .9866509   .3859063      2.557   0.011       .2302884    1.743013 
Iplace_2 |   1.478023    .540374      2.735   0.006       .4189098    2.537137 
   a_smk |   2.246689   1.073616      2.093   0.036       .1424403    4.350939 
   _cons |  -2.382853   .2488897     -9.574   0.000      -2.870668   -1.895038 
------------------------------------------------------------------------------ 
 
. lrtest, using(1) 
Logit:  likelihood-ratio test                         chi2(1)     =       3.78 
                                                      Prob > chi2 =     0.0518 
 
. lrtest, saving(2) 

 
Again, the test suggests that deleting the ANC*MAGE cause 
no effect to the model (p-value = 0.052). Now the next 
candidate term to be deleted, based on p-value, is SMK. But 
we cannot delete it, based on the hierarchical well-formatted 
principle, since it is a component of a significant interaction 
term ANC*SMK. Thus there is only MAGEG that can be 
considered for deletion. 
 
Section 4.4. Model without MAGEG 
 
. xi: logit dead  anc smk  bwtg i.place  a_smk 
i.place               Iplace_0-2   (naturally coded; Iplace_0 omitted) 
 
Iteration 0:   log likelihood =  -188.1264 
Iteration 1:   log likelihood = -162.26531 
Iteration 2:   log likelihood = -154.50657 
Iteration 3:   log likelihood = -154.26029 
Iteration 4:   log likelihood =  -154.2599 
 
Logit estimates                                   Number of obs   =        465 
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                                                  LR chi2(6)      =      67.73 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -154.2599                       Pseudo R2       =     0.1800 
 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |  -.5157685   .3326557     -1.550   0.121      -1.167762    .1362246 
     smk |   .7955996    .925203      0.860   0.390      -1.017765    2.608964 
    bwtg |   1.093564   .4429316      2.469   0.014       .2254335    1.961694 
Iplace_1 |   .8849724    .376117      2.353   0.019       .1477966    1.622148 
Iplace_2 |   1.365092   .5319488      2.566   0.010       .3224913    2.407692 
   a_smk |   2.266141   1.069409      2.119   0.034        .170138    4.362143 
   _cons |  -2.295464   .2367904     -9.694   0.000      -2.759565   -1.831363 
------------------------------------------------------------------------------ 
 
. lrtest, using(2) 
Logit:  likelihood-ratio test                         chi2(1)     =       2.01 
                                                      Prob > chi2 =     0.1565 

 
Again, the test suggests that deleting the MAGEG cause no 
effect to the model (p-value = 0.156). We have no other terms 
that can be removed since they are all statistically significant 
predictors of DEAD. Thus the above model is the final model. 
 
Step 5 Assessing model adequacy: test for goodness of fit of the 

model 
 
. lfit 
 
Logistic model for dead, goodness-of-fit test 
 
       number of observations =       465 
 number of covariate patterns =        16 
              Pearson chi2(9) =        17.32 
                  Prob > chi2 =         0.0440 
 

 
The “lfit” command displays either the Pearson or Hosmer-
Lemeshow goodness-of-fit tests. The Hosmer-Lemeshow test is 
preferred over the Pearson test when the number of 
observations per covariate pattern is small. This study, such 
numbers are sufficiently large. The test suggests that the 
model did not fit well with the data. For details of the "lfit" 
command see StataCorp (1999); page 209-211 of Volumn 2 : 
H-O. 
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Further analysis has been done to explore another type of the 
model. It was found that the model that fit well with the data 
is the one that did not categorize the BWT and MAGE. All 
commands and their outputs of fitting the model are listed in 
NOTE 1. The test of goodness-of-fit of the model yields p-
value = 0.465. However the final model contains exactly the 
same variables as the above model where continuous variables 
were categorized. Comparing between the two models, the 
coefficients are very slightly different. Thus we choose the 
above model as it is more simple interpretation and 
informative. 
 
Further assessment of the model can be done using methods 
proposed by Hosmer and Lemeshow (1989). The methods are 
mainly aim to detect the influence observation(s). That is, the 
one that causes unstable in model estimation. This can help 
improving the fit of the model and lead to a more valid model.  
Series of Stata commands facilitate this procedure (see more 
details in StataCorp, 1999 Volume 2, page 200-222).   
 

 
Step 6 Obtaining measure of associations from the model 
Odds ratios can be estimated using the command “logistic” as 
shown below. From the model, the odds ratio that can be 
obtained directly from the output are that of BWTG and 
PLACE (italic bold letters). For details of the "logistic" 
command see StataCorp (1999); page 201-226 of Volume 2 : 
H-O. 
 
 
. xi: logistic dead  anc smk  bwtg i.place  a_smk 
i.place               Iplace_0-2   (naturally coded; Iplace_0 omitted) 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(6)      =      67.73 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -154.2599                       Pseudo R2       =     0.1800 
 
------------------------------------------------------------------------------ 
    dead | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |   .5970416   .1986093     -1.550   0.121       .3110624    1.145939 
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     smk |   2.215769   2.050036      0.860   0.390       .3614018    13.58497 
    bwtg |   2.984892   1.322103      2.469   0.014       1.252866     7.11136 
Iplace_1 |   2.422917   .9113004      2.353   0.019       1.159277    5.063957 
Iplace_2 |   3.916082   2.083155      2.566   0.010       1.380563     11.1083 
   a_smk |   9.642116   10.31136      2.119   0.034       1.185468    78.42503 
------------------------------------------------------------------------------ 
 

 
In the present of an interaction effect which is a product of 
two variables, we need to estimate the odds ratios of one 
variable separately each level of the other variable. For the 
interaction term of ANC and SMK, we need to get the odds 
ratios of ANC on DEAD for each group of SMK. The effect of 
ANC among SMK = 0 is given by the odds ratio 0.60 for “anc” 
in the output above. The effect of ANC among SMK = 1 is 
given by the following commands. 
 
 
 
. lincom anc + a_smk 
 
 
 ( 1)  anc + a_smk = 0.0 
 
------------------------------------------------------------------------------ 
    dead | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     (1) |   5.756744   5.836508      1.726   0.084       .7891896    41.99257 
------------------------------------------------------------------------------ 
 

 
For details of the "lincom" command see StataCorp (1999); 
page 179-185 of Volumn 2 : H-O. 
 
Note that the combination of the two terms originally came 
from the principle of obtaining odds ratio from logistic 
regression model. The model can be written as follows: 
 
Logit P(X)   =  a + b1ANC + b2SMK + b3BWTG + 
b4PLACE1  

+ b5PLACE2 + b6ANC*SMK 
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We can use the corresponding coefficients in the output from 
“logit” command shown in Section 4.4 to replace the model as 
follows: 
 
 
Logit P(X)  =  -2.29 -0.52ANC +0.80SMK +1.10BWTG  

+0.90PLACE1 +1.36PLACE2 +2.27ANC*SMK 
 
 
Given SMK = 0, the odds ratio of ANC can be estimated by 
comparing the two odds. That is, the odds of ANC = 1 divided 
by the odds of ANC = 0 (or simply odds of exposed divided by 
the odds of non-exposed). Since the coefficients are in log 
transformation, it is obtained by subtracting the two odds and 
then take the exponential (or anti-logs) of such results. Thus 
 
 
Logit P(SMK=0, ANC=1) = a + b1(1) + b2(0) + b3BWTG + b4PLACE1  

    + b5PLACE2 + b6(1)*(0) 
 
 
Logit P(SMK=0, ANC=0) = a + b1(0) + b2(0) + b3BWTG + b4PLACE1  

    + b5PLACE2 + b6(0)*(0) 
 
 
Subtracting the second odds from the first odds given 
 
 
Log(Odds ratio) =  b1  =  -0.52 
 
Thus Odds ratio = EXP(-0.52) = 2.7183(-0.52)  =  0.59 
 
Similarly, given SMK = 1,   
 
 
Logit P(SMK=1, ANC=1) = a + b1(1) + b2(1) + b3BWTG + b4PLACE1  

    + b5PLACE2 + b6(1)*(1) 
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Logit P(SMK=1, ANC=0) = a + b1(0) + b2(1) + b3BWTG + b4PLACE1  

    + b5PLACE2 + b6(0)*(1) 
 
 
Subtracting the second odds from the first odds given 
 
 
Log(Odds ratio) =  b1 + b6 =  -0.52 + 2.27 = 1.75 
 
Thus Odds ratio = EXP(1.75) = 2.7183(1.75)  =  5.7 
 
 
The   "b1 + b6" is equivalent to the combination of ANC and 
SMK following the command “lincom” shown above. 
 
 
Step 7 Summarize findings 
Among a total of 465 children, 65 died within one month of 
age. The neonatal dead rate was 14.0% (95%CI: 10.8% to 
17.1%). Children whose mothers had ANC were 1.3 times 
more likely to die than those had not (95%CI: 0.8 to 2.1, Table 
6.1). However, this is not statistically significant (p-value = 
0.375). Age of mothers at date of delivery was also not a 
significant predictor of children dead (p-value = 0.799) as 
there was similar proportions of dead among the two age 
group - teenage pregnancy and pregnancy at age of 20 years 
or more. The following three factors were statistically 
significant associated with dead:  i) parent smoking (OR = 
13.2; 95%CI: 6.3 to 27.4; p-value < 0.001), ii) low birth weight 
(OR = 3.1; 95%CI: 1.5 to 6.5; p-value = 0.002); and iii) place 
of delivery (p-value < 0.001) where delivered at health center 
were 4.0 times (95%CI: 2.2 to 7.3) and delivered at home or 
road side were 3.3 times (95%CI: 1.3 to 8.8) more likely to die 
than delivered at the hospital. However all these effects ignore 
the effect of other factors. 



 154 
 
 
Table 6.2  Crude effect of each factor on neonatal dead   
 

Factors Number Dead 
(%) 

OR 95%CI p-value 

1. Attending ANC     0.375 
 Yes 241 15 1.3 0.8 to 2.1  
 No 224 12 1.0   
2. Parents smoking 

during pregnancy 
     

<0.001 
 Yes 35 60 13.2 6.3 to 27.4  
 No 430 10 1.0   
3. Birth weight     0.002 
 < 2,500 grams 39 31 3.1 1.5 to 6.5  
 2,500 grams or 

more  
426 12 1.0   

4. Age of mothers at 
date of delivery 

     
0.799 

 Less than 20 
years 

46 15 1.1 0.5 to 2.6  

 20 or more 419 14 1.0   
5. Place of delivery     <0.001 
 Hospital 375 10 1.0   
 Health center 68 31 4.0 2.2 to 7.3  
 Home or Road 

side 
22 27 3.3 1.3 to 8.8  

 
 
Taken into account of effects of other factors, there was a 
significant interaction effect (p-value = 0.034, Table 6.2). 
Parents smoking status was an effect modifier of the 
association between attending ANC and neonatal dead. That 
is, among children whose parents smoked, those whose 
mothers attending ANC was 5.8 times more likely to die 
within the first month of life than those whose mothers did not 
(95%CI: 0.8 to 42.0). On the contrary, among children whose 
parents did not smoke, the corresponding adjusted odds ratio 
(ORadj) was 0.6 (95%CI: 0.3 to 1.1) suggesting a protective 
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effect of ANC. These effects have also been adjusted for the 
effect of birth weight and place of deliveries. Low birth weight 
has a significant risk effect on neonatal dead (ORadj = 3.0; 
95%CI: 1.2 to 7.1; p-value = 0.014). Similarly, place of 
deliveries has a significant risk effect on neonatal dead (p-
value = 0.010). That is, comparing to delivered a baby at the 
hospital, those who delivered at health center has a higher risk 
to neonatal dead (ORadj = 2.4; 95%CI: 1.2 to 5.1) and also at 
home or road side (ORadj = 3.9; 95%CI: 1.4 to 11.1). 
 
 
Table 6.3  Crude and adjusted odds ratio of each factors on 

neonatal dead   
 

 
Factors 

No Dead 
(%) 

Crude 
OR 

Adjusted 
OR 

95%CI p-value 

1. Attending ANC  for 
each group of parents 
smoking status 

     
0.034 

 
 

1.1 Parents smokers      
 Attending ANC 27 70 7.1 5.8 0.8 to 42.0  
 Did not attending 

ANC  
8 25 1.0 1.0  

 
1.2 Parent non-smokers      
 Attending ANC 214 8 0.7 0.6 0.3 to 1.1  
 Did not attending 

ANC  
216 12 1.0 1.0  

 
2. Birth weight     0.014 
 < 2,500 grams 39 31 3.1 3.0 1.2 to 7.1  
 2,500 grams or more  426 12 1.0 1.0  

 
3. Place of delivery     0.010 
 Hospital 375 10 1.0 1.0  
 Health center 68 31 4.0 2.4 1.2 to   5.1  
 Home or Road side 22 27 3.3 3.9 1.4 to 11.1  
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NOTE 1: Model fitting without categorizing of all continuous 

variables showed that results were not obviously differ 
from the above approach where continuous variables 
were categorized. This suggested the conclusions that 
had been made above were robust. If this happen to be 
different, sources of the differences need to be 
investigated further. Choices of the model need to be 
carefully chosen. In fact, how each continuous variable 
will categorized must be decided in advance, i.e., before 
the data were collected to avoid bias. Followings are 
the commands and their outputs for this approach. 

 
. gen a_mage = anc*mage 
 

. xi: logit dead  anc smk  bwt mage i.place  a_smk a_mage 
i.a_place 
i.place               Iplace_0-2   (naturally coded; Iplace_0 omitted) 
i.a_place             Ia_pla_0-2   (naturally coded; Ia_pla_0 omitted) 
 
Iteration 0:   log likelihood =  -188.1264 
Iteration 1:   log likelihood = -154.90817 
Iteration 2:   log likelihood = -152.90179 
Iteration 3:   log likelihood = -147.00808 
Iteration 4:   log likelihood = -146.85182 
Iteration 5:   log likelihood = -146.85158 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(10)     =      82.55 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -146.85158                       Pseudo R2       =     0.2194 
 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |  -2.467283   1.593321     -1.549   0.121      -5.590135    .6555685 
     smk |   .2300021   .9311643      0.247   0.805      -1.595046    2.055051 
     bwt |  -.0013569   .0003691     -3.677   0.000      -.0020803   -.0006336 
    mage |  -.0853645   .0485749     -1.757   0.079      -.1805696    .0098406 
Iplace_1 |    .375604   .6293903      0.597   0.551      -.8579782    1.609186 
Iplace_2 |   2.055076   .8997447      2.284   0.022       .2916088    3.818543 
   a_smk |   2.694181   1.094326      2.462   0.014       .5493412     4.83902 
  a_mage |   .0687016   .0652431      1.053   0.292      -.0591726    .1965758 
Ia_pla_1 |   1.024134   .8310937      1.232   0.218      -.6047794    2.653048 
Ia_pla_2 |  -.2549567   1.242813     -0.205   0.837      -2.690825    2.180912 
   _cons |   4.028138   1.555667      2.589   0.010       .9790869     7.07719 
------------------------------------------------------------------------------ 
 

. lfit 
 
Logistic model for dead, goodness-of-fit test 
 
       number of observations =       465 
 number of covariate patterns =       348 
            Pearson chi2(337) =       349.92 
                  Prob > chi2 =         0.3025 
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. lrtest, saving(0) 
 
. xi: logit dead  anc smk  bwt mage i.place  a_smk a_mage 
i.place               Iplace_0-2   (naturally coded; Iplace_0 omitted) 
 
Iteration 0:   log likelihood =  -188.1264 
Iteration 1:   log likelihood = -156.25447 
Iteration 2:   log likelihood =  -148.2508 
Iteration 3:   log likelihood = -147.74697 
Iteration 4:   log likelihood = -147.74364 
Iteration 5:   log likelihood = -147.74364 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(8)      =      80.77 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -147.74364                       Pseudo R2       =     0.2147 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |  -2.366272   1.482909     -1.596   0.111      -5.272719    .5401757 
     smk |   .3601289    .914142      0.394   0.694      -1.431556    2.151814 
     bwt |  -.0012902   .0003632     -3.552   0.000      -.0020021   -.0005783 
    mage |  -.0883421   .0461116     -1.916   0.055      -.1787191    .0020349 
Iplace_1 |   .9379171   .3980015      2.357   0.018       .1578486    1.717986 
Iplace_2 |   1.905634    .616415      3.091   0.002       .6974824    3.113785 
   a_smk |   2.681957    1.08377      2.475   0.013       .5578071    4.806106 
  a_mage |   .0713555   .0580151      1.230   0.219      -.0423521     .185063 
   _cons |   3.823132   1.517522      2.519   0.012       .8488435     6.79742 
------------------------------------------------------------------------------ 
 
. lrtest, using(0) 
Logit:  likelihood-ratio test                         chi2(2)     =       1.78 
                                                      Prob > chi2 =     0.4098 
. lrtest, saving(1) 
 
. xi: logit dead  anc smk  bwt mage i.place  a_smk  
i.place               Iplace_0-2   (naturally coded; Iplace_0 omitted) 
 
Iteration 0:   log likelihood =  -188.1264 
Iteration 1:   log likelihood = -156.79104 
Iteration 2:   log likelihood = -148.99653 
Iteration 3:   log likelihood = -148.51621 
Iteration 4:   log likelihood = -148.51328 
Iteration 5:   log likelihood = -148.51328 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(7)      =      79.23 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -148.51328                       Pseudo R2       =     0.2106 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |  -.5881127   .3379489     -1.740   0.082       -1.25048     .074255 
     smk |   .3594272    .935828      0.384   0.701      -1.474762    2.193616 
     bwt |  -.0013061   .0003619     -3.609   0.000      -.0020155   -.0005967 
    mage |  -.0495717    .032095     -1.545   0.122      -.1124767    .0133334 
Iplace_1 |   .9169965   .3977724      2.305   0.021       .1373769    1.696616 
Iplace_2 |   1.916286   .6132308      3.125   0.002       .7143757    3.118196 
   a_smk |    2.81268   1.105094      2.545   0.011       .6467354    4.978624 
   _cons |   2.905163   1.301942      2.231   0.026        .353403    5.456923 
------------------------------------------------------------------------------ 
. lrtest, using(1) 
Logit:  likelihood-ratio test                         chi2(1)     =       1.54 
                                                      Prob > chi2 =     0.2147 
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. lrtest, saving(2) 
 
. xi: logit dead  anc smk  bwt i.place  a_smk  
i.place               Iplace_0-2   (naturally coded; Iplace_0 omitted) 
 
Iteration 0:   log likelihood =  -188.1264 
Iteration 1:   log likelihood = -158.01447 
Iteration 2:   log likelihood = -150.15686 
Iteration 3:   log likelihood = -149.76281 
Iteration 4:   log likelihood =  -149.7609 
Iteration 5:   log likelihood =  -149.7609 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(6)      =      76.73 
                                                  Prob > chi2     =     0.0000 
Log likelihood =  -149.7609                       Pseudo R2       =     0.2039 
------------------------------------------------------------------------------ 
    dead |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |  -.5391429   .3357003     -1.606   0.108      -1.197103    .1188177 
     smk |   .4136563   .9396272      0.440   0.660      -1.427979    2.255292 
     bwt |  -.0013371   .0003592     -3.722   0.000      -.0020411    -.000633 
Iplace_1 |   .8139901   .3862701      2.107   0.035       .0569146    1.571066 
Iplace_2 |   1.490551   .5456082      2.732   0.006       .4211785    2.559924 
   a_smk |   2.554702   1.090557      2.343   0.019       .4172501    4.692153 
   _cons |   1.774267   1.066874      1.663   0.096      -.3167668    3.865302 
------------------------------------------------------------------------------ 
. lrtest, using(2) 
Logit:  likelihood-ratio test                         chi2(1)     =       2.50 
                                                      Prob > chi2 =     0.1142 
. lfit 
 
Logistic model for dead, goodness-of-fit test 
 
       number of observations =       465 
 number of covariate patterns =       121 
            Pearson chi2(114) =       114.66 
                  Prob > chi2 =         0.4650 
 
 
 
 

NOTE 2 : Analysis results showing how stratified analysis is 
similar to logistic regression  

 
Using the ANC data to examine the effect of ANC on DEAD, 
controlling for the effect of SMK 
 

Note 2.1 Stratified analysis 
. cc dead anc, by(smk)  
 
             smk |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   .6711146     .3590862   1.254787      11.85116 (Cornfield) 
               1 |      7.125     1.297704   37.58284      .4571429 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.269608     .7512221   2.145309               (Cornfield) 
    M-H combined |   .9108184     .5136778   1.615001                
-----------------+------------------------------------------------- 

This suggests the 
model fits reasonably 
well to the data. 
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Test of homogeneity (M-H)      chi2(1) =     5.91  Pr>chi2 = 0.0151 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.11 
                                                Pr>chi2 =    0.7453 
 
 
 

Note 2.2 Logistic regression equivalent to the stratified 
analysis shown in Note 2.1, ignoring interaction effect. 

 
. logistic dead anc smk 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(2)      =      45.31 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -165.47238                       Pseudo R2       =     0.1204 
 
------------------------------------------------------------------------------ 
    dead | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |   .9077381   .2698217     -0.326   0.745       .5069255    1.625463 
     smk |   13.52737   5.277243      6.677   0.000       6.297178      29.059 
------------------------------------------------------------------------------ 
 
 

Note that the model without an interaction term, the odds ratio 
of ANC is the actually the Mantel-Haenszel odds ratio obtained 
in stratified analysis.  
 
 
Note 2.3 Logistic regression equivalent to the stratified 

analysis in #1, incorporating interaction effect. 
 
 
Note 2.3.1 Generate an interaction term between ANC and SMK 
. gen x = smk*anc 
 
 
 
 

Note 2.3.2 Fit the logistic regression model with the interaction 
term 

 
. logistic dead anc smk x 
 
Logit estimates                                   Number of obs   =        465 
                                                  LR chi2(3)      =      52.05 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -162.10316                       Pseudo R2       =     0.1383 
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------------------------------------------------------------------------------ 
    dead | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     anc |   .6711146   .2168253     -1.234   0.217       .3562775    1.264168 
     smk |   2.435897   2.053089      1.056   0.291       .4669028    12.70842 
       x |   10.61667   10.34062      2.425   0.015       1.573689     71.6238 
------------------------------------------------------------------------------ 

 
Note that in the model with an interaction term, the odds ratio of 
ANC is the one given that SMK = 0. It is exactly the same as that 
obtained from stratified analysis in #1 and shown again below.  
 
 
. cc dead anc, by(smk)  
 
             smk |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   .6711146     .3590862   1.254787      11.85116 (Cornfield) 
               1 |      7.125     1.297704   37.58284      .4571429 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.269608     .7512221   2.145309               (Cornfield) 
    M-H combined |   .9108184     .5136778   1.615001                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     5.91  Pr>chi2 = 0.0151 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.11 
                                                Pr>chi2 =    0.7453 
 
 
 

Note 2.3.3 Obtain the odds ratio for each group of SMK 
 
The odds ratio of ANC on DEAD for each group of SMK can be 
obtained from the linear combination of coefficient estimated by 
the logistic model. Such combination is ANC + ANC*SMK (or x 
in the output). For SMK = 0, the coefficient of ANC*SMK is 
also zero. The linear combination of the coefficient is ANC + 0 = 
ANC. Thus the odds ratio can be obtained directly from the 
output of logistic command as shown above. For SMK = 1, the 
coefficient of ANC*SMK is as it is. Thus the linear combination 
of the coefficient is ANC + ANC*SMK as given below.  
 
. lincom anc + x 
 
 ( 1)  anc + x = 0.0 
 
------------------------------------------------------------------------------ 
    dead | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
     (1) |      7.125   6.546829      2.137   0.033       1.176673    43.14337 
------------------------------------------------------------------------------ 
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It is exactly the same as that obtained from stratified analysis in 
#1 which was shown again below. 
 
. cc dead anc, by(smk)  
 
             smk |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   .6711146     .3590862   1.254787      11.85116 (Cornfield) 
               1 |      7.125     1.297704   37.58284      .4571429 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.269608     .7512221   2.145309               (Cornfield) 
    M-H combined |   .9108184     .5136778   1.615001                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     5.91  Pr>chi2 = 0.0151 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.11 
                                                Pr>chi2 =    0.7453 
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Exercise 
 
 
 
Data from a study of Morrison et.al. (1973) reprinted by 
CCEB (1993) relating to survival of breast cancer patients. 
The variables and categories are as follows:  
 
- Degree of chronic inflammatory reaction  
 (1. Minimal, 2. Moderate-Severe) 
 
- Age of diagnosis  
 (1. Under 50 years, 2. 50-69 years, 3. 70 or older) 
 
- Nuclear grade   
 (1. Relative malignant appearance, 2. Relative benign appearance) 
 
- Center where patient was diagnosed   
 (1. Tokyo, 2. Boston, 3. Glamorgan) 
 
- Survival for three years   
 (1. No, 2. Yes) 
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Three-year survival of breast cancer patients according  to 
two histologic criteria, age and diagnostic center 

 
Minimal 

inflammation 
 Greater 

inflammation 
Appearance  Appearance 

 
Diagnostic 

Center 

 
Age 

 
Sur-
vived

Malignant Benign  Malignant Benign
Tokyo < 50 No 9 7  4 3 
  Yes 26 68  25 9 
 50-69 No 9 9  11 2 
  Yes 20 46  18 5 
 70+ No 2 3  1 0 
  Yes 1 6  5 1 
Boston < 50 No 6 7  6 0 
  Yes 11 24  4 0 
 50-69 No 8 20  3 2 
  Yes 18 58  10 3 
 70+ No 9 18  3 0 
  Yes 15 26  1 1 
Glamor
gan 

< 50 No 16 7  3 0 

  Yes 16 20  8 1 
 50-69 No 14 12  3 0 
  Yes 27 39  10 4 
 70+ No 3 7  3 0 
  Yes 12 11  4 1 

 
You are assigned to analyze the data and prepare a report. 
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Chapter Objectives 
 
After completing this chapter, readers should be able 

to: 
• describe log-linear models for three-dimensional 

tables corresponding to different hypotheses; 
• fit and interpret the results of log-linear models;  
• identify the log-linear models which provide the 

best fit to a given set of data; 
• interpret the results from the analysis 
 

Chapter 7 

Log-linear Models 
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Contents 

 

7.1 Introduction 

In Chapters 2, 3, 4, and 5 we focused mainly on bivariate 
analysis - i.e., analysis the relationship between a response and 
a single explanatory variable. The tables are therefore two-
way contingency tables. This Chapter turns to more 
complicated tables. When three categorical variables form a 
table, it became a three-way contingency table. For example, a 
sample of workers were classified by their gender (male, 
female), smoking status (smoke, non-smoke), and lung 
function test results (normal, abnormal). The more complicate 
table, the multi-way contingency tables in general, are also 
formed by the same manner. Log-linear model is used to 
determine relationship among several variables in a multi-
dimensional contingency table. It is particularly useful in the 
situation where there was no particular variable is a response 
but all are in the same root. In the workers example, the 
counts of workers in each category is the dependent variable. 
The categorical variable used to classify the workers i.e., 
gender, smoking status, and lung function test results are 
independent variables. A log-linear model also provides a 
powerful tool to explore the possibility of combining 
variable(s) in a multi-way table to simpler forms and thus 
simplify analysis without distorting the relationships among 
the categorical variables.   

 

7.2 Principles and type of log-linear models  

Log-linear model is a linear model for the natural logarithm 
of the expected frequencies. For a two-way table the full model 
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with interaction will fit the data perfectly (i.e., it is a saturated 
model) since the number of cell frequencies is equal to the 
number of parameters in the model. The interaction term 
represents the association between the two variables. 
Followings are the reasons. 
 
Recall the probability theory, two events A and B are 
independent when the probability of the joint occurrence is 
the product of the probabilities of each events. This can be 
expressed as 
 
 P(AB) = P(A)P(B)  
 
The expected value under the null hypothesis of independence 
for a cell within a two-way contingency table is simply that 
this probability multiply by the sample size.  
 
Now, if we take logarithm of this expression, we would get 
 
 log [P(AB)] = log[P(A)P(B)] = log[P(A)] + log[P(B)] 
 
Thus, a quantity, say θ, that reflects the association between 
events A and B can be expressed as 
 

θ = log [P(AB)] - log[P(A)] + log[P(B)] 
 
That is, when there is an association between the two 
variables, the logarithm of the joint probability is not just a 
sum of the individual probabilities. The term "log[P(AB)]" is 
represented by the interaction term in a log-linear model. 
 
This principle also applied for higher dimensional tables. In 
this book, we focus only on the three-way contingency table. 
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For a three-way contingency table, the saturated model is 
given by 
 
Log-frequency  =  u + u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) 

+ u123(ijk) 
 
Parameter u denotes the overall mean level of the logarithms 
of the frequency. When we fit the model, we estimate these 
parameters. Substituting the value of i, j, and k of variable 1, 
2, and 3 respectively in the right hand side of the equation 
provide us a logarithm of the cell frequencies. Thus a cell 
frequency can be obtained by just take the exponential (or 
anti-logarithm) of such value (see Selvin, 1995; page 310). 
Some works with mathematics can get the odds ratio which is 
the direct measure of association for log-linear model. The u1(i) 
denotes the influence of variable "1", u2(j) denotes the 
influence of variable "2", and u3(k) denotes the influence of 
variable "3" in cell i, j, and k respectively. There are two two-
way interaction terms. For example, u12(ij) represents the joint 
influence of two variables, i.e., variable "1" and "2". The term 
u123(ijk) is the three-way interaction. These interaction terms 
indicate pattern of association among the three variables. In 
this model, the estimated values are identical to the observed 
values which are the cell frequencies. It served as a starting 
point for comparison of the models that do not fit the data 
perfectly. It implies that the average of the pairwise measure 
of association becomes a less accurate assessment of statistical 
independence. Thus it is rather uninformative. 
 
Followings are the other six possible types of models could be 
achieved.  
 
7.2.1  No three-way interaction 
  
  Log-frequency  =  u + u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) 
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If the association between 2 of  the variables differs in 
degree or direction across levels of the third then we 
have 3-way interaction, the measure of association 
between the first two variables in the 1st level  of the 
third variable is the same as the corresponding measure 
within the kth level of the third variable OR the 
association between the first and the second variable 
does not differ across levels of the third variable. 
Since the order among the variables is arbitrary, the 
hypothesis of no three-way interaction implies that the 
association between any pair of variables is the same at 
all levels of the remaining variable. 

 
7.2.2  No three-way interaction and one two-way interaction 

absent 
   
 

 
Variables 1 and 2 are independent for every level of 
variable 3 but each is associated with variable 3. That is, 
variables 1 and 2 are conditionally independent, given 
the level of variable 3. 

 
7.2.3  No three-way interaction and two two-way interactions 

absent 
 
 

 
It is called the partial independence - there is an 
association between two of the variables whilst the third 
is completely independent. 

 
7.2.4  No three-way and two-way interaction 
 

Log-frequency =  u + u1(i) + u2(j) + u3(k) + u13(ik) + u23(jk) 

Log-frequency =  u + u1(i) + u2(j) + u3(k) + u23(jk) 

Log-frequency =  u + u1(i) + u2(j) + u3(k) 
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It is called the mutual (or complete) independence - 
there are no associations of any kind between the three 
variables. If  this model fits the data adequately then the 
differences between cell frequencies simply reflect 
differences between single variable marginal totals. 

 
7.2.5  Non-comprehensive Models 

If we continue to delete terms from the log-linear model 
so that there are fewer terms than  in the complete 
independence model, the model would not include all 3 
variables. This is a non-comprehensive model. If such a 
model fits the data adequately then one or more of the 
variables is (are) redundant and the dimensionality of 
the table can be reduced accordingly. 

 
7.2.6  Collapsibility 

A 3-way table may be collapsed over any variable that is 
independent of at least one of the remaining pair and the 
reduced table analyzed. That is if partial independence 
holds and the model 
 
   
 
 
provides an adequate fit to the data, the table could be 
collapsed over any one of the three variables to simplify 
the analysis. When only conditional independence holds, 
we have the model 
 
 
 
 

Log-frequency =  u + u1(i) + u2(j) + u3(k) + u23(jk) 

Log-frequency =  u + u1(i) + u2(j) + u3(k) + u13(ik) + u23(jk) 
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and care must be taken in deciding which variables are 
collapsible. 

 
Below are a simple summary of the three categorical variables 
- variable A, B, and C, in a three-way contingency table 
(adapted from Selvin, 1995, page 304).  
 
 
 
Table 7.1  Type of the models from a three-way contingency 

table 
 

AB 
related? 

AC 
related? 

BC 
related? 

Then 

No No No Complete independence 
No Yes Yes Conditional 

independence 
Yes No Yes Conditional 

independence 
Yes Yes No Conditional 

independence 
No No Yes Partial independence 
No Yes No Partial independence 
Yes No No Partial independence 
Yes Yes Yes No independence 

 
 
7.3 Fitting Log-Linear Models and Parameter Estimation 

Fitting particular log-linear models to the frequencies in a 
contingency table is equivalent to testing particular 
hypotheses about the table. Assessing the adequacy of a 
suggested model for the data involves finding estimates of the 
theoretical frequencies to be expected assuming the model is 
correct and comparing these with the observed values by 
means of the likelihood ratio statistic or Pearson’s chi-square 
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statistic. The estimated expected values are obtained as 
functions of the relevant marginal as indicated or by iterative 
procedures. 
The major advantages to fitting log-linear models is that we 
obtain estimates of the parameters which allow us to quantify 
the effects of various variables and interactions. Estimates of 
the parameters in the fitted model are obtained as functions of 
the ln eijk. 

 

7.4 Response vs Explanatory Variables 

So far we have considered all variables on equal footing - not 
distinguishing between outcome factors and explanatory 
factors. However for 3 variables we could have: 

1)  3 response variables 
2)  2 response variables and 1 explanatory variable 
3)  1 response variable and 2 explanatory variables. 

 
To handle this situation we condition (ie, fix corresponding 
marginal totals) on the values of the explanatory variables. 
For (1) only Poisson or multinomial models are appropriate. 
For (2) and (3) we use product multinomial models. For 
Example, in a case-control study, one variable is a response 
variable with marginal totals fixed by design. The log-linear 
model should:   i) include interaction terms for each 
explanatory variable with the response variablen and;   ii)
 include all explanatory variables with their main 
effects and higher way interactions - this is equivalent to 
conditioning on the marginal totals of the explanatory 
variables. 
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7.5 Selection of a Model 

As a number of dimensions in a table increases, so does the 
number of possible models and the complexity of the models. 
In general complicated models involving large numbers of 
parameters tend to fit a set of data more closely than a simpler 
model. On the other hand a simple model is easy to interpret 
and is often preferred. Thus there needs to be a trade-off 
between the goodness-of-fit and simplicity. 
 
7.5.1 Goodness-of-Fit Statistics 
 A non-significant chi-square is desirable (indicates a good 
fit). 

 

1)  χ p
2  = 

( exp)
exp

obs −∑
2

  

 

2)  G2  = ∑ ⎥
⎦

⎤
⎢
⎣

⎡
exp

lnobs2 obs  

 
If the model fitted is correct (ie, H0  is true) and the total 
sample size is large then χ p

2 and G2  have approximate chi-
square distribution with degrees of freedom given by 

df  =  # cells - # parameters fitted 
 
Under these conditions χ p

2 and G2 are asymptotically 
equivalent (rule of thumb: very large sample ≡ 10 × number 
of cells). 
 

7.5.2 To Compare Models 
It may be found that several models fit the data adequately 
and in general the preferred model will be the one with 
fewer parameters. However a test between rival models 
may be required in a situation where the research question 
interested in a particular interaction term. For example, the 
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research question might be "Do variable A and B differ 
across level of variable C?". In this case, we need only to 
compare two models. The first model is the model with all 
three two-way interactions (i.e., A*B, A*C, and B*C). The 
second model is the conditional independence model 
without the two two-way interactions corresponding to the 
research question (i.e., A*C, and B*C). For hierarchical 
models such a test may be obtained by subtracting the G2  
values for the two models to assess the change in goodness 
of fit which results from adding further parameters. The 
difference in G2 is compared with a chi-square distribution 
with df equal to the difference in the degrees of freedom of 
the two models. This is equivalent to the likelihood ratio 
test for logistic regression described in Chapter 6.  
 

7.5.3 Residuals 
Once a preliminary model has been fitted, it is useful to 
make a cell-by-cell comparison of observed and expected 
frequencies. If the model fits poorly in some cells, this lack 
of fit may indicate associations and interactions that may be 
added to the model. This is particularly true when some 
variables are ordinal since the pattern of positive and 
negative deviations can indicate trends that are not well 
represented by the model. 
Cell deviations may be measured through the standardized 
residuals. 

R = 
n e

e
− $

$
 where n  is the observed count 

e  is the fitted (expected) count 
 
The  squared standardized residuals are components of the 
Pearson chi-square (see the output from the final model 
using the stata command “loglin” with “resid” option). 
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7.5.4 Useful Guide 

A useful guide for model selection in searching for a simple 
but useful model to describe the relationship within the 
data from a three-way table is to start with fitting the 
model with u123(ijk) = 0. The model is shown below. 

 
Log-frequency  =  u + u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + 
u23(jk) 

 
Then fit further 3 conditional independence models which 
contain only two two-way interactions in each model and 3 
partial independence models which contain only one two-
way interactions in each model. Then fit the complete 
independence model with three variables without any 
interaction term. By these, we would have a total of 7 
models. Each model we need G2, degree of freedom, and p-
value. We then choose the model that fit well to the data 
(i.e., p-value > 0.05) but less complicate (i.e., none of or 
fewer number of two-way interaction terms). Among all 
model that fit well to the data, we then assess the influence 
of the term(s) that had been removed from the more 
complicated model(s) by comparing the G2 of the selected 
model with the those models, one at a time, using methods 
described in #7.5.1 and #7.5.2. The p-value < 0.05 indicates 
adding the term into the selected model improve the fit, 
thus the model with the new term added should be chosen. 
Again, there needs to be a trade-off between the goodness-
of-fit and simplicity. 
 
Example 7.1 
The following data was adopted from Everitt (1977); page 
95. The variables and their values are: 
 
- Blood pressure:  (1=Less than 127 mm Hg, 2=127-146, 

3=147-166, and 4=167 or more) 
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- Serum cholesterol: (1=Less than 200 mg/100 cc, 2=200-

219, 3=220-259, and 4=260 or more) 
- Coronary heart disease:  (1=Yes, and 2=No) 
 

Table 7.2  Number of subjects by blood pressure level, heart 
disease status,  and serum cholesterol level - data 
for example 7.1 

Serum cholesterol  
Blood Pressure 1 2 3 4 Total 

With 
coronary 

heart 
disease (1)

1 
2 
3 
4 

2
3
8
7

3
2

11
12

3
1
6

11

4
3
6

11

12 
9 

31 
41 

Without 
coronary

heart 
disease (2)

1 
2 
3 
4 

117
85

119
67

121
98

209
99

47
43
68
46

22
20
43
33

307 
246 
439 
245 

Overall total 408 555 225 142 1330 
 

We will use Stata to fit the log-linear model. Command for 
loglinear model did not available in Stata version 6 which was 
used throughout this book. Judson D.J. had provided the 
program to be used in Stata. Readers can download the 
program from "http://www.stata.com/". It is located in the 
module "smv5.1" and the details were available in Stata 
Technical Buletin (STB) Reprints Vol 1, pages 139-152. This 
program need to use with Stata version 3, 4, or 5. 
 
First of all, we enter the data to Stata using the following 
format. 
 

chd bp chl pop 
1 1 1 2 
1 1 2 3 
1 1 3 3 
1 1 4 4 
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chd bp chl pop 

1 2 1 3 
1 2 2 2 
1 2 3 1 
1 2 4 3 
1 3 1 8 
1 3 2 11 
1 3 3 6 
1 3 4 6 
1 4 1 7 
1 4 2 12 
1 4 3 11 
1 4 4 11 
2 1 1 117 
2 1 2 121 
2 1 3 47 
2 1 4 22 
2 2 1 85 
2 2 2 98 
2 2 3 43 
2 2 4 20 
2 3 1 119 
2 3 2 209 
2 3 3 68 
2 3 4 43 
2 4 1 67 
2 4 2 99 
2 4 3 46 
2 4 4 33 

 
Data from this study form a 2-by-4-by-4 Table. The analysis 
using log-linear modeling applied to these data yields the 
following results for all eight possible models: 
 
Saturated Model:  
log-frequency  = CHD + BP + CHL + CHD*BP + CHD*CHL  

   + BP*CHL + CHD*BP*CHL 
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1. Model:  
log-frequency    =  CHD + BP + CHL + CHD*BP  

+ CHD*CHL + BP*CHL  
 

. loglin pop  chd bp chl, fit(chd, bp, chl, chd bp, chd chl, bp 
chl) 
Variable chd = A 
Variable bp = B 
Variable chl = C 
Margins fit: chd, bp, chl, chd bp, chd chl, bp chl 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -78.489746 
Iteration 1: Log Likelihood = -77.683594 
Iteration 2: Log Likelihood = -77.676758 
 
Poisson regression                                  Number of obs    =      32 
Goodness-of-fit chi2(9)     =     4.775             Model chi2(22)   =1639.451 
Prob > chi2                 =    0.8534             Prob > chi2      =  0.0000 
Log Likelihood              =   -77.677             Pseudo R2        =  0.9134 
 
------------------------------------------------------------------------------ 
     pop |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |   3.495052   .3489747     10.015   0.000       2.811074     4.17903 
    AB22 |   .0913574   .4512986      0.202   0.840      -.7931716    .9758864 
    AB23 |  -.5623114   .3508082     -1.603   0.109      -1.249883      .12526 
    AB24 |  -1.342433   .3429665     -3.914   0.000      -2.014635   -.6702307 
    AC22 |   .0384452    .303493      0.127   0.899      -.5563902    .6332806 
    AC23 |  -.5872325   .3285031     -1.788   0.074      -1.231087    .0566217 
    AC24 |  -1.203873   .3265999     -3.686   0.000      -1.843997   -.5637492 
      B2 |   -.390569   .4606399     -0.848   0.397      -1.293407    .5122687 
      B3 |   .6053894   .3613974      1.675   0.094      -.1029365    1.313715 
      B4 |   .7873583   .3578944      2.200   0.028       .0858983    1.488818 
    BC22 |   .0865808   .1945052      0.445   0.656      -.2946424     .467804 
    BC23 |   .1759085   .2501767      0.703   0.482      -.3144289    .6662458 
    BC24 |   .1846616   .3200576      0.577   0.564      -.4426398    .8119629 
    BC32 |   .5090796   .1700817      2.993   0.003       .1757255    .8424336 
    BC33 |   .3106371    .223539      1.390   0.165      -.1274912    .7487654 
    BC34 |   .5236171   .2756988      1.899   0.058      -.0167426    1.063977 
    BC42 |   .3671291   .1987235      1.847   0.065      -.0223618      .75662 
    BC43 |   .5494598   .2463114      2.231   0.026       .0666982    1.032221 
    BC44 |   .8502138   .2934776      2.897   0.004       .2750083    1.425419 
      C2 |   .0038244   .3214342      0.012   0.991      -.6261751    .6338238 
      C3 |  -.3031287   .3571926     -0.849   0.396      -1.003213    .3969559 
      C4 |  -.3836104   .3751534     -1.023   0.307      -1.118898    .3516767 
   _cons |   1.254175   .3508825      3.574   0.000       .5664583    1.941892 
------------------------------------------------------------------------------ 
 

2. Model:  
log-frequency = CHD + BP + CHL + CHD*BP + CHD*CHL  
 
. loglin pop  chd bp chl, fit(chd, bp, chl, chd bp, chd chl) 
Variable chd = A 
Variable bp = B 
Variable chl = C 
Margins fit: chd, bp, chl, chd bp, chd chl 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
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Iteration 0: Log Likelihood = -88.375977 
Iteration 1: Log Likelihood = -87.495605 
Iteration 2: Log Likelihood = -87.489746 
 
Poisson regression                                  Number of obs    =      32 
Goodness-of-fit chi2(18)    =    24.401             Model chi2(13)   =1619.825 
Prob > chi2                 =    0.1423             Prob > chi2      =  0.0000 
Log Likelihood              =   -87.490             Pseudo R2        =  0.9025 
 
------------------------------------------------------------------------------ 
     pop |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |   3.619369   .3572211     10.132   0.000       2.919229     4.31951 
    AB22 |   .0661658   .4491846      0.147   0.883      -.8142198    .9465515 
    AB23 |   -.591429   .3480325     -1.699   0.089       -1.27356    .0907022 
    AB24 |  -1.454255   .3392087     -4.287   0.000      -2.119092    -.789418 
    AC22 |   -.030277   .3003151     -0.101   0.920      -.6188837    .5583297 
    AC23 |  -.6916755   .3241887     -2.134   0.033      -1.327074   -.0562773 
    AC24 |  -1.372642   .3204974     -4.283   0.000      -2.000805   -.7444789 
      B2 |   -.287682   .4409585     -0.652   0.514      -1.151945    .5765808 
      B3 |   .9490806   .3399873      2.792   0.005       .2827177    1.615444 
      B4 |   1.228665   .3282127      3.744   0.000       .5853803     1.87195 
      C2 |   .3364722     .29277      1.149   0.250      -.2373465    .9102909 
      C3 |   .0487902   .3124405      0.156   0.876      -.5635819    .6611622 
      C4 |   .1823215    .302765      0.602   0.547      -.4110871      .77573 
   _cons |   .9480394   .3501152      2.708   0.007       .2618263    1.634253 
------------------------------------------------------------------------------ 

 
3. Model:  
log-frequency = CHD + BP + CHL + CHD*BP + BP*CHL  
 
. loglin pop  chd bp chl, fit(chd, bp, chl, chd bp,  bp chl) 
Variable chd = A 
Variable bp = B 
Variable chl = C 
Margins fit: chd, bp, chl, chd bp, bp chl 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -90.335449 
Iteration 1: Log Likelihood = -87.391113 
Iteration 2: Log Likelihood = -87.318848 
 
Poisson regression                                  Number of obs    =      32 
Goodness-of-fit chi2(12)    =    24.060             Model chi2(19)   =1620.167 
Prob > chi2                 =    0.0200             Prob > chi2      =  0.0000 
Log Likelihood              =   -87.319             Pseudo R2        =  0.9027 
 
------------------------------------------------------------------------------ 
     pop |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |   3.241941   .2942619     11.017   0.000       2.665198    3.818684 
    AB22 |   .0661659   .4491836      0.147   0.883      -.8142177    .9465496 
    AB23 |  -.5914288   .3480317     -1.699   0.089      -1.273558    .0907007 
    AB24 |  -1.454255   .3392078     -4.287   0.000       -2.11909   -.7894199 
      B2 |  -.3655411   .4551419     -0.803   0.422      -1.257603    .5265207 
      B3 |   .6266025    .355817      1.761   0.078       -.070786    1.323991 
      B4 |   .8628062   .3507258      2.460   0.014       .1753963    1.550216 
    BC22 |   .0866753   .1945032      0.446   0.656       -.294544    .4678946 
    BC23 |    .173953   .2499885      0.696   0.487      -.3160155    .6639215 
    BC24 |   .1791843    .318915      0.562   0.574      -.4458776    .8042462 
    BC32 |   .5082825   .1699628      2.991   0.003       .1751616    .8414034 
    BC33 |   .3269785   .2231387      1.465   0.143      -.1103654    .7643223 
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    BC34 |   .5686602   .2741296      2.074   0.038        .031376    1.105944 
    BC42 |   .3643072   .1974599      1.845   0.065       -.022707    .7513215 
    BC43 |   .6060868   .2438457      2.486   0.013        .128158    1.084016 
    BC44 |   1.001152   .2882805      3.473   0.001       .4361323    1.566171 
      C2 |   .0411581   .1283272      0.321   0.748      -.2103586    .2926748 
      C3 |  -.8671005   .1685329     -5.145   0.000      -1.197419    -.536782 
      C4 |  -1.521027    .216483     -7.026   0.000      -1.945326   -1.096728 
   _cons |   1.498839   .2976597      5.035   0.000       .9154366    2.082241 
------------------------------------------------------------------------------ 

 
4. Model:  
log-frequency = CHD + BP + CHL + CHD*CHL + BP*CHL 
 
. loglin pop  chd bp chl, fit(chd, bp, chl, chd  chl,  bp chl) 
Variable chd = A 
Variable bp = B 
Variable chl = C 
Margins fit: chd, bp, chl, chd chl, bp chl 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -92.934082 
Iteration 1: Log Likelihood = -90.51709 
Iteration 2: Log Likelihood = -90.491211 
 
Poisson regression                                  Number of obs    =      32 
Goodness-of-fit chi2(12)    =    30.404             Model chi2(19)   =1613.822 
Prob > chi2                 =    0.0024             Prob > chi2      =  0.0000 
Log Likelihood              =   -90.491             Pseudo R2        =  0.8992 
 
------------------------------------------------------------------------------ 
     pop |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |   2.965273   .2292974     12.932   0.000       2.515858    3.414688 
    AC22 |  -.0302771   .3003151     -0.101   0.920      -.6188838    .5583296 
    AC23 |  -.6916755   .3241887     -2.134   0.033      -1.327074   -.0562773 
    AC24 |  -1.372642   .3204974     -4.283   0.000      -2.000806    -.744479 
      B2 |  -.3017864   .1405952     -2.146   0.032      -.5773479    -.026225 
      B3 |   .0650637   .1275828      0.510   0.610       -.184994    .3151215 
      B4 |  -.4750581   .1480435     -3.209   0.001       -.765218   -.1848982 
    BC22 |   .0866753   .1945032      0.446   0.656      -.2945441    .4678946 
    BC23 |   .1739532   .2499885      0.696   0.487      -.3160153    .6639218 
    BC24 |   .1791842    .318915      0.562   0.574      -.4458778    .8042461 
    BC32 |   .5082822   .1699628      2.991   0.003       .1751612    .8414031 
    BC33 |   .3269786   .2231387      1.465   0.143      -.1103653    .7643224 
    BC34 |   .5686601   .2741297      2.074   0.038       .0313758    1.105944 
    BC42 |   .3643068   .1974599      1.845   0.065      -.0227074     .751321 
    BC43 |   .6060866   .2438457      2.486   0.013       .1281577    1.084015 
    BC44 |   1.001151   .2882806      3.473   0.001       .4361317    1.566171 
      C2 |   .0699295   .3129367      0.223   0.823      -.5434151    .6832742 
      C3 |  -.2231435   .3451478     -0.647   0.518      -.8996207    .4533337 
      C4 |  -.2832652   .3592191     -0.789   0.430      -.9873216    .4207912 
   _cons |   1.763588   .2365426      7.456   0.000       1.299974    2.227203 
------------------------------------------------------------------------------ 

 
 
5. Model:  
 
log-frequency = CHD + BP + CHL + CHD*BP  
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. loglin pop  chd bp chl, fit(chd, bp, chl, chd bp) 
Variable chd = A 
Variable bp = B 
Variable chl = C 
Margins fit: chd, bp, chl, chd bp 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -102.75049 
Iteration 1: Log Likelihood = -99.592285 
Iteration 2: Log Likelihood = -99.542969 
Poisson regression                                  Number of obs    =      32 
Goodness-of-fit chi2(21)    =    48.508             Model chi2(10)   =1595.719 
Prob > chi2                 =    0.0006             Prob > chi2      =  0.0000 
Log Likelihood              =   -99.543             Pseudo R2        =  0.8891 
------------------------------------------------------------------------------ 
     pop |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |   3.241941   .2942627     11.017   0.000       2.665197    3.818685 
    AB22 |   .0661658   .4491842      0.147   0.883      -.8142191    .9465508 
    AB23 |  -.5914289   .3480323     -1.699   0.089       -1.27356    .0907019 
    AB24 |  -1.454255   .3392085     -4.287   0.000      -2.119091   -.7894185 
      B2 |   -.287682   .4409582     -0.652   0.514      -1.151944    .5765801 
      B3 |   .9490806   .3399872      2.792   0.005        .282718    1.615443 
      B4 |   1.228665   .3282125      3.744   0.000       .5853808     1.87195 
      C2 |    .307701   .0652134      4.718   0.000       .1798852    .4355169 
      C3 |  -.5951668   .0830387     -7.167   0.000      -.7579196   -.4324139 
      C4 |   -1.05544   .0974332    -10.832   0.000      -1.246406   -.8644745 
   _cons |    1.30324    .291603      4.469   0.000       .7317082    1.874771 
------------------------------------------------------------------------------ 
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6. Model:  
log-frequency = CHD + BP + CHL + CHD*CHL  
 
. loglin pop  chd bp chl, fit(chd, bp, chl, chd chl) 
Variable chd = A 
Variable bp = B 
Variable chl = C 
Margins fit: chd, bp, chl, chd chl 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -105.66895 
Iteration 1: Log Likelihood = -102.74902 
Iteration 2: Log Likelihood = -102.71582 
 
Poisson regression                                  Number of obs    =      32 
Goodness-of-fit chi2(21)    =    54.854             Model chi2(10)   =1589.373 
Prob > chi2                 =    0.0001             Prob > chi2      =  0.0000 
Log Likelihood              =  -102.716             Pseudo R2        =  0.8855 
 
------------------------------------------------------------------------------ 
     pop |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |   2.965273   .2292974     12.932   0.000       2.515858    3.414688 
    AC22 |  -.0302771   .3003151     -0.101   0.920      -.6188838    .5583296 
    AC23 |  -.6916755   .3241887     -2.134   0.033      -1.327074   -.0562774 
    AC24 |  -1.372642   .3204974     -4.283   0.000      -2.000806   -.7444789 
      B2 |  -.2239275   .0840022     -2.666   0.008      -.3885687   -.0592862 
      B3 |   .3875417   .0725428      5.342   0.000       .2453604    .5297229 
      B4 |  -.1091992   .0814328     -1.341   0.180      -.2688045    .0504062 
      C2 |   .3364723     .29277      1.149   0.250      -.2373464     .910291 
      C3 |   .0487903   .3124404      0.156   0.876      -.5635818    .6611623 
      C4 |   .1823216    .302765      0.602   0.547       -.411087    .7757302 
   _cons |   1.567989   .2288731      6.851   0.000       1.119406    2.016572 
------------------------------------------------------------------------------ 

 
 
7. Model:  
 
log-frequency = CHD + BP + CHL + BP*CHL  
 
. loglin pop  chd bp chl, fit(chd, bp, chl, bp chl) 
Variable chd = A 
Variable bp = B 
Variable chl = C 
Margins fit: chd, bp, chl, bp chl 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -108.30371 
Iteration 1: Log Likelihood = -102.64697 
Iteration 2: Log Likelihood = -102.54492 
 
 
Poisson regression                                  Number of obs    =      32 
Goodness-of-fit chi2(15)    =    54.512             Model chi2(16)   =1589.715 
Prob > chi2                 =    0.0000             Prob > chi2      =  0.0000 
Log Likelihood              =  -102.545             Pseudo R2        =  0.8857 
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------------------------------------------------------------------------------ 
     pop |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |   2.587845   .1075225     24.068   0.000       2.377105    2.798585 
      B2 |  -.3017865   .1405951     -2.146   0.032       -.577348   -.0262251 
      B3 |   .0650634   .1275828      0.510   0.610      -.1849944    .3151211 
      B4 |  -.4750583   .1480435     -3.209   0.001      -.7652182   -.1848983 
    BC22 |    .086675   .1945032      0.446   0.656      -.2945443    .4678943 
    BC23 |   .1739533   .2499885      0.696   0.487      -.3160152    .6639218 
    BC24 |   .1791841    .318915      0.562   0.574      -.4458778    .8042461 
    BC32 |   .5082823   .1699628      2.991   0.003       .1751613    .8414032 
    BC33 |   .3269788   .2231387      1.465   0.143      -.1103651    .7643227 
    BC34 |   .5686604   .2741297      2.074   0.038       .0313761    1.105945 
    BC42 |   .3643067   .1974599      1.845   0.065      -.0227075     .751321 
    BC43 |   .6060867   .2438457      2.486   0.013       .1281578    1.084015 
    BC44 |   1.001151   .2882806      3.473   0.001       .4361318    1.566171 
      C2 |   .0411582   .1283272      0.321   0.748      -.2103586    .2926749 
      C3 |  -.8671007    .168533     -5.145   0.000      -1.197419   -.5367821 
      C4 |  -1.521027    .216483     -7.026   0.000      -1.945326   -1.096728 
   _cons |   2.118789   .1356619     15.618   0.000       1.852896    2.384681 
------------------------------------------------------------------------------ 
 

 
8. Model:  
 
log-frequency = CHD + BP + CHL  
 
 
. loglin pop  chd bp chl, fit(chd, bp, chl) 
Variable chd = A 
Variable bp = B 
Variable chl = C 
Margins fit: chd, bp, chl 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -121.24414 
Iteration 1: Log Likelihood = -114.89258 
Iteration 2: Log Likelihood = -114.76953 
Iteration 3: Log Likelihood = -114.76904 
 
Poisson regression                                  Number of obs    =      32 
Goodness-of-fit chi2(24)    =    78.960             Model chi2(7)    =1565.267 
Prob > chi2                 =    0.0000             Prob > chi2      =  0.0000 
Log Likelihood              =  -114.769             Pseudo R2        =  0.8721 
 
------------------------------------------------------------------------------ 
     pop |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |   2.587845   .1075225     24.068   0.000       2.377105    2.798585 
      B2 |  -.2239276   .0840022     -2.666   0.008      -.3885688   -.0592864 
      B3 |   .3875415   .0725428      5.342   0.000       .2453602    .5297227 
      B4 |  -.1091995   .0814328     -1.341   0.180      -.2688048    .0504059 
      C2 |    .307701   .0652134      4.718   0.000       .1798851    .4355168 
      C3 |  -.5951669   .0830387     -7.167   0.000      -.7579197    -.432414 
      C4 |   -1.05544   .0974332    -10.832   0.000      -1.246406   -.8644745 
   _cons |   1.923189   .1217978     15.790   0.000        1.68447    2.161909 
------------------------------------------------------------------------------ 
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Summary results: 
 
    Denoted CHD = 1, BP = 2, and CHL = 3. 
 

 
Model 

Likelihood 
ratio Chi-

square  

Degree 
of 

freedom 

 
p-value 

    
All pairwise association    
1. u123 = 0 4.775 9 0.8534 
    
Conditional independence    
2. u23 = u123 = 0 24.401 18 0.142 
3. u13 = u123 = 0 24.060 12 0.020 
4. u12 = u123 = 0 30.404 12 0.002 
    
Partial independence    
5. u12 = u13 = u123 = 0 54.512 15 <0.001 
6. u12 = u23 = u123 = 0 54.854 21 <0.001 
7. u13 = u23 = u123 = 0 48.508 21 <0.001 
    
Complete independence    
8. u12 = u13 = u23 = u123 = 0 78.906 24 <0.001 
    

 

 
Followings are explanations of model selection. These are 
for illustration only, not for quoted in the research report. 

 
Examine all models  

So G2 is non-significant so we do not need the three-way 
interaction. 
 
How many two-way interaction do we need? 
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If we examine the fitted values for the parameters in 
relation to their standard errors (called standardized 
values) in the Stata output with "resid" option, we can 
determine which interaction terms can be discarded. Since 
only terms involving interaction between variables 1 and 3 
and 2 and 3 are significantly different from zero we can 
omit all but these interactions. Thus model 2 looks 
promising. 
 

Considering Model 1 - No thee-way interaction  
 
H0 : u123 = 0 

 
Expected values have to be obtained iteratively. When this 
is done obtain G2 = 4.77 

 
Parameter No. This problem 

u 1 1 
u1(i) r-1 3 
u2(j) c-1 3 
u3(k) l-1 1 
u12(ij) (r-1)(c-1) 9 
u13(ik) (r-1)(l-1) 3 
u23(jk) (c-1)(l-1) 3 

Total 23 
df  =  4 x 4 x 2 - 23  =  32 - 23  =  9 

 
P-value = 0.8534, thus we conclude that the model fits 
extremely well to the data.  
 

Considering model 8: The independent model 
Main effects. 
 
H0 : three variables are mutually independent or  
H0 : u12  = u13  = u23  = u123  = 0 
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Expected values are calculated as 

  
^

ijke  = 
n n n

n
i j k++ + + ++

+++
2  

 χ p
2  = 99.54 G2  =  78.96 

 df = 4 x 4 x 2 - (4 - 1) – (4-1)- (2 - 1) - 1 
  = 32 - 3 - 3 - 1 - 1 
  = 24 
 
Since χ p

2  and G2 are highly significant we reject H0 and 
conclude that the model does not provide and adequate fit. 
 

Considering model 2: The conditional independence model  
 

ln eijk  = u + u1(i)  + u2(j)   + u3(k)   + u12(ij)   + u13(ik)   
 
This is the conditional independence model which implies 
no association between blood pressure (BP) and serum 
cholesterol level (CHL) for both CHD and no CHD 
patients. But BP and CHL each is associated with CHD. 
G2 = 24.4 with 18 df. gives a p-value of 0.142. So we 
conclude that this model provides an adequate fit to the 
data.  
 

Selection of the final model 
Comparing the two models that adequately fitted the data 
(Models 1 and 2) we have  
 
 2

1
2
2 GG −  = 24.4 - 4.77  =  19.63 

 with 18 - 9 = 9 df 
 
Use Stata to find a p-value 
 
. disp chiprob(9, 19.63) 
.02033827 
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Since this is significant (p-value = 0.02) we conclude that 
the addition of the parameter u23 to model 2 causes a 
significant improvement in fit and consequently a model 
which includes two-way interactions between all pairs of 
variables is needed. Thus Model 1 is the best model for 
describing the data. We can examine the residuals of the 
model using the same command of Stata as that being used 
previously plus an option - "resid" as follows: 
  
. loglin pop  chd bp chl, fit(chd, bp, chl, chd bp, chd chl, bp 
chl resid 

Variable chd = A 
Variable bp = B 
Variable chl = C 
Margins fit: chd, bp, chl, chd bp, chd chl, bp chl 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0:   log likelihood = -172.80125   
Iteration 1:   log likelihood = -78.652413   
Iteration 2:   log likelihood = -77.677338   
Iteration 3:   log likelihood = -77.676644   
Iteration 4:   log likelihood = -77.676644   
 
Poisson regression                                Number of obs   =         32 
                                                  LR chi2(22)     =    1639.45 
                                                  Prob > chi2     =     0.0000 
Log likelihood = -77.676644                       Pseudo R2       =     0.9134 
 
------------------------------------------------------------------------------ 
     pop |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |   3.495052   .3489747     10.015   0.000       2.811075     4.17903 
    AB22 |   .0913573   .4512986      0.202   0.840      -.7931717    .9758862 
    AB23 |  -.5623115   .3508082     -1.603   0.109      -1.249883    .1252599 
    AB24 |  -1.342433   .3429665     -3.914   0.000      -2.014635   -.6702307 
    AC22 |   .0384452    .303493      0.127   0.899      -.5563903    .6332806 
    AC23 |  -.5872324   .3285031     -1.788   0.074      -1.231087    .0566217 
    AC24 |  -1.203873   .3265999     -3.686   0.000      -1.843997   -.5637491 
      B2 |  -.3905691     .46064     -0.848   0.397      -1.293407    .5122686 
      B3 |   .6053894   .3613974      1.675   0.094      -.1029365    1.313715 
      B4 |   .7873584   .3578944      2.200   0.028       .0858984    1.488819 
    BC22 |   .0865808   .1945052      0.445   0.656      -.2946424    .4678041 
    BC23 |   .1759085   .2501767      0.703   0.482      -.3144288    .6662459 
    BC24 |   .1846617   .3200576      0.577   0.564      -.4426397     .811963 
    BC32 |   .5090796   .1700817      2.993   0.003       .1757255    .8424336 
    BC33 |   .3106373    .223539      1.390   0.165       -.127491    .7487656 
    BC34 |   .5236173   .2756988      1.899   0.058      -.0167425    1.063977 
    BC42 |    .367129   .1987235      1.847   0.065      -.0223619    .7566198 
    BC43 |   .5494595   .2463114      2.231   0.026        .066698    1.032221 
    BC44 |   .8502137   .2934776      2.897   0.004       .2750082    1.425419 
      C2 |   .0038244   .3214342      0.012   0.991      -.6261751    .6338238 
      C3 |  -.3031287   .3571926     -0.849   0.396      -1.003213    .3969559 
      C4 |  -.3836105   .3751534     -1.023   0.307      -1.118898    .3516766 
   _cons |   1.254175   .3508825      3.574   0.000       .5664583    1.941892 
------------------------------------------------------------------------------ 
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pop  chd   bp  chl   cellhat    resid   stdres  
  2    1    1    1     3.505   -1.505   -0.804   
  3    1    1    2     3.518   -0.518   -0.276   
  3    1    1    3     2.588    0.412    0.256   
  4    1    1    4     2.388    1.612    1.043   
  3    1    2    1     2.372    0.628    0.408   
  2    1    2    2     2.596   -0.596   -0.370   
  1    1    2    3     2.088   -1.088   -0.753   
  3    1    2    4     1.944    1.056    0.758   
  8    1    3    1     6.421    1.579    0.623   
 11    1    3    2    10.724    0.276    0.084   
  6    1    3    3     6.469   -0.469   -0.185   
  6    1    3    4     7.386   -1.386   -0.510   
  7    1    4    1     7.702   -0.702   -0.253   
 12    1    4    2    11.162    0.838    0.251   
 11    1    4    3     9.854    1.146    0.365   
 11    1    4    4    12.282   -1.282   -0.366   
117    2    1    1   115.495    1.505    0.140   
121    2    1    2   120.482    0.518    0.047   
 47    2    1    3    47.412   -0.412   -0.060   
 22    2    1    4    23.612   -1.612   -0.332   
 85    2    2    1    85.628   -0.628   -0.068   
 98    2    2    2    97.404    0.596    0.060   
 43    2    2    3    41.912    1.088    0.168   
 20    2    2    4    21.056   -1.056   -0.230   
119    2    3    1   120.579   -1.579   -0.144   
209    2    3    2   209.276   -0.276   -0.019   
 68    2    3    3    67.531    0.469    0.057   
 43    2    3    4    41.614    1.386    0.215   
 67    2    4    1    66.298    0.702    0.086   
 99    2    4    2    99.838   -0.838   -0.084   
 46    2    4    3    47.146   -1.146   -0.167   
 33    2    4    4    31.718    1.282    0.228 

 
Summarize findings 

There is a positive association between high blood pressure 
(level 4 of BP) and CHD and a positive association between 
high cholesterol (level 4 of CHL) and CHD. Low levels of 
each of these are ‘protective’ (i.e., negative coefficients). 
 
The lack of a three-way interaction implies that: 
a) interaction between CHD and BP is the same at all levels 

of serum CHL. 
b) interaction between CHD and CHL is the same at all 

levels of BP. 
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7.6 Further readings 

A good and comprehensive book is Agresti (1991); page 130-
153. Another more practical book is given by Selvin (1995); 
page 293-364. All key concepts can be found in these books.  
 
Selvin (1995) provided the simplest possible introduction to 
the log-linear model by applying the concept of log-linear 
model for 2-by-2 table (page 307-314), and for R-by-C table 
(page 314). The author demonstrated that the log-linear model 
applied to a 2-by-2 table produces the same estimate values, 
the same chi-square statistics, and the same results as that 
described in Chapter 2. Agresti (1991); page 133-134 had 
shown that when it is natural to regard one variable as a 
response and other as explanatory variables, certain log-linear 
models are equivalent to logistic regression model which had 
discussed in Chapter 6. Upton (1998) demonstrated that log-
linear model can be used as a tool for exploratory data 
analysis. It serves as a useful guide for more complicated 
statistical modeling. The author also provided a 
comprehensive review of key concepts of this method that 
worth reading. 
 
A closely related topic is capture-recapture model and Poisson 
regression. A readable introduction and practical example of 
this topic can be found in Selvin (1995); page 342-349, and 
page 455-488, respectively.  
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Exercise 
 
Following data is from Everitt (1977); page 73. Your are 
assigned to find the ‘best’ log-linear model to describe the 
associations between adversity of school condition and home 
condition and deviant behavior in the classroom using the 
following data and summarize your findings. 
 

Adversity of school condition  
Low Medium High 

Risk index Not 
at 

risk 

At 
risk 

Not 
at 

risk 

At 
risk 

Not 
at 

risk 

At 
risk 

 
 

Total 

Not deviant 16 7 15 34 5 3 80 Behavior 
Deviant 1 1 3 8 1 3 17 

Total 17 8 18 42 6 6 97 
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Chapter Objectives 
 
After completion this chapter, readers should be able 

to: 
• describe concepts underlying tests with continuity 

correction for 2-by-2 Table 
• calculate exact p-value 
• describe how odds ratio is an estimator of relative 

risk and when to be cautions 
• describe basic concepts of analysis of categorical 

data from survey data 

Chapter 8 

Special Topics for 
Categorical Data Analysis
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Contents 
 
 
 
8.1 Tests with continuity correction for 2-by-2 Table 

In deriving the distribution of the chi-square statistic 
essentially we are employing a continuous probability 
distribution, namely the chi-square distribution as an 
approximation to the discrete probability distribution of 
frequencies (eg, the multinomial distribution). To improve the 
approximation, Yates (1934) suggested a correction. However, 
several authors questioned appropriateness of the continuity 
correction. Agresti (1990) provided a comprehensive summary 
on page 68 as well as Daniel (1991) on page 548-549, and 
StataCorp (1999) on page 406 of volume 1:A-G. All of them 
suggested not to use it, rather, use Fisher's exact test when in 
doubt of insufficient sample.  
 
 
8.2 Exact methods 

Exact methods are for small sample. A contingency table 
where the number of cells with expected value of less than 5 
greater than 20% of the total number of cell is said to be small 
sample. In this case, asymptotic methods are not valid. Chi-
square test is an asymptotic method, so not appropriate. For 
2-by-2 contingency Table, Fisher's exact test is the 
appropriate one. For a table larger than 2-by-2 Table, the 
equivalent exact test is called Freeman-Halton Conditional 
Exact Test. Agresti (1990) provided a comprehensive review 
on page 59-67. Stata can calculate for these even for fairly 
large sample and for a table larger than 2-by-2 Table as 
shown below. 
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Example 8.1 For 2-by-2 Table 
 
Altman (1991); page 254-256 illustrated calculation manually 
the Fisher's exact test using the data in the table below. 
 
Table 8.1  Number of subjects by spectacle wearing status by 

juvenile delinquents status - data for example 8.1 
 
 

Spectacle Juvenile delinquents  
wearers Yes No Total 

Yes 1 5 6 
No 8 2 10 

Total 9 7 16 
 
 
 
Here is an immediate form of "tabulate" command (see 
StataCorp., 1999; Volume 4: Su-Z, page 157-174). 
 
 
. tabi 1 5 \ 8 2, exact 
 
           |          col 
       row |         1          2 |     Total 
-----------+----------------------+---------- 
         1 |         1          5 |         6  
         2 |         8          2 |        10  
-----------+----------------------+---------- 
     Total |         9          7 |        16  
 
           Fisher's exact =                 0.035 
   1-sided Fisher's exact =                 0.024 
 

 
Alternatively we can use either "csi" or "cci" command with 
"exact" option (see StataCorp., 1999; Volume 1: A-G, page 
366-414). 
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Example 8.2 For 2-by-5 Table 
 
A hypothetical data adapted form Example 4.1. 
 
Table 8.2  Number of subjects by type of psychiatric disorder 

by blood group - data for example 8.2 
 

Blood group Psychiatric 
disorder A B AB O 

 
Total 

Schizophrenia 7 2 1 28 18 
Neurosis 1 2 5 7 15 
Depressed 4 3 1 1 9 

Total 12 7 7 16 42 
 
 
. tabi 7 2 1 8 \ 1 2 5 7 \ 4 3 1 1, chi2 exact 
 
           |                     col 
       row |         1          2          3          4 |     Total 
-----------+--------------------------------------------+---------- 
         1 |         7          2          1          8 |        18  
         2 |         1          2          5          7 |        15  
         3 |         4          3          1          1 |         9  
-----------+--------------------------------------------+---------- 
     Total |        12          7          7         16 |        42  
 
          Pearson chi2(6) =  12.1167   Pr = 0.059 
           Fisher's exact =                 0.043 

 
Note that Pearson chi-square leads to non-significant result 
while exact test is significant. The exact test is preferred in this 
example due to small sample. The larger the sample size, the 
closer the p-values from asymptotic and exact tests.   
 
However the above examples are the test statistics. As this 
book had advocated estimation-based approach throughout, 
some references for estimating confidence intervals recently 
published were provided as follows: 
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-  Brenner and Quan (1990) : exact confidence limit for 
binomial proportions  
-  Agresti (1999) : confidence intervals for the odds ratio with 
small sample 
-  Hirji (1994) : exact analysis for pair binary data 
-  Korn and Glaubard (1998) : exact confidence intervals for 

proportions from survey data 
 
Interesting arguments of exact methods for binomial 
proportions were given by Agresti and Coull (1998).  
 
These references were also full of other references at the end 
of their papers. Stata provides some of these  (see StataCorp., 
1999; Volume 1: A-G, page 366-414). Again StataCorp (1999) 
provides useful references for the exact estimations as well. 
 
8.3 Odds ratio (OR) as an estimator of relative risk (RR) 

Simple mathematical proves that Odds ratio is an 
approximate relative risk was given clearly in Everitt (1977); 
page 31-33. Armitage and Berry (1994); page 509. 
 
Davies, Crombie, and Tavakoli (1998) showed that if the odds 
ratio is interpreted as a relative risk it will always overstate 
any effect size: the odds ratio is smaller than the relative risk 
for odds ratios of less than one, and bigger than the relative 
risk for odds ratios of greater than one. The authors further 
demonstrated that the extent of overstatement increases as 
both the initial risk increases and the odds ratio departs from 
unity. However, serious divergence between the odds ratio and 
the relative risk occurs only with large effects on          groups 
at high initial risk. Therefore qualitative judgments based on 
interpreting odds ratios as though they were relative risks are 
unlikely to be seriously in error. In studies which show 
reductions in risk (odds ratios of less than one), the odds ratio 
will never underestimate the relative risk by a greater 
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percentage than the level of initial risk. In studies which show 
increases in risk (odds ratios of greater than one), the odds 
ratio will be no more than twice the relative risk so long as the 
odds ratio times the initial risk is less than 100%. 
 
Lee (1999) provided simple methods for checking for possible 
errors in reported odds ratios, relative risk and confidence 
intervals. 
 
8.4 Analysis of categorical data from survey data 

Survey data generally have some special characteristics 
different from other type of study design such as sampling 
probability (i.e., sampling weight), clustering, and 
stratification. These were arise from the design of data 
collection procedure. An excellent and precise description how 
these designs affect the analysis of data is given by  StataCorp 
(1999); page 321-333 of Stata user's guide. Commands of Stata 
for these type of data can be found in StataCorp (1999); page 
15-99 of Volume 4: Su-Z. Most of the commands can be used 
in the same ways as those had been illustrated in previous 
chapters but started with  "svy" which stand for "survey". 
For example, "svytab" is an equivalent of "tabulate" ordinary 
command mostly used in the previous chapters.   
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APPENDIX 
 

ANSWERS TO THE EXERCISES 
 

Answers for the exercise in Chapter 2 
 
Question 1.    
 
i)   It is a cross-sectional study. 

The type of the study is a cross-sectional study since both gender 
and being on diet status were measured at the same time. What 
is known first is the grand total of 350 study subjects. Thus we 
need to note that the data in this table is the grand total only 
fixed. 

 Appropriate null hypothesis can be stated in two forms- general 
and specific forms. For the general form, we can state as 
follows: 
 
 Ho: There is no association between gender and being 
on diet status. 
 HA: There is an association between gender and being 
on diet status. 
 

For the specific form, we can state as follows: 
  H0  :  πij  = πi+  π+j  where πi+  = πi1  + πi2   ; i = 1,2. 

     π+j = π1j  + π2 j  ; j = 1,2. 
  H0  :  πij  ≠ πi+  π+j 
 
This is the hypothesis of no association or independence. 
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ii)  We can use the chi-square test 
 

  2χ  =  
( )

31139177173
3502515915214 2

×××
×−×

 = 3.21 

 

Note that the smallest expected value is 
39 173

350
×

 = 19.3 so the 

chi-square test is appropriate. 
 
We compare the value of with the chi-square distribution  
with 1 degree of freedom, the probability of observing a value 
as large or lager if H0 is true is p-value > 0.05. Note that it is 
recommended that we should report the precise p-value 
instead of the “p-value > 0.05”. One can use STATA to find 
the precise p-value using the “display” command. In this case 
we can do by executing the command as shown bellow and 
obtaining the p-value of 0.073. 
 
. display chiprob(1, 3.21 )    command 
. 0731895    result 

 
 Thus the null hypothesis is not rejected. Therefore we 
have no sufficient evidence to conclude that there is an 
association between gender and diet. 
 
iii)   For a cross-sectional study we can calculate the relative 
risk or odds ratio as the measure of association (see Altman, 
1991, page 266-269 for more details). The different between 
two proportions is not advisable here. Following is the 
example of calculation using the relative risk. Additionally, 
the attributable risk may also be useful in convincing policy 
makers.  
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We choose relative risk as a measure of association in this case 
assuming that SEX determine ON DIET STATUS or “column 
total fixed” table.  

  RR  = 

177
25

173
14

 = 0.57 

 
so boys are 0.57 times as likely to be on a diet as girls. 
 

Var
∧

)(ln RR  = 
159

173 14
152

177 25×
+

×
⎡
⎣⎢

⎤
⎦⎥
  

= 0.099999 
 

95%CI for ln(RR):  ( )099999.96.157.0ln ±   
= ln(-1.18, 0.058) 

 
 95% CI for RR = Exp(-1.18) to Exp(0.058)  

= 0.307 to 1.059 
 
iv) Among a total of 173 boys, 8.1% were on diet whilst 
among 177 girls, the corresponding rate was 14.1%. Boys as 
less likely to be on diets than girls (RR = 0.57; 95% CI: 0.31 to 
1.06). However, this is not statistically significant (p-value = 
0.073). 
 
STATA commands: 
The “csi” is an immediate command to estimate the relative 
risk which is the risk ratio in the output. It also provide the 
proportions to be reported as the descriptive components of 
the study results. The proportions are the column percents, 
assuming that SEX determine ON DIET STATUS or “column 
total fixed” table. If otherwise, i.e., one need to report the odds 
ratio, the “cci” command will be used. The proportions are 
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the row percents, assuming that ON DIET STATUS was 
known first then it was cross-classified by SEX or “row total 
fixed” table. Chi-square test and Fisher’s exact test can also be 
estimated by the two commands. The output of both 
commands are as follows: 
 
 
. csi 14 25 159 152 
 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        14          25  |        39 
        Noncases |       159         152  |       311 
-----------------+------------------------+---------- 
           Total |       173         177  |       350 
                 |                        | 
            Risk |  .0809249    .1412429  |  .1114286 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |        -.0603181       | -.1257701    .0051339   
      Risk ratio |          .572948       |  .3082788    1.064846   
 Prev. frac. ex. |          .427052       | -.0648459    .6917212   
 Prev. frac. pop |         .2110857       | 
                 +----------------------------------------------- 
                             chi2(1) =     3.21  Pr>chi2 = 0.0730 

 
By the above output, we quote 8.1% as the percentage of boy 
who were on diet and 14.1% as that for female. Then the RR 
(0.57) and 95%CI of RR (0.31 to 1.06). Finally, we quote the p-
value (0.073). 
 
. cci 14 25 159 152 
 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        14          25  |        39      0.3590 
        Controls |       159         152  |       311      0.5113 
-----------------+------------------------+---------------------- 
           Total |       173         177  |       350      0.4943 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         .5353459       |  .2710314    1.058345  (Cornfield) 
 Prev. frac. ex. |         .4646541       | -.0583453    .7289686  (Cornfield) 
 Prev. frac. pop |         .2375563       | 
                 +----------------------------------------------- 
                             chi2(1) =     3.21  Pr>chi2 = 0.0730 
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By the above output, we quote 35.9% as the percentage of boy 
among those who were on diet and 51.1% as that for female. 
Then the OR (0.53) and 95%CI of RR (0.27 to 1.06). Finally, 
we quote the p-value (0.073). 
 
Note that both RR and OR are similar. It is the case when the 
event (ie. being on diet) is rare. In this case, it is 8% in boy and 
14% in female. 
 
Question 2. 
 
The data can be summarized as a 2x2 table as follows. 
 

Cause of death  
Diet CVD Non CVD 

 
Total 

High Salt 5 2 7 
Low Salt 30 23 53 

Total 35 25 60 
 
Firstly, the appropriate proportions should be determined. 
Based on the study design, the above table is “column total 
fixed”. Thus the column percents are appropriate. Secondly, 
the measure of association should be estimated. Since this 
study cannot yield the incidence, therefore OR is appropriate. 
Thirdly, 95% CI of the OR should be calculated. Lastly, the 
hypothesis should be tested. The above statistics can be 
obtained by the same manner as that were done in Question 1. 
Details for estimating of 95% CI and the test hypothesis are 
provided as follows: 
 
Estimating the 95% confidence interval : 
 
The standard formula for estimating the CI was for large 
sample assuming normal distribution. In this study, the 
smallest expected value =  = 2.92 which is too small to use the 
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normal distribution. The exact CI is more appropriate. One 
method is proposed by Mehta, Patel, and Gray (1985). This 
yields the exact 95% confidence interval from 0.28 to 21.63 
which can be easily calculated using “STATCALC” in “Epi 
Info” statistical package as shown bellow.  
 
Step 1 
 
 
 
 
 
 
 
 
                                                                                 
 
 
 
 
 
Step 2 
 
 
 
 
 
 
 
 
 
 
 

+ Disease -                           Analysis of Single Table               
 +--------+--------+                Odds ratio = 1.92 (0.29 <OR< 15.84*)         
+|     5    |        2  |     7         Cornfield 95% confidence limits for OR        
 +--------+--------+          *Cornfield not accurate. Exact limits preferred.   
-|    30    |     23   |    53         Relative risk = 1.26 (0.75 <RR< 2.13)         
 +--------+--------+             Taylor Series 95% confidence limits for RR      
E     35       25       60          Ignore relative risk if case control study.     
x                                                                                
p                                                   Chi-Squares   P-values       
o                                                   -----------   --------       
s                                  Uncorrected    :      0.56    0.4546204        
u                                  Mantel-Haenszel:      0.55    0.4584042        
r                                  Yates corrected:      0.12    0.7339475        
e                                 Fisher exact:  1-tailed P-value: 0.3746518      
                                                 2-tailed P-value: 0.6881775      
                                                                                 
                                   An expected cell value is less than 5.        
                                     Fisher exact results recommended.           
                                                                                 
                              F2 More Strata; <Enter> No More Strata; F10 Quit   
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Step 2 
 
 
 
 
 
 
 
 
                                                                                 
                                                                                 
                                                                                 
 
 
 
Step 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ Disease -                                                                 
 +--------+--------+        Press "E" for Exact Confidence Limits or  <Enter>  
+|     5    |     2     |      7                                                       
 +--------+--------+                                                             
-|    30    |    23    |    53                                                       
 +--------+--------+                                                             
E     35       25         60                                                       
x                                                                                
p                                                                                
o                                                                                
s                                                                                
u                                                                                
r                                                                                
e                                                                                
 

+ Disease -                                                                 
 +--------+--------+                                                             
+|     5    |     2     |     7              ***Exact Confidence Limits***            
 +--------+--------+                                                             
-|    30    |    23   |    53               Mehta CR, Patel NR, Gray R,             
 +--------+--------+                J. Am. Stat. Assoc.,1985,78,969-973.         
E     35       25        60      Pascal program by ELF Franco & N Campos-Filho    
x                                Ludwig Cancer Institute, Sao Paulo, Brazil      
p                                                                                
o                                 Exact Lower 95% Confidence Limit =  0.28       
s                                               Odds Ratio =  1.92                  
u                                 Exact Upper 95% Confidence Limit = 21.63       
r                                                                                
e                                           <Enter> to continue.....               
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Testing the hypothesis : 
  
Let π 1 be the proportion of  men dying form CVD on a hi salt 
diet and π 2  be the corresponding   proportion of men dying  
form other causes. 
 
  
 H0  :  π1  = π2 

 

Note that the smallest expected value = 
7 25

60
×

 = 2.92 which is 

too small to use the chi-square distribution. Thus we use 
Fishers’ exact test 
   
 

Observed table  p-value = 0.25 
 One-tail  p-value = 0.37 
 Other-tail p-value = 0.31 
 Two-tailed p-value = 0.69 
 
 
Thus the null hypothesis is not rejected and conclude that we 
have no sufficient evidence to concluded that the proportions 
of men aged 50-54 on a high salt diet dying from CVD and 
other causes are different. 
 
 
STATA commands: 
 
. cci 5 30 2 23, exact 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |         5          30  |        35      0.1429 
        Controls |         2          23  |        25      0.0800 
-----------------+------------------------+---------------------- 
           Total |         7          53  |        60      0.1167 
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                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         1.916667       |  .3853557           .  (Cornfield) 
 Attr. frac. ex. |         .4782609       | -1.595005           .  (Cornfield) 
 Attr. frac. pop |          .068323       | 
                 +----------------------------------------------- 
                                1-sided Fisher's exact P = 0.3747 
                                2-sided Fisher's exact P = 0.6882 

 
Summarized findings: 
Among a total of 35 CVD patients, 14.3% were high salt diet 
whereas there were 8.0% among 25 non-CVD patients. This 
case-control study failed to find a statistically significant 
relationship between high salt diet (p-value = 0.688) although 
it is suggested that those who had high salt diet are more likely 
to develop CVD than those who were not (OR = 1.91; 95% CI: 
0.28 to 21.63). 
 
Question 3. 
i) This is a case-control study. 
Let the proportion of cases using OC’s be �1 and the 
corresponding proportion of controls be �2. 
 

H0  :  π1  = π2 
 
ii) The smallest expected value = 19.42. 
  So we can use the chi-square approximation. 
 

  2χ  =  
( )

18121641742234
19762135205160729 2

×××

×−×
  

   = 5.84 
 
Comparing this with the chi-square distribution with 1 df., the 
probability of observing a value as large or lager if H0 is true 
is p < 0.05. Thus we rejected H0 and conclude that there is an 
association between oral contraceptive use and myocardial 
infarction since a statistically significantly larger proportion 
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of cases used OC’s than controls. Note that it is recommended 
that we should report the precise p-value instead of the “p-
value < 0.05”. One can use STATA to find the precise p-value 
using the “display” command. In this case we can do by 
executing the command as shown bellow and obtaining the p-
value of 0.157. 
 
. display chiprob(1, 5.84 )    command 
. 01566583    result 
 
iii) Since this is a case-control study we can calculate only an 

odds ratio. 
 

68.1
135205

160729
=

×
×

=OR  

 

0474.0
1607

1
135
1

205
1

29
1)var(ln =+++=OR  

 
95% CI for ln OR:   
 ( ) )95.0,09.0ln(0474.096.168.1ln =±  
 
95% CI for OR:              =        1.10 to 2.57 

 
Thus cases had 1.7 times the odds of using OC’s than 
controls. 

 
 
iv) Among a total of 234 MI cases, 12.4% used OC 
whereas among 1742 controls there were 7.8%. This case-
control study suggested a statistically significantly larger 
proportion of cases used OC’s than controls (p-value = 0.016). 
The odds of a case using OC’s were 1.7 times higher in cases 
than controls (95% CI: 1.10-2.57).  If MI in women is 
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considered to be a rare disease then we could say that OC use 
increases the risk of MI 1.7 times. 
 
STATA commands: 
 
 
. cci 29 205 135 1607 
 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        29         205  |       234      0.1239 
        Controls |       135        1607  |      1742      0.0775 
-----------------+------------------------+---------------------- 
           Total |       164        1812  |      1976      0.0830 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         1.683939       |  1.102089    2.573581  (Cornfield) 
 Attr. frac. ex. |         .4061541       |  .0926326    .6114364  (Cornfield) 
 Attr. frac. pop |         .0503353       | 
                 +----------------------------------------------- 
                             chi2(1) =     5.84  Pr>chi2 = 0.0156 

 
 
 

 
 
Question 4.    
 
i) The null hypothesis :  
 

H0 : Proportion of cases exposed to factor E = 
proportion of controls exposed to factor E. 

 
Note : This is always the underlying hypothesis being 

tested. Taking the study design into account and 
introducing some notation reduces the hypothesis 
to H0 :  π12 = π21  and H0 : π = 0.5 where π  is the 
probability of the case being exposed and the 
control not exposed given that the pair is 
discordant. 
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ii) We use McNemar’s test to test the hypothesis. This test 

statistics has a chi-square distribution  
 

  9
25

15
520
)520( 22

2 ==
+
−

=χ  

Comparing this with the chi-square distribution with 1 df., the 
probability of observing a value as large or lager if H0 is true 
is p-value < 0.005. Thus we reject Ho and conclude that a 
larger proportion of cases were exposed to factor E than 
controls. 
 
In the situation where sample size is small, ie. n12 + n21 is 
smaller than 20, we need to use the binomial exact probability 
test. However manually computation is tedious. We can easily 
obtain the exact probability using STATA. For this exercise, 
we can use an immediate form of the command “bitest” which 
is “bitesti” followed by n, x, and the probability of  the event 
which is 0.5. The exact p-value is 0.004 as shown below. 

 
 

. bitesti 25 20 0.5 
 
 
        N   Observed k   Expected k   Assumed p   Observed p 
------------------------------------------------------------ 
       25         20         12.5       0.50000      0.80000 
 
  Pr(k >= 20)           = 0.002039  (one-sided test) 
  Pr(k <= 20)           = 0.999545  (one-sided test) 
  Pr(k <= 5 or k >= 20) = 0.004077  (two-sided test) 
 

 

iii) 4
5
20

==OR   

The odds of case being exposed to factor E are 4 times the 
corresponding odds of a control being exposed.  If one can 
assume that the disease being studied is rare then this can be 
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interpreted as the estimated relative risk being 4 so that 
people exposed to factor E are 4 times more likely to get the 
disease than those unexposed.  
 
iv) 95% CI for 

ln )366.2,406.0ln(
5
1

20
296.14ln =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+±=OR  

 95% CI for  OR = 1.50  to  10.65 
 
 
Note that the formula for the variance of  lnOR used may not 
be appropriate due to the small cell frequency (ie. 5).  An 
exact method can be used based on the exact CI for the 
binomial proportion representing the probability of falling 
into the n12 cell given the pair is discordant ( / ( ))n n n12 12 21+  

and then using the formula 
L

L
LOR

π
π
−

=
1

 and 
u

u
uOR

π
π
−

=
1

  to 

obtain a CI for OR.  
  
To calculate the exact 95% CI for x = 20 and n = 25 , 
  from  πL  =  [d - (d2 - 4ae)1/2]/2a 
    d = 25[2(20-1) + 3.84]  
      = 1046 
 
    a = 25[25+3.84]    
      = 721 
    e = [20-1]2    
      = 361 
 
 
 Thus πL  =  [1046-(10462 - (4x721x361))1/2]/(2x721) 
   =  0.566 
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  from  πU  =  [b+(b2 - 4ac)1/2]/2a 
  
  where  b = 25[2(20+1)+3.84]  
      = 1146 
    a = 25[25+3.84]    
      = 721 
    c = [20+1]2    
      = 441 
 
 Thus πU  =  [1146 + (11462 - (4x721x441))1/2]/(2x721) 
   = 0.936 
 
 
 So 95% CI for  OR :  
 

   62.14
0.9361

0.93630.1
0.5661

0.566
=

−
==

− uL OROR  

  
 
That is we can be 95% certain that the true odds ratio lies 
between 1.30 and 14.62. This is slightly different from that 
obtained from STATA shown below which were due to 
rounding error. 
 
 
 
STATA Commands 
 
. mcci 15 20 5 60 
 
                 | Controls               | 
Cases            |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
         Exposed |        15          20  |        35 
       Unexposed |         5          60  |        65 
-----------------+------------------------+---------- 
           Total |        20          80  |       100 
 
McNemar's chi2(1) =      9.00        Pr>chi2 = 0.0027 
Exact McNemar significance probability       = 0.0041 
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Proportion with factor 
        Cases            .35 
        Controls          .2     [95% conf. interval] 
                   ---------     -------------------- 
        difference       .15      .0465157   .2534843 
        ratio           1.75      1.208304   2.534545 
        rel. diff.     .1875       .077082    .297918 
 
        odds ratio         4      1.456814   13.63903   (exact) 

 
 
 
v)  A 1:1 matched case-control study conducted among 100 

pairs of cases and controls. Cases who exposed to the 
factor were 35% whereas controls who exposed to the 
factor were 20%. There is a statistically significant 
relationship between expose to the factor and disease (p-
value = 0.003). Cases were 4 times more likely to have 
been exposed to the factor than controls (95%CI : 1.46 to 
13.64). 

 
 
Question 5.    
 
Overall remarks: Outcome of this study is “Vaccination 
status” or V and an exposure of interest which is “receptive 
perception on vaccination of the mothers” or R. The 
remaining variables are regarded as controlled variables 
which include “sex of the children” (S) and “whether or not 
their parents living together” (P). We will use these notation 
throughout. 
 
i) Ignoring the effects of S and P : 
 

 V+  V- Total 
R+ 158 242 400 
R- 42 158 200 

Total 200 400 600 
 



 219 
Let π1 be the proportion of mothers with receptive 

perception  
       who adopted vaccination  
and  π2  be the corresponding proportion without receptive 

perception. 
 
   H0   : π1  =  π2 
 
We calculate Pearson’s Chi-square to test this hypothesis: 
  
 χ2  = 20.54 
 
Comparing this with the chi-square distribution with 1 df., the 
probability of observing a value as large or lager if H0 is true 
is p < 0.05. Thus we reject H0 in flavor of the alternative 
hypothesis and conclude that there is a statistically significant 
difference in proportions of receiving vaccination in the 
receptive and non-receptive groups. In other words, there is a 
statistically significant association between V and R.  
 
. disp chiprob(1, 20.54) 
5.840e-06   
 
 This means 5.840 x 10-06 or 0.000005.84. However we 

report this as p-value < 0.001. 
 
 Since this is a prospective study the RR and OR could be 

estimated. 
  

  
88.1

42
79

42400
200158

200/42
400/158

==
×

×
==RR

 

  46.2
24242
158158

=
×
×

=OR  
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Note : Vaccination is not a rare outcome so the odds 
ratio is not a good  approximation to the 
relative risk. 

 
 RR = 1.88  People with receptive attitudes are 1.9 

times likely to be vaccinated than those with unreceptive 
attitudes. 

 
 OR = 2.46  the odds of a person with receptive 

attitudes being vaccinated are 2.5 time that for a person 
with non-receptive attitudes. 

 

 0226.0
42200

158
158400

242)var(ln =
×

+
×

=RR  

 
 95% CI   ln RR : ln 1.88 + 1.96 ( .0226 ) =  ln(0.336, 

0.926) 
 
 95% CI  RR   : 1.40 to 2.52 
 
 

 0406.0
158
1

42
1

242
1

158
1)var(ln =+++=OR  

   
 
 95% CI   ln OR : ln 2.46 + 1.96( .0406 ) = ln (0.505, 

1.295) 
 
 95% CI  OR   : 1.66 to 3.65 
 
 
 
STATA Commands: 
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Create a data file 
Since we will use the data for stratified analysis in the 
succeeding sections, we need to create a data file. This data file 
will also be used for further chapter in logistic regression. To 
do this, first we assign variable name and code. For simplicity 
of typing, let’s assign as the following: 
 
 
 v  =  Vaccination status 
      (1=vaccinated, 0=not vaccinated) 
 
 r  =  Receptive perception  
      (1=positive receptive perception,  
    0=negative perceptive reception) 
 
 p = Parents living together 
   (1=yes, 0=no) 
 
 s = Sex of the children 
   (1=boy, 0=girl) 
 
 freq = Frequency  
 
 
Step 1: Enter the following data into the data editor of STATA 
 

p s v r freq 
1 1 1 1 68 
1 1 1 0 17 
1 1 0 1 172 
1 1 0 0 43 
1 0 1 1 8 
1 0 1 0 12 
1 0 0 1 52 
1 0 0 0 78 
0 1 1 1 1 
0 1 1 0 4 
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p s v r freq 
0 1 0 1 9 
0 1 0 0 36 
0 0 1 1 81 
0 0 1 0 9 
0 0 0 1 9 
0 0 0 0 1 

 
 
Step 2:  Expand the data file (The data file as the above format 

is a frequency form - one row contains several number 
of records. To get a usual one row per one record 
format, we need to expand the datafile.) 

 
 
. expand freq 
(584 observations created) 
 
 
Step 3: Analyze the data  
 
. cs v r , or 
 
                 | r                      | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |       158          42  |       200 
        Noncases |       242         158  |       400 
-----------------+------------------------+---------- 
           Total |       400         200  |       600 
                 |                        | 
            Risk |      .395         .21  |  .3333333 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |             .185       |  .1109627    .2590373   
      Risk ratio |         1.880952       |   1.40057    2.526101   
 Attr. frac. ex. |         .4683544       |   .286005    .6041331   
 Attr. frac. pop |              .37       | 
      Odds ratio |          2.45612       |  1.656968    3.639969  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =    20.53  Pr>chi2 = 0.0000 

 
 
 
 
ii) Ignoring P, the effect of R on V controlling for the effect of S is : 
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Boys 

 
 V+ V- Total 

R+ 69 181 250 
R- 21 79 100 

Total 90 79 350 
 

43.1
18121
7969

=
×
×

=OR   49.5
6621
7989

=
×
×

=OR  

 
Girls 

 
 V+ V- Total 

R+ 89 61 150 
R- 21 79 100 

Total 110 140 250 
 

31.1
10021
25069

=
×
×

=RR   83.2
10021
7989

=
×
×

=RR  

 
 
 Compairing the relation risk estimates or odds ratios for 

boys and girls with the crude estimate we see that the 
estimates for girls are higher than for boys, the crude 
estimates (ie., OR=2.46, RR=1.88) lying between the 
gender-specific estimates. 

 
 This suggests interaction or effect modification - the effect 

of receptive perception on receiving vaccination depends 
on whether the person is boy or girl. 

 
 
 
 
STATA Commands: 
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. cs v r if s == 0, or 
 
                 | r                      | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        89          21  |       110 
        Noncases |        61          79  |       140 
-----------------+------------------------+---------- 
           Total |       150         100  |       250 
                 |                        | 
            Risk |  .5933333         .21  |       .44 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |         .3833333       |  .2712962    .4953705   
      Risk ratio |         2.825397       |  1.889054    4.225855   
 Attr. frac. ex. |         .6460674       |  .4706345    .7633615   
 Attr. frac. pop |         .5227273       | 
      Odds ratio |         5.488681       |  3.079367    9.776585  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =    35.78  Pr>chi2 = 0.0000 
 
. cs v r if s == 1, or 
 
                 | r                      | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        69          21  |        90 
        Noncases |       181          79  |       260 
-----------------+------------------------+---------- 
           Total |       250         100  |       350 
                 |                        | 
            Risk |      .276         .21  |  .2571429 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |             .066       | -.0311774    .1631774   
      Risk ratio |         1.314286       |  .8550348    2.020206   
 Attr. frac. ex. |         .2391304       |  -.169543    .5050011   
 Attr. frac. pop |         .1833333       | 
      Odds ratio |         1.434096       |   .826136    2.487454  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     1.63  Pr>chi2 = 0.2019 

 
 

STATA commands for stratified analysis 
 
. cs v r, by(s) 
 
               s |       RR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   2.825397     1.889054   4.225855          12.6  
               1 |   1.314286     .8550348   2.020206            15  
-----------------+------------------------------------------------- 
           Crude |   1.880952      1.40057   2.526101                
    M-H combined |   2.004141     1.501398   2.675227 
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =    6.496  Pr>chi2 = 0.0108 
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iii) Ignoring S, the effect of R on V controlling for the effect of P is : 
 
 
 
 

 V+ V- Total
R+ 76 224 300 
R- 29 121 150 

Total 105 345 450 
 

42.1
22429
12176

=
×
×

=OR  

 

31.1
15029
30076

=
×
×

=RR  

 
 

 
 V+ V- Total

R+ 82 18 100 
R- 13 37 50 

Total 95 55 150 
 

97.12
1813
3782

=
×
×

=OR  

 

15.3
5013
10082

=
×
×

=RR  

 
Again, there appears to be interaction with the effect of 
receptive perception of vaccination on receiving vaccination 
dependent on whether or not the parents of the children lived 
together - the effect is larger in those whose parents did not  
than  did not. 
 

Parents living together 

Parents NOT living together 
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STATA Commands: 
 
. cs v r if p == 0, or 
 
                 | r                      | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        82          13  |        95 
        Noncases |        18          37  |        55 
-----------------+------------------------+---------- 
           Total |       100          50  |       150 
                 |                        | 
            Risk |       .82         .26  |  .6333333 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |              .56       |  .4169898    .7030102   
      Risk ratio |         3.153846       |  1.958292    5.079297   
 Attr. frac. ex. |         .6829268       |  .4893508    .8031224   
 Attr. frac. pop |         .5894737       | 
      Odds ratio |         12.96581       |  5.791289    29.02214  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =    45.01  Pr>chi2 = 0.0000 
 
. cs v r if p == 1, or 
 
                 | r                      | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        76          29  |       105 
        Noncases |       224         121  |       345 
-----------------+------------------------+---------- 
           Total |       300         150  |       450 
                 |                        | 
            Risk |  .2533333    .1933333  |  .2333333 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |              .06       | -.0201005    .1401005   
      Risk ratio |         1.310345       |  .8958644    1.916589   
 Attr. frac. ex. |         .2368421       | -.1162403    .4782396   
 Attr. frac. pop |         .1714286       | 
      Odds ratio |          1.41564       |  .8767834     2.28471  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     2.01  Pr>chi2 = 0.1560 
 
. cs v r, by(p) 
 
               p |       RR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   3.153846     1.958292   5.079297      8.666667  
               1 |   1.310345     .8958644   1.916589      19.33333  
-----------------+------------------------------------------------- 
           Crude |   1.880952      1.40057   2.526101                
    M-H combined |   1.880952     1.406467   2.515511 
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =    7.990  Pr>chi2 = 0.0047 
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iv) Stratifying both S and P simultaneously, the effects of R on 
V controlling for the effect of S and P are : 
 
 
  
 

 V+ V- Total   V+ V- Total
R+ 68 72 240  R+ 8 52 60 
R- 17 43 60  R- 12 78 90 

Total 85 215 300  Total 20 130 150 
 

  
0.1
0.1

=
=

RR
OR

   
0.1
0.1

=
=

RR
OR

   

 
 
  
 

 V+ V- Total   V+ V- Total
R+ 1 9 10  R+ 81 9 90 
R- 4 36 40  R- 9 1 10 

Total 5 45 50  Total 90 10 100 
  

  
0.1
0.1

=
=

RR
OR

   
0.1
0.1

=
=

RR
OR

 

 
 
Within each S & P stratum there is no relationship between 
receptive perception of vaccination and receiving vaccination. 
The effect of receptive perception on vaccination of the 
mothers on receiving vaccination is similar across strata (ie., 
OR=1 and RR=1). The crude estimates (ie., OR=2.46, 
RR=1.88) lying outside the stratum-specific estimates. Thus 

Boys & Parents living together Girls & Parents living together 

Boys & Parents NOT living together Girls & Parents NOT living together 
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“sex of the children” and “whether or not their parents living 
together” jointly appear to be confounders. 
 
STATA Commands: 
The following commands are to generate a composite variable 

named “sp” containing combination of variable “s” and 
“p”. 

 
. gen sp = . 
(600 missing values generated) 
 
. replace sp = 1 if s == 0 & p == 0 
(100 real changes made) 
 
. replace sp = 2 if s == 1 & p == 0 
(50 real changes made) 
 
. replace sp = 3 if s == 0 & p == 1 
(150 real changes made) 
 
. replace sp = 4 if s == 1 & p == 1 
(300 real changes made) 
 
. tab sp 
         sp |      Freq.     Percent        Cum. 
------------+----------------------------------- 
          1 |        100       16.67       16.67 
          2 |         50        8.33       25.00 
          3 |        150       25.00       50.00 
          4 |        300       50.00      100.00 
------------+----------------------------------- 
      Total |        600      100.00 

 

 
The following 4 commands are to obtain estimates of the 4 
strata. 
 
. cs v r if sp == 1, or 
 
                 | r                      | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        81           9  |        90 
        Noncases |         9           1  |        10 
-----------------+------------------------+---------- 
           Total |        90          10  |       100 
                 |                        | 
            Risk |        .9          .9  |        .9 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
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                 |------------------------+---------------------- 
 Risk difference |                0       | -.1959964    .1959964   
      Risk ratio |                1       |  .8043074    1.243306   
 Attr. frac. ex. |                0       | -.2433058    .1956926   
 Attr. frac. pop |                0       | 
      Odds ratio |                1       |         0    7.003225  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     0.00  Pr>chi2 = 1.0000 
 
. cs v r if sp == 2, or 
 
                 | r                      | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |         1           4  |         5 
        Noncases |         9          36  |        45 
-----------------+------------------------+---------- 
           Total |        10          40  |        50 
                 |                        | 
            Risk |        .1          .1  |        .1 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |                0       | -.2078856    .2078856   
      Risk ratio |                1       |  .1250732    7.995315   
 Attr. frac. ex. |                0       | -6.995315    .8749268   
 Attr. frac. pop |                0       | 
      Odds ratio |                1       |         0    7.846757  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     0.00  Pr>chi2 = 1.0000 
. cs v r if sp == 3, or 
 
                 | r                      | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |         8          12  |        20 
        Noncases |        52          78  |       130 
-----------------+------------------------+---------- 
           Total |        60          90  |       150 
                 |                        | 
            Risk |  .1333333    .1333333  |  .1333333 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
 Risk difference |                0       | -.1110433    .1110433   
      Risk ratio |                1       |  .4348194    2.299805   
 Attr. frac. ex. |                0       | -1.299805    .5651806   
 Attr. frac. pop |                0       | 
      Odds ratio |                1       |  .3922252    2.556461  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     0.00  Pr>chi2 = 1.0000 
 
. cs v r if sp == 4, or 
 
                 | r                      | 
                 |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
           Cases |        68          17  |        85 
        Noncases |       172          43  |       215 
-----------------+------------------------+---------- 
           Total |       240          60  |       300 
                 |                        | 
            Risk |  .2833333    .2833333  |  .2833333 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
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                 |------------------------+---------------------- 
 Risk difference |                0       | -.1274779    .1274779   
      Risk ratio |                1       |  .6376779     1.56819   
 Attr. frac. ex. |                0       | -.5681899    .3623221   
 Attr. frac. pop |                0       | 
      Odds ratio |                1       |   .536736    1.860847  (Cornfield) 
                 +----------------------------------------------- 
                             chi2(1) =     0.00  Pr>chi2 = 1.0000 
 

The following 2 commands are to perform stratified analyses. 
 
. cc v r, by(sp) 
 
              sp |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               1 |          1            0   7.003225           .81  
               2 |          1            0   7.846757           .72  
               3 |          1     .3922252   2.556461          4.16 
               4 |          1      .536736   1.860847      9.746667 
-----------------+------------------------------------------------- 
           Crude |    2.45612     1.656968   3.639969                
    M-H combined |          1     .6072276   1.646829                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(3) =     0.00  Pr>chi2 = 1.0000 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.00 
                                                Pr>chi2 =    1.0000 
. cs v r, by(sp) 
 
              sp |       RR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               1 |          1     .8043074   1.243306           8.1  
               2 |          1     .1250732   7.995315            .8  
               3 |          1     .4348194   2.299805           4.8  
               4 |          1     .6376779    1.56819          13.6  
-----------------+------------------------------------------------- 
           Crude |   1.880952      1.40057   2.526101                
    M-H combined |          1     .7542183   1.325876 
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(3) =    0.000  Pr>chi2 = 1.0000 

 
 
 
v)  Individually “sex of the children” and “whether or not 

their parents living together” appear to be effect 
modifiers but in combination they confound the 
relationship between “receptive perception of 
vaccination” and “receiving of vaccination”. 

 
vi)  No, it is not a determinant of receiving vaccination as 

overall there is no association between perceptions and 
vaccination. 
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vii)  Summary findings: 
 A cohort study involves 600 mothers who delivered their 

babies at a hospital. Among a total of 400 mothers who 
have positive receptive perception on vaccination, 39.5% 
of them have their children vaccinated. Whilst among a 
total of 200 mothers who have negative receptive 
perception on vaccination, 21.0% of them have their 
children vaccinated. After controlling for the effect of sex 
of the children and whether or not their parents living 
together, receiving vaccination of the children is not 
affected by what the receptive perception of the mothers is 
(adjusted RR = 1, 95%CI: 0.75 to 1.32). Detailed analysis 
suggested that individually “sex of the children” and 
“whether or not their parents living together” are 
significant effect modifiers (p-value = 0.011 and 0.005 
respectively) but in combination they appear to 
confounder of the relationship between “receptive 
perception of vaccination” and “receiving of vaccination”.    

 
 
Note:  
i) Question (a) is known as the crude analysis. Someone 
called a bivariate analysis. This serves as a good start for 
exploratory data analysis. That is, in most cases, it is not be valid 
by its own since most of health outcomes caused by several 
factors and they are sometime inter-correlated. However the 
crude bivariate analysis provides clues for further analysis 
which will be discussed in the chapter of “Logistic regression”. 
Questions (b, c and d) are the stratified analysis. For question 
(b), the stratified variable is “sex of the children” whereas the 
variable “whether or not their parents living together” is the 
stratified variable for Question (c). In Question (d), a 
combination of the previous two variables forms its stratified 
variable. 
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ii) In the above analysis we calculate both OR and RR. In 
reality we need to do only one and RR is the most appropriate 
measure of association since this is a cohort study. However this 
is done to get a feel on how the OR is affected by the rate of the 
outcome. Moreover if we have many more controlled variables, 
we cannot use stratified analysis. In such case, we need to use 
“Logistic regression”. Then the OR will be reported. We will 
discuss this again in the in the chapter of “Logistic regression”. 
 
iii) Systematic approach for stratified analysis, one need to 
report the following 4 components before interpretation. That is, 
1) the crude estimate which always has only one, 2) the stratum-
specific estimates which vary depending on number of stratum, 
3) the adjusted estimate which always has only one, and 4) a p-
value of the test for homogeneity of the stratum-specific 
estimates. This can be easily accomplished by the last STATA 
command. Then we first consider the last component. If p-value 
is less than 0.05, it suggested that there is a statistically 
significant difference of the estimates across strata. Then we can 
conclude that there is a significant modification effect where the 
stratified variable is the effect modifier. In this case, the 
stratum-specific estimates and their confidence intervals are to 
be reported, discard the adjusted one. On the other hand, if p-
value is greater than 0.05, we will conclude that there is no 
significant interaction effect. However, this test is lack of power. 
We recommend that the similarity of the stratum-specific 
estimates be based on judgement. If there seems to be clinically 
meaningful differences, we report the stratum-specific estimates 
and their confidence intervals. The adjusted estimates may be 
reported for discussion purpose. If they are more or less the 
same clinically, then we report the adjusted estimate ad its 
confidence interval. The role of the stratified variable can be 
determined by comparing the adjusted estimate with the crude 
one. If they are more or less the same, the effect the stratified 
variable on the relationship between the exposure of interest and 
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the outcome is minimal or none. On the other hand, if they are 
different clinically, we will say that there is a confounding effect 
and the stratified variable is the confounder. There is no test 
statistics for this effect since it is not a chance bias but a 
systematic bias.  
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Answers for the exercise in Chapter 3 
 
Question 1. 

  The data can be displayed as the 2 x C Table as 

follows: 

 

      Diagnosis 

   S AD N PD SS 

  D 105 12 18 47 0 182 

  D      8   2        19 52 13   94 

   113 14 37 99 13 276 

 
i) H0 :  There is no association between diagnosis and 
prescription of drugs 
 

 or  
 

 H0 :  5,...,12,1 === ++ jijiij πππ  
 
 Where  πij is the theoretical probability for cell (i,j) and 
   πi+  ,π+j   are the row and column totals. 
  
  19.842 =χ  
  
Comparing this with the chi-square distribution with 4 df., the 
probability of observing a value as large or lager if H0 is true 
is p < 0.001. Thus we reject the null hypothesis and conclude 
that there is a strong association between diagnosis and 
prescription of drugs. 
 



 235 

ii) Smallest expected values :   
94 13

276
4 43

×
= .  

 

      
94 14

276
4 77

×
= .  

 

      
94 37

276
12 60

×
= .  

 
There are 2 out of 10 cells with expected value of less than 5. 
 
There are two cells (20%) with expected values less than 5 but 
none less than 1.  Thus the chi-square approximation to 
Pearson’s Chi-square statistic should not be too  bad. 
 
STATA Commands : 
 
. tabi 105 12 18 47 0 \ 8 2 19 52 13, col chi2 
 
           |                          col 
       row |         1          2          3          4          5 |     Total 
-----------+-------------------------------------------------------+---------- 
         1 |       105         12         18         47          0 |       182  
           |     92.92      85.71      48.65      47.47       0.00 |     65.94  
-----------+-------------------------------------------------------+---------- 
         2 |         8          2         19         52         13 |        94  
           |      7.08      14.29      51.35      52.53     100.00 |     34.06  
-----------+-------------------------------------------------------+---------- 
     Total |       113         14         37         99         13 |       276  
           |    100.00     100.00     100.00     100.00     100.00 |    100.00  
 
 
Pearson chi2(4) =  84.1885   Pr = 0.000 
 

Note that the above command requested the column percents, 
ie. assuming column total fixed, for simplicity of 
interpretation. 
 
iii) This cross-sectional study involved 276 psychiatric 
patients. There were very high proportion of treatment 
include drugs for those who were diagnosed as schizophrenia 
(93%) and personality disorder (86%) whereas all those who 
were diagnosed as special symptoms, their treatments did not 
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include drug. There is a strong association between 
prescription of drugs and diagnosis 
( 001.0;4,19.842 <−= valuepdfχ ).  Based on the proportions 
of treatment include drug across group of patients, it suggests 
that the diagnoses of schizophrenia, personality disorder and 
special symptoms contribute to the association in that the 
proportion of treatment include drug for schizophrenia and 
for personality disorder is higher but lower for special 
symptoms than that of the treatment did not include drug. 
The remaining groups of patients, the proportion are similar 
between the two groups of treatments. 
 
 
Question 2. 
 
 The data can be displayed as the 2 x C Table as 

follows: 

 
    Cigarettes per day 

 0 <5 5-14 15-24 25-49  50+ Total  

Cases          7       55         489    475 293 38 1357   

Controls 61 129 570 431 154 12 1357 

 68 184 1059 906 447 50 2714 

 
i)  Ignoring the effect of ordinality of number of cigarettes 

smoked per day, we can test for association as follows:  
 
   H0 :   the  proportion of cases falling into each 

smoking category 
         =  the proportions of controls in each category or  
 
   72.1372 =χ    
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(Note smallest expected value 25
2714

135750
=

×
= .) 

 
Comparing this with the chi-square distribution with 5 df., the 
probability of observing a value as large or lager if H0 is true 
is p < 0.001. This leads us to reject Ho and conclude that the 
distribution of cases and controls across categories of smoking 
are different. 
 
STATA Commands : 
The first step we input the following data into data editor of 

STATA. 
 

smk case freq 
0 1 7 
0 0 61 

2.5 1 55 
2.5 0 129 
9.5 1 489 
9.5 0 570 

19.5 1 475 
19.5 0 431 
37 1 293 
37 0 154 
50 1 38 
50 0 12 

 
. expand freq 
(2702 observations created) 
 
 
. tab smk case, chi2 
 
           |         case 
       smk |         0          1 |     Total 
-----------+----------------------+---------- 
         0 |        61          7 |        68  
       2.5 |       129         55 |       184  
       9.5 |       570        489 |      1059  
      19.5 |       431        475 |       906  
        37 |       154        293 |       447  
        50 |        12         38 |        50  
-----------+----------------------+---------- 
     Total |      1357       1357 |      2714  
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          Pearson chi2(5) = 137.7193   Pr = 0.000 
 

ii) Taken into account of the effect of ordinality of number of 
cigarettes smoked per day, we can test for association as 
follows: 

  H0 :  f1 = f2 = f     where  ∑
=

=
c

j
ijji xf

1
π  ,  

     xj = score assigned for category j   
     i  = 1, 2 and j = 1, 2, 3, ..., 6 
 
 Taking the row total fixed (writing the table as a 2×6) and 

using the second method described in the module give the 
following: 

       
Cases      p1j .005 .041 .360 .350 .216 .028 1.995 

Controls  p2j .045 .095 .420 .318 .113 .009 1.000 

Weight       0   2.5   9.5 19.5    37    50 

 pj .025 .068 .390 .334 .165 .018 1.000  

  
We notice that there are smaller proportions of cases than 
controls in the none and light smoking (<5, 5-14) categories 
and more cases in the heavier smoking categories. 
 
Using weight equal to the midpoints of class intervals: 
Mean scores cases :   

f1 =  (0 × 0.005) + (2.5 × 0.041) + (9.5 × 0.360) + (19.5 × .350)  
+ (37 × 0.216) + (50 × 0.028) 

 
  =  19.74 
 
Mean score  for controls :   
 

f2  =   (0 × 0.045) + (2.5 × 0.095) + (9.5 × 0.420) + (19.5 × 0.318)  
+ (37 × 0.113)  + (50 × 0.009) 

     
  = 15.06 
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{ } 1045.074.1954.531
1357

1)var( 2
1 =−=f  

  

{ } 0809.006.1562.336
1357

1)var( 2
2 =−=f  

 

)0809.1045(.
)06.1574.19( 2

+
−

=Q     =  118.14 

 
Comparing this with the chi-square distribution with 1 df., the 
probability of observing a value as large or lager if H0 is true 
is p < 0.001.Thus there is a highly statistically significant test 
for linear trend. 
 
Now taking the column totals fixed and using method 1 with 
the same weights: 
  
 jj

j
xn1∑ = (0 × 7) + (2.5 × 55) + (9.5 × 489) + (19.5 × 475)  

    + (37 × 293) + (50 × 38) 
 
          = 26786.5 
 
 jj

j
xn+∑ = (0 × 68) +(2.5 ×184) + (9.5 × 1059) + (19.5 × 906)  

        + (37 × 447) + (50 × 50) 
  
            = 47226.5 
 
 2

jj
j

xn+∑ = (0 × 68) +(2.52×184) + (9.52 × 1059) + (19.52 × 906)  

        + (372 × 447) + (502 × 50) 
  
             = 1178174.25 
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[ ]
{ })5.47226()25.1178174(271413571357

)5.47226(1357)5.26786(27142714 2
2
1 −×

−
=χ

 
 
  = 113.02 

 
Again, this is highly statistically significant for linear trend. 
 
Now we test for departure from linear trend. 
 
137.72 – 113.02   =   24.70              on  (5-1)  =  4  df           
 
STATA gives p-value < 0.001 as shown below. 
 
. disp chiprob(4, 24.7) 
.0000578 
 
Thus while there is a highly statistically significant linear 
trend, this not explain all of  the association  between  
cigarette  smoking  and  lung cancer. 
 
We  are  also  use  method  2 and  calculate   Pearson’s Chi-
square  rather than Neyman Chi-square. 
 
 f1  = 19.74 and f2 = 15.06 as before 
 
 Under  fffH == 210 :  
 
Where  f = (0×0.025) + (2.5×0.068) + (9.5×0.390) + (19.5×0.334)  

+ (37×0.165) + (50×0.018) 
 

   = 17.39 
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Calculate 

  fffHunderfravandfrav == 21021 :)()(  
 

+

∑ −
=

1

22

1 )(
n

fpx
frav jj  

 

[ ]239.1751.433
1357

1
−=  

 
=  0.0966 
 

Similarly 0966.0)( 2 =frav  
 

)966.0966.0(
)06.1574.19( 2

2

+
−

=PX  

 
= 113.37 

 
Which is close to 2

1X  obtained  from method  1. 
 
Note : These should be equal except for rounding  error in the 
calculation. 
 
STATA Commands : 
 
The following three commands involve test for trend. They 
yield similar results. This is to let us to have a feel about how 
the test for trend works. The first one performs a 
nonparametric test for trend across ordered groups. This test, 
developed by Cuzick (1985), is an extension of the Wilcoxon 
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rank-sum test and is a useful adjunct to the Kruskal-Wallis 
test. The formula for the test statistic is given by Cuzick (1985) 
and Altman (1991). The second and the third one are an 
ordinary two sample t-test and its non-parametric equivalent.  
 
. nptrend smk, by(case) 
 
      case     score       obs      sum of ranks 
         0         0      1357     1637236.5 
         1         1      1357     2047018.5 
 
     z  = 10.59 
  P>|z| =  0.00 
 
 
. ttest smk, by(case) 
 
Two-sample t test with equal variances 
 
------------------------------------------------------------------------------ 
   Group |     Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
       0 |    1357    15.06264    .2846381    10.48535    14.50426    15.62102 
       1 |    1357     19.7395    .3234075    11.91352    19.10507    20.37393 
---------+-------------------------------------------------------------------- 
combined |    2714    17.40107    .2200029    11.46129    16.96968    17.83246 
---------+-------------------------------------------------------------------- 
    diff |           -4.676861    .4308263               -5.521642    -3.83208 
------------------------------------------------------------------------------ 
Degrees of freedom: 2712 
 
                      Ho: mean(0) - mean(1) = diff = 0 
 
     Ha: diff < 0               Ha: diff ~= 0              Ha: diff > 0 
       t = -10.8556                t = -10.8556              t = -10.8556 
   P < t =   0.0000          P > |t| =   0.0000          P > t =   1.0000 
 
 
 
. ranksum smk, by(case) 
 
Two-sample Wilcoxon rank-sum (Mann-Whitney) test 
 
    case |      obs    rank sum    expected 
---------+--------------------------------- 
       0 |     1357   1637236.5   1842127.5 
       1 |     1357   2047018.5   1842127.5 
---------+--------------------------------- 
combined |     2714     3684255     3684255 
 
unadjusted variance   4.166e+08 
adjustment for ties   -42251123 
                     ---------- 
adjusted variance     3.744e+08 
 
Ho: smk(case==0) = smk(case==1) 
             z = -10.589 
    Prob > |z| =   0.0000 
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The test above gives Z = 10.59 thus Z2 = 112.15 which 
approximately equal to chi-square test for trend as obtained 
by manual calculation shown earlier (113.02 or 113.37). The 
more relevant command is shown below. The command 
“tabodds” is used with case-control and cross-sectional data. 
It tabulates the odds of failure against a categorical 
explanatory variable.  It also performs an approximate chi-
squared test of homogeneity of odds and a test for linear trend 
of the log odds against the numerical code used for the 
categories of the explanatory variable.  Both of these tests are 
based on the score statistic and its variance. 
 
. tabodds case smk 
------------+------------------------------------------------------------- 
       smk  |      cases     controls       odds      [95% Conf. Interval] 
------------+------------------------------------------------------------- 
         0  |          7           61    0.11475        0.05249   0.25087 
       2.5  |         55          129    0.42636        0.31095   0.58459 
       9.5  |        489          570    0.85789        0.76027   0.96806 
      19.5  |        475          431    1.10209        0.96737   1.25557 
        37  |        293          154    1.90260        1.56540   2.31243 
        50  |         38           12    3.16667        1.65478   6.05987 
------------+------------------------------------------------------------- 
Test of homogeneity (equal odds): chi2(5)  =   137.67 
                                  Pr>chi2  =   0.0000 
 
Score test for trend of odds:     chi2(1)  =   112.98 
                                  Pr>chi2  =   0.0000 
 

Thus we can also test for departure from linear trend using 
results from this command. 
 
137.67 – 112.98   =   24.69  (This is similar to 24.70  
    which was obtained by manual 

calculation) 
 
iii)    None     vs    <5  OR =   3.72 

None     vs     5 –14  OR =   7.48 
None     vs     15 – 24 OR =   9.60 
None     vs      25 - 49  OR = 16.58 
None     vs      50+  OR = 27.59  
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We see that  the olds  of  a  case  being  in the  ‘smoker’ group  
increases  with increasing  levels of smoking  as compared  to  
the  olds of  the  controls being in the ‘smoker’ group. 
 
iv)   None vs   <5   OR = 3.72  

<5         vs   5-14  OR = 2.01     
5-14      vs   15-24  OR = 1.28 
15-24     vs   25-49  OR = 1.73 
25-49     vs    50+  OR = 1.66 

 
While there are increasing odds of a case being in the higher 
smoking group compared to controls, the largest increase is in 
going from “none” to “<5 cigarettes per day”. 
 
v)    Hospital controls were used. These may not be 
representative of the general population from which cases 
came. Also smoking  is higher in hospital patients  than the 
general population since smoking is related to number of 
diseases besides lung  cancer.  As we can see that 95% of 
controls were smokers which is very large. 
 
 
 
 
 
 
Answers for the exercise in Chapter 4 
 
 
i) We wish to test the null hypothesis 
 

H0 :  there is on association between age and frequency 
of breast self-examination or 
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H0 :  πij =  πi+  π+j where πij  , πi+  and π+j are the 

population proportion falling 
into cell (i,j), row  i and column 
j ( i = 1,...,3; j = 1,...,3) 
respectively. 

 
 
 We calculate Pearson’s Chi-square statistic 
 
   2χ   =  25.09  on  4 df. 
 
 Comparing this with the chi-square distribution with 4 

df., the probability of observing a value as large or lager 
if H0 is true is p < 0.001. Thus we reject H0 and conclude 
that there is a statistically significant association between 
age and frequency of breast self examination. 

 
 
ii) The cell Chi-square statistics are :  
 
             BSE 
  Age               Monthly      Occasionally         Never

  
  <45  8.79  0.1  6.18 
  45-59  0.15  0.04  0.03 
  60+  6.05  0.17  3.58 
 
 
 Note that chi-square = (O - E)2 / E. Example of 

calculation of chi-square for the first cell: 8.79 = (91- 
66.78)2 / 66.78. 

 
Comparing each of these with a chi-square distribution 
with 1 df, we have observed frequencies being 
statistically significantly different from that expected 
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under H0 in the <45 year olds for “monthly” and “never” 
and for the 60+ year olds in “monthly” and “never”. 
However this analysis dose not tell us the  direction of the 
difference. Calculating the expected values for these 4 
cells indicates there are more than expected in 
“monthly” and fewer than expected for “never” in the 
young age group. The pattern is reversed in the oldest 
age group. Thus it appears that younger women tend to 
do breast self-examination more frequently than the 
older women. This pattern is also seen if we look at the 
“row percents” as follows: 

 
 
 
 
. tabi 91 90 51 \ 150 200 155 \ 109 198 172, row 

 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |        91         90         51 |       232  
           |     39.22      38.79      21.98 |    100.00  
-----------+---------------------------------+---------- 
         2 |       150        200        155 |       505  
           |     29.70      39.60      30.69 |    100.00  
-----------+---------------------------------+---------- 
         3 |       109        198        172 |       479  
           |     22.76      41.34      35.91 |    100.00  
-----------+---------------------------------+---------- 
     Total |       350        488        378 |      1216  
           |     28.78      40.13      31.09 |    100.00 
 
 
 Note that the proportions in bold letters at the bottom 

are the one under the null hypothesis. Proportions in 
circles appear to be different from their corresponding 
null proportion. 

 
 Calculating “local” odds ratios for adjacent rows and 

columns 
 

  35.1
90150

20091
11 =

×
×

=OR   
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 37.1
51200

15590
12 =

×
×

=OR  

 
 

 

  36.1
109200
198150

21 =
×
×

=OR   

 

 12.1
155198
172200

22 =
×
×

=OR  

 
 
 Thus in all cases, the younger age group is more likely to 

perform breast self-examination more frequently than 
the older age group. 

 
 Looking at the statistics from STATA. First we entry the 

data file as follows: 
  

age bse freq
45 1 91
45 2 90
45 3 51
52 1 150
52 2 200
52 3 155
60 1 109
60 2 198
60 3 172

 
Then expand the data file to get the individual records of 
data. 
 
 

. expand freq 
(1207 observations created) 



 248 
 
 
Now we are ready for the analysis. We can use the 
following two commands. 

 
 
. tab age bse, all 

 
 
           |               bse 
       age |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
        45 |        91         90         51 |       232  
        52 |       150        200        155 |       505  
        60 |       109        198        172 |       479  
-----------+---------------------------------+---------- 
     Total |       350        488        378 |      1216  
 
          Pearson chi2(4) =  25.0860   Pr = 0.000 
 likelihood-ratio chi2(4) =  25.1923   Pr = 0.000 
               Cramer's V =   0.1016 
                    gamma =   0.1897  ASE = 0.038 
          Kendall's tau-b =   0.1234  ASE = 0.025 
 

 
 
 

. spearman  age bse 
 

 Number of obs =    1216 
Spearman's rho =       0.1378 
 
Test of Ho: age and bse independent 
      Pr > |t| =       0.0000 
 
 

 
. correlat  age bse 

(obs=1216) 
 
         |      age      bse 
---------+------------------ 
     age |   1.0000 
     bse |   0.1394   1.0000 

 
 

. nptrend  bse, by(age) 
 
       age     score       obs      sum of ranks 
        45        45       232        121878 
        52        52       505      304487.5 
        60        60       479      313570.5 

 
      z  =  4.85 
    P>|z| =  0.00 
 

Z2 = 4.852 = 23.523 ≈ χ2 
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 These following measures of association were taken into 

account of the ordinality of the age and BSE Variables. 
The scores 45, 52 and 60 were assigned to age and 1, 2, 3 
to BSE (note open ended intervals for age make it 
difficult to know which scores to assign to categories <45 
and 60+). 

 
 Gamma   = 0.19    
 Tau-b   =  0.12   
 Pearson correlation  =  0.14     
 Spearman correlation  =  0.14    
 
 Thus there was a “weak” linear correlation between age 

and BSE frequency. 
 
 Test for departure form linear trend : 25.086 - 23.523 = 

1.563 on 3 df. resulting in p-value of 0.668 as shown 
below. Thus most of the association between age and 
BSE is explained by a linear association. 

 
. disp chiprob(3,1.563) 
.66780811 

 
 In summary, there is a significant association between 

age and frequency of BSE such that younger women tend 
to perform BSE more frequently than older women who 
are more likely to perform occasionally or never. 
However the magnitude of association is weak. 

 
 
 
Answers for the exercise in Chapter 5 
 
 
i)  Observer’s marginal distribution 
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                Category 
        1    2   3 
 Anaesthetist 1 0.36 0.33 0.31 
    2 0.40 0.47 0.13 
 
 Anaesthetist 1 use each category with equal frequency 

while Anesthetist 2 tends to use categories 1 and 2 more 
frequently than category 3. Anesthetist 2 only classifies 
patients as “unsuitable” 13% of time while Anesthetist 1 
classifies one-third of patients as “unsuitable”  

 
 
STATA Commands: 
 
1. The command to obtain marginal proportions 
  
. tabi 15 3 0 \ 1 12 8 \ 0 0 6, row col 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |        15          3          0 |        18  
           |     83.33      16.67       0.00 |    100.00  
           |     93.75      20.00       0.00 |     40.00  
-----------+---------------------------------+---------- 
         2 |         1         12          8 |        21  
           |      4.76      57.14      38.10 |    100.00  
           |      6.25      80.00      57.14 |     46.67  
-----------+---------------------------------+---------- 
         3 |         0          0          6 |         6  
           |      0.00       0.00     100.00 |    100.00  
           |      0.00       0.00      42.86 |     13.33  
-----------+---------------------------------+---------- 
     Total |        16         15         14 |        45  
           |     35.56      33.33      31.11 |    100.00  
           |    100.00     100.00     100.00 |    100.00 

 
2. The command to obtain a data file 
 
. tabi 15 3 0 \ 1 12 8 \ 0 0 6, replace 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |        15          3          0 |        18  
         2 |         1         12          8 |        21  
         3 |         0          0          6 |         6  
-----------+---------------------------------+---------- 
     Total |        16         15         14 |        45  
 
          Pearson chi2(4) =  41.4432   Pr = 0.000 
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The output of the above command can be ignored. What of 
interest is the data file. The “replace” option automatically 
provides us the data file as follows: 
 
 
 

row col pop 
1 1 15 
1 2 3 
1 3 0 
2 1 1 
2 2 12 
2 3 8 
3 1 0 
3 2 0 
3 3 6 

 
 
 
 
 

We can see this at the data editor or use “list command. The 
variable “row” is Anaesthetist 1 assessment, “col” is 
Anaesthetist 2 assessment, and “pop” is the number so 
assessed by both. 
 
3. The command to test for symmetry and Marginal 

homogeneity 
 
 
. symmetry row col [freq=pop], trend exact 
 
----------+--------------------------- 
          |            col             
      row |   1      2      3    Total 
----------+--------------------------- 
        1 |   15      3      0     18  
        2 |    1     12      8     21  
        3 |    0      0      6      6  
          |  
    Total |   16     15     14     45  
----------+--------------------------- 
 
                                        Chi-Squared    df      Prob>chi2 
--------------------------------------+--------------------------------- 
Symmetry (asymptotic)                 |      9.00      2         0.0111 
Marginal homogeneity (Stuart-Maxwell) |      9.00      2         0.0111 
--------------------------------------+--------------------------------- 
Linear trend in the (log) RR          |      8.33      1         0.0039 
--------------------------------------+--------------------------------- 
Symmetry (exact significance probability)                        0.0049 
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ii)   Nominal   Ordinal 

        
2

1
1

1
1 ⎟

⎠
⎞

⎜
⎝
⎛

−
−

−=
−

−
−=

c
jiW

c
ji

W ijij
 

 
Kappa        0.596  0.680   0.773 
 
Var0(K) 0.010385       0.011740        0.019737 
 

)(var0 K
K

=Ζ         5.85    6.28     5.50 

P-value               < 0.001                 < 0.001                       < 0.001 
 
95%CI Kappa*  0.40 to 0.80        0.47 to 0.89              0.50 to 

1.05 
 
*Note that 95%CI of Kappa =K ± 1.96 )(var0 K  
 
 In all cases p<0.001 so we reject Ho and conclude that 

the level of agreement achieved by the anaesthetists is 
statistically significantly better than that expected by 
chance.  

 
 
STATA Commands: 
 
The following three commands are to obtain results as 
summarized above.  
The first command is for nominal data.  

The second one is for ordinal with weight of 
1

1
−

−
−=

c
ji

Wij .  
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The last command is also for ordinal outcome using weight 

2

1
1 ⎟

⎠
⎞

⎜
⎝
⎛

−
−

−=
c

jiWij  . 

 
. kap row col [freq=pop], tab 
 
           |               col 
       row |         1          2          3 |     Total 
-----------+---------------------------------+---------- 
         1 |        15          3          0 |        18  
         2 |         1         12          8 |        21  
         3 |         0          0          6 |         6  
-----------+---------------------------------+---------- 
     Total |        16         15         14 |        45  
 
             Expected 
Agreement   Agreement     Kappa         Z         Pr>Z 
------------------------------------------------------ 
  73.33%      33.93%     0.5964       5.85      0.0000 
 
 
. kap row col [freq=pop], wgt(w) 
 
Ratings weighted by: 
   1.0000   0.5000   0.0000 
   0.5000   1.0000   0.5000 
   0.0000   0.5000   1.0000 
 
             Expected 
Agreement   Agreement     Kappa         Z         Pr>Z 
------------------------------------------------------ 
  86.67%      58.37%     0.6797       6.27      0.0000 
 
. kap row col [freq=pop], wgt(w2) 
 
Ratings weighted by: 
   1.0000   0.7500   0.0000 
   0.7500   1.0000   0.7500 
   0.0000   0.7500   1.0000 
 
             Expected 
Agreement   Agreement     Kappa         Z         Pr>Z 
------------------------------------------------------ 
  93.33%      70.59%     0.7733       5.50      0.0000 
 
 
If the weight is to specify arbitrarily, we can define our own 

weight as follows: 
 
. kapwgt mine 1 \ .8 1 \ 0 .8 1 
 
. kap row col [freq=pop], wgt(mine) 
 
Ratings weighted by: 
   1.0000   0.8000   0.0000 
   0.8000   1.0000   0.8000 
   0.0000   0.8000   1.0000 
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             Expected 
Agreement   Agreement     Kappa         Z         Pr>Z 
------------------------------------------------------ 
  94.67%      73.04%     0.8022       5.22      0.0000 
 

 
iii) While the anaesthetists tend to use the categories of the 

scale with different frequencies (Anesthetist 1 is more 
conservative in classifying more patient as unsuitable 
while Anaesthetist  2 tends to classify patients in the 
middle category), they can reach agreement better than 
that expected  by chance. Thus the scale is reliable. 

  
 
 
Answers for the exercise in Chapter 6 
 
Part 1. Bivariate analysis : examine relationship between 

each variable and survival, one variable at a time. 
 

1.1 Entering the data into Stata in the following format. 
 

center age survive inflam appear freq 
1 1 1 1 1 9 
1 1 1 1 2 7 
1 1 1 2 1 4 
1 1 1 2 2 3 
1 1 2 1 1 26 
1 1 2 1 2 68 
1 1 2 2 1 25 
1 1 2 2 2 9 
1 2 1 1 1 9 
1 2 1 1 2 9 
1 2 1 2 1 11 
1 2 1 2 2 2 
1 2 2 1 1 20 
1 2 2 1 2 46 
1 2 2 2 1 18 
1 2 2 2 2 5 
1 3 1 1 1 2 
1 3 1 1 2 3 
1 3 1 2 1 1 
1 3 1 2 2 0 
1 3 2 1 1 1 
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center age survive inflam appear freq 

1 3 2 1 2 6 
1 3 2 2 1 5 
1 3 2 2 2 1 
2 1 1 1 1 6 
2 1 1 1 2 7 
2 1 1 2 1 6 
2 1 1 2 2 0 
2 1 2 1 1 11 
2 1 2 1 2 24 
2 1 2 2 1 4 
2 1 2 2 2 0 
2 2 1 1 1 8 
2 2 1 1 2 20 
2 2 1 2 1 3 
2 2 1 2 2 2 
2 2 2 1 1 18 
2 2 2 1 2 58 
2 2 2 2 1 10 
2 2 2 2 2 3 
2 3 1 1 1 9 
2 3 1 1 2 18 
2 3 1 2 1 3 
2 3 1 2 2 0 
2 3 2 1 1 15 
2 3 2 1 2 26 
2 3 2 2 1 1 
2 3 2 2 2 1 
3 1 1 1 1 16 
3 1 1 1 2 7 
3 1 1 2 1 3 
3 1 1 2 2 0 
3 1 2 1 1 16 
3 1 2 1 2 20 
3 1 2 2 1 8 
3 1 2 2 2 1 
3 2 1 1 1 14 
3 2 1 1 2 12 
3 2 1 2 1 3 
3 2 1 2 2 0 
3 2 2 1 1 27 
3 2 2 1 2 39 
3 2 2 2 1 10 
3 2 2 2 2 4 
3 3 1 1 1 3 
3 3 1 1 2 7 
3 3 1 2 1 3 
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center age survive inflam appear freq 

3 3 1 2 2 0 
3 3 2 1 1 12 
3 3 2 1 2 11 
3 3 2 2 1 4 
3 3 2 2 2 1 

 
1.2 Performing bivariate data  analysis 
 
Step 1.1 Recode the outcome to be 0-1 variable, where 

1=survive and 0=dead and perform a univariable 
analysis to determine magnitude of the problem 
under investigation. 

 
. recode  survive 1=0 2=1 
(771 changes made) 
 
. ci survive [freq=freq] 
 
Variable |     Obs         Mean    Std. Err.       [95% Conf. Interval] 
---------+------------------------------------------------------------- 
 survive |     764     .7251309    .0161625        .6934026    .7568592 

 
Proportion of three-year survival was 72.5% (95%CI: 69.3% to 
75.7%). 
 

Step 1.2 Crude analysis to determine the effect of CENTER 
on SURVIVE  

 
. tab center survive [freq=freq], row chi2 
 
           |        survive 
    center |         0          1 |     Total 
-----------+----------------------+---------- 
         1 |        60        230 |       290  
           |     20.69      79.31 |    100.00  
-----------+----------------------+---------- 
         2 |        82        171 |       253  
           |     32.41      67.59 |    100.00  
-----------+----------------------+---------- 
         3 |        68        153 |       221  
           |     30.77      69.23 |    100.00  
-----------+----------------------+---------- 
     Total |       210        554 |       764  
           |     27.49      72.51 |    100.00  
 
          Pearson chi2(2) =  10.9948   Pr = 0.004 
 
 
 
. cci 171 82 230 60  
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                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |       171          82  |       253      0.6759 
        Controls |       230          60  |       290      0.7931 
-----------------+------------------------+---------------------- 
           Total |       401         142  |       543      0.7385 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         .5440085       |  .3696901    .8005537  (Cornfield) 
 Prev. frac. ex. |         .4559915       |  .1994463    .6303099  (Cornfield) 
 Prev. frac. pop |         .3616484       | 
                 +----------------------------------------------- 
                             chi2(1) =     9.61  Pr>chi2 = 0.0019 
 
. cci 153 68 230 60  
 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |       153          68  |       221      0.6923 
        Controls |       230          60  |       290      0.7931 
-----------------+------------------------+---------------------- 
           Total |       383         128  |       511      0.7495 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         .5869565       |   .392766    .8771556  (Cornfield) 
 Prev. frac. ex. |         .4130435       |  .1228444     .607234  (Cornfield) 
 Prev. frac. pop |         .3275862       | 
                 +----------------------------------------------- 
                             chi2(1) =     6.79  Pr>chi2 = 0.0092 

 

 
 
Step 1.3 Crude analysis to determine the effect of AGE on 

SURVIVE  
 
. tab age survive [freq=freq], row chi2 
 
           |        survive 
       age |         0          1 |     Total 
-----------+----------------------+---------- 
         1 |        68        212 |       280  
           |     24.29      75.71 |    100.00  
-----------+----------------------+---------- 
         2 |        93        258 |       351  
           |     26.50      73.50 |    100.00  
-----------+----------------------+---------- 
         3 |        49         84 |       133  
           |     36.84      63.16 |    100.00  
-----------+----------------------+---------- 
     Total |       210        554 |       764  
           |     27.49      72.51 |    100.00  
 
          Pearson chi2(2) =   7.4526   Pr = 0.024 
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. cci 258 93 212 68 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |       258          93  |       351      0.7350 
        Controls |       212          68  |       280      0.7571 
-----------------+------------------------+---------------------- 
           Total |       470         161  |       631      0.7448 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         .8898357       |    .62034    1.276478  (Cornfield) 
 Prev. frac. ex. |         .1101643       | -.2764783      .37966  (Cornfield) 
 Prev. frac. pop |         .0834101       | 
                 +----------------------------------------------- 
                             chi2(1) =     0.40  Pr>chi2 = 0.5269 
 
 
 
. cci 84 49 212 68 
                                                        Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |        84          49  |       133      0.6316 
        Controls |       212          68  |       280      0.7571 
-----------------+------------------------+---------------------- 
           Total |       296         117  |       413      0.7167 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         .5498652       |  .3525543    .8574515  (Cornfield) 
 Prev. frac. ex. |         .4501348       |  .1425485    .6474457  (Cornfield) 
 Prev. frac. pop |         .3408163       | 
                 +----------------------------------------------- 
                             chi2(1) =     7.00  Pr>chi2 = 0.0081 

 

 
 
 
Step 1.4 Crude analysis to determine the effect of APPEAR 

on SURVIVE  
 
 
 
. recode   appear 1=0 2=1 
(72 changes made) 
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. cc  survive  appear  [freq=freq] 
 
                 | appear                 |             Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |       323         231  |       554      0.5830 
        Controls |        97         113  |       210      0.4619 
-----------------+------------------------+---------------------- 
           Total |       420         344  |       764      0.5497 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |         1.628911       |  1.183985    2.241029  (Cornfield) 
 Attr. frac. ex. |         .3860928       |  .1553948    .5537763  (Cornfield) 
 Attr. frac. pop |         .2251046       | 
                 +----------------------------------------------- 
                             chi2(1) =     9.03  Pr>chi2 = 0.0027 
 

Step 1.5 Crude analysis to determine the effect of INFLAM 
on SURVIVE  

 
. recode  inflam 1=1 2=0 
(72 changes made) 
 
 
 
. cc  survive   inflam [freq=freq] 
 
                 | inflam                 |             Proportion 
                 |   Exposed   Unexposed  |     Total     Exposed 
-----------------+------------------------+---------------------- 
           Cases |       444         110  |       554      0.8014 
        Controls |       166          44  |       210      0.7905 
-----------------+------------------------+---------------------- 
           Total |       610         154  |       764      0.7984 
                 |                        | 
                 |      Point estimate    |  [95% Conf. Interval] 
                 |------------------------+---------------------- 
      Odds ratio |          1.06988       |  .7237485    1.581853  (Cornfield) 
 Attr. frac. ex. |         .0653153       | -.3816954    .3678301  (Cornfield) 
 Attr. frac. pop |         .0523466       | 
                 +----------------------------------------------- 
                             chi2(1) =     0.11  Pr>chi2 = 0.7358 

From the above analysis, we can report the results as follows: 
  

In an exploratory data analysis, effect of each variable on 
survival were assessed. In summary, there is a statistically 
significant association between centre, age, appearance and 
survival (Table 1). The odds of surviving are lower in Boston 
and Glamorgan as compared with Tokyo; are lower in women 
aged 70+ as compared with those <50; are higher in those with 
benign nuclear grade as compared with malignant 
appearance. There is not a statistically significant relationship 
between inflammation and survival. 
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Table 1. Relationship between each variable and survival. 
 

Variable OR 95% CI p-value 
Center 0.004 
 Tokyo 1   
 Boston 0.54 0.37 to 0.80  
 Gilanorgar 0.59 0.39 to 0.88  

   
Age   0.024 
 <50 1   
 50-69 0.89 0.62 to 1.28  
 70+ 0.55 0.35 to 0.86  

   
Inflammation   0.736 
 Greater 1   
 Minimal 1.07 0.72 to 1.58  

   
Appearance   0.003 
 Malignant 1   
 Benign 1.63 1.18 to 2.24  
 
Part 2.  Stratified analysis : investigate effect of each variable 

(esp. interaction effect or any sparse data that could 
affect modeling) on the relationship between other 
variable and survival 

 
 
. cc  survive inflam  [freq=freq], by( center) 
 
          center |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               1 |    1.42735     .7839431   2.601131      8.472414 (Cornfield) 
               2 |   1.647059     .7891301   3.441417      5.106719 (Cornfield) 
               3 |   .6809927     .3073596   1.513491      7.475113 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |    1.06988     .7237485   1.581853               (Cornfield) 
    M-H combined |   1.215654     .8130749   1.817561                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(2) =     2.86  Pr>chi2 = 0.2393 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.91 
                                                Pr>chi2 =    0.3409 
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. cc  survive inflam  [freq=freq], by(age) 
 
             age |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               1 |   1.080196     .5696079   2.051455      8.728571 (Cornfield) 
               2 |   1.213333     .6855999   2.149144      10.25641 (Cornfield) 
               3 |   .9102564     .3461299   2.404947      4.105263 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |    1.06988     .7237485   1.581853               (Cornfield) 
    M-H combined |    1.10912     .7473107   1.646099                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(2) =     0.25  Pr>chi2 = 0.8819 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.26 
                                                Pr>chi2 =    0.6075 
 
. cc  survive inflam  [freq=freq], by( appear) 
 
          appear |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   .8362229     .5209398   1.342702      18.77907 (Cornfield) 
               1 |   .9271111     .3973375   2.169064      5.357143 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |    1.06988     .7237485   1.581853               (Cornfield) 
    M-H combined |    .856396     .5639342   1.300531                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     0.04  Pr>chi2 = 0.8385 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      0.53 
                                                Pr>chi2 =    0.4667 
 
. cc  survive  appear  [freq=freq], by( center) 
          center |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               1 |   2.131579     1.199045   3.788206      7.862069 (Cornfield) 
               2 |   1.413631     .8263451      2.419      10.96047 (Cornfield) 
               3 |   1.594406     .8929255   2.845867      9.058824 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.628911     1.183985   2.241029               (Cornfield) 
    M-H combined |   1.674815     1.209033   2.320041                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(2) =     1.07  Pr>chi2 = 0.5849 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      9.68 
                                                Pr>chi2 =    0.0019 
 
. cc  survive appear  [freq=freq], by( age) 
 
             age |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               1 |   2.485185     1.414493   4.364453      7.714286 (Cornfield) 
               2 |   1.605178     .9981418   2.581484      13.20513 (Cornfield) 
               3 |   .9078947     .4483703   1.839268             8 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.628911     1.183985   2.241029               (Cornfield) 
    M-H combined |   1.647031     1.194434   2.271127                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(2) =     4.73  Pr>chi2 = 0.0938 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      9.36 
                                                Pr>chi2 =    0.0022 
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. cc  survive  appear  [freq=freq], by( inflam) 
 
          inflam |       OR      [95% Conf. Interval]    M-H Weight 
-----------------+------------------------------------------------- 
               0 |   1.554622     .6293684   3.819763      3.863636 (Cornfield) 
               1 |   1.723592     1.198791   2.478281      21.54098 (Cornfield) 
-----------------+------------------------------------------------- 
           Crude |   1.628911     1.183985   2.241029               (Cornfield) 
    M-H combined |   1.697894     1.209561   2.383381                
-----------------+------------------------------------------------- 
Test of homogeneity (M-H)      chi2(1) =     0.04  Pr>chi2 = 0.8384 
 
                   Test that combined OR = 1: 
                                Mantel-Haenszel chi2(1) =      9.46 
                                                Pr>chi2 =    0.0021 

 
 
We have investigate effect of some variables, none have been 
found to be significant effect modifier. However we will 
consider putting the interaction term "APPEAR*AGER" into 
the model for further investigation since the p-value of 0.094 
seems to be convincing (rule of thumb cutpoint is 0.2).  
 
 
Part 3.  Multivariable analysis : investigate effect of each 

variable on survival adjusted simultaneously for 
effect of other variables using logistic regression  

 
Fitting logistic regression model  
 
 
Step 3.1 Generate all possible two-ways interaction terms 
. gen ce_ag =  center* age 
 
. gen ce_in =  center*  inflam 
 
. gen ce_ap =  center*  appear 
 
. gen ag_in = age* inflam 
 
. gen ag_ap = age* appear 
 
. gen in_ap =  inflam* appear 
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Step 3.2 All main effect and two-ways interaction were fitted 
 
. xi: logistic  survive  i.center i.age inflam appear i.ce_ag 
i.ce_in i.ce_ap i.ag_in i.ag_ap  in_ap  [freq=freq] 
i.center              Icente_1-3   (naturally coded; Icente_1 omitted) 
i.age                 Iage_1-3     (naturally coded; Iage_1 omitted) 
i.ce_ag               Ice_ag_1-9   (naturally coded; Ice_ag_1 omitted) 
i.ce_in               Ice_in_0-3   (naturally coded; Ice_in_0 omitted) 
i.ce_ap               Ice_ap_0-3   (naturally coded; Ice_ap_0 omitted) 
i.ag_in               Iag_in_0-3   (naturally coded; Iag_in_0 omitted) 
i.ag_ap               Iag_ap_0-3   (naturally coded; Iag_ap_0 omitted) 
 
Note: Ice_ag_4 dropped due to collinearity. 
Note: Ice_ag_9 dropped due to collinearity. 
Note: Ice_in_3 dropped due to collinearity. 
Note: Ice_ap_3 dropped due to collinearity. 
Note: Iag_in_3 dropped due to collinearity. 
Note: Iag_ap_3 dropped due to collinearity. 
 
Logit estimates                                   Number of obs   =        764 
                                                  LR chi2(18)     =      38.60 
                                                  Prob > chi2     =     0.0032 
Log likelihood = -429.96552                       Pseudo R2       =     0.0430 
------------------------------------------------------------------------------ 
 survive | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
Icente_2 |   .4706606    .211485     -1.677   0.094       .1950886    1.135491 
Icente_3 |   1.164176    .582414      0.304   0.761       .4366964    3.103543 
  Iage_2 |   .9691127   .4075248     -0.075   0.941       .4250429    2.209611 
  Iage_3 |   .8014983   .4652564     -0.381   0.703       .2569179    2.500408 
  inflam |   .5532933   .3656969     -0.895   0.371       .1514807     2.02094 
  appear |   .8291563   .5826706     -0.267   0.790       .2091578    3.286993 
Ice_ag_2 |   .6338761   .1508398     -1.916   0.055       .3976023    1.010555 
Ice_ag_3 |   .5490657   .1798358     -1.830   0.067       .2889547    1.043323 
Ice_ag_6 |   .8515569    .220565     -0.620   0.535       .5125553    1.414773 
Ice_in_1 |   1.805347   1.001043      1.065   0.287       .6089476    5.352314 
Ice_in_2 |   2.667878   1.603839      1.632   0.103       .8212054    8.667224 
Ice_ap_1 |   1.146924    .528486      0.297   0.766       .4648504    2.829802 
Ice_ap_2 |   .7773183   .3401168     -0.576   0.565       .3297268    1.832498 
Iag_in_1 |   .9257537   .6369526     -0.112   0.911       .2403463    3.565771 
Iag_in_2 |   .9731143   .6295218     -0.042   0.966       .2738477    3.457949 
Iag_ap_1 |     2.2147   1.158892      1.520   0.129       .7941532    6.176258 
Iag_ap_2 |   1.589314   .7658008      0.962   0.336       .6181068     4.08654 
   in_ap |   1.324014   .7168045      0.518   0.604       .4582084    3.825801 
------------------------------------------------------------------------------ 

 
Step 3.3 Interaction terms were eliminated one at a time 

according to lack of statistical significance. All 
interaction terms were dropped (Output not shown). 

 
Step 3.4  Determining model with only the main effects 
 
. xi: logistic  survive  i.center i.age inflam appear [freq=freq] 
 
i.center              Icente_1-3   (naturally coded; Icente_1 omitted) 
i.age                 Iage_1-3     (naturally coded; Iage_1 omitted) 
 
Logit estimates                                   Number of obs   =        764 
                                                  LR chi2(6)      =      24.49 
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                                                  Prob > chi2     =     0.0004 
Log likelihood = -437.01748                       Pseudo R2       =     0.0273 
 
------------------------------------------------------------------------------ 
 survive | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
Icente_2 |   .5730183   .1212359     -2.632   0.008       .3785089    .8674828 
Icente_3 |   .6464286   .1381113     -2.042   0.041       .4252643    .9826122 
  Iage_2 |    .952617    .181028     -0.255   0.798       .6563909    1.382529 
  Iage_3 |   .6544147   .1574908     -1.762   0.078       .4083229    1.048823 
  inflam |   .9823988   .2160256     -0.081   0.936       .6384281    1.511693 
  appear |   1.686077   .2987845      2.948   0.003       1.191348    2.386251 
------------------------------------------------------------------------------ 
 
. lrtest, saving(0) 
 

 
First we try removing "INFLAM" due to the highest p-value 
of 0.936. 
 
. xi: logistic  survive  i.center i.age appear [freq=freq] 
i.center              Icente_1-3   (naturally coded; Icente_1 omitted) 
i.age                 Iage_1-3     (naturally coded; Iage_1 omitted) 
 
Logit estimates                                   Number of obs   =        764 
                                                  LR chi2(5)      =      24.49 
                                                  Prob > chi2     =     0.0002 
Log likelihood = -437.02075                       Pseudo R2       =     0.0273 
 
------------------------------------------------------------------------------ 
 survive | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
Icente_2 |   .5715436   .1195508     -2.674   0.007       .3793168    .8611854 
Icente_3 |   .6446424   .1359573     -2.082   0.037       .4263806     .974631 
  Iage_2 |   .9529291   .1810479     -0.254   0.800       .6566591    1.382869 
  Iage_3 |   .6542766   .1574399     -1.763   0.078       .4082583    1.048546 
  appear |   1.677946   .2799015      3.103   0.002       1.210005    2.326851 
------------------------------------------------------------------------------ 
 
. lrtest 
Logistic:  likelihood-ratio test                      chi2(1)     =       0.01 
                                                      Prob > chi2 =     0.9356 

 
 
"INFLAM" has no effect on the model. Now the above model 
suggests "AGE" might be able to be removed. 
 
 
. lrtest, saving(1) 
 
. xi: logistic  survive  i.center appear [freq=freq] 
i.center              Icente_1-3   (naturally coded; Icente_1 omitted) 
 
Logit estimates                                   Number of obs   =        764 
                                                  LR chi2(3)      =      20.96 
                                                  Prob > chi2     =     0.0001 
Log likelihood = -438.78221                       Pseudo R2       =     0.0233 
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------------------------------------------------------------------------------ 
 survive | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
Icente_2 |   .5173948   .1033642     -3.298   0.001       .3497603    .7653738 
Icente_3 |   .6098661   .1262996     -2.388   0.017       .4064019     .915194 
  appear |   1.674864   .2783321      3.103   0.002       1.209275    2.319711 
------------------------------------------------------------------------------ 
 
. lrtest 
Logistic:  likelihood-ratio test                      chi2(3)     =       3.53 
                                                      Prob > chi2 =     0.3170 
 

"AGE" also has no effect on the model and can be removed. 
We can notice that removing "INFLAM" and "AGE", the 
coefficient of other variables in the model were not effect. 
Precision of the estimate (i.e., the range of 95% confidence 
intervals) were also more or less the same as the model that all 
variables are in. Additionally age is known to have some effect 
of survival. We then decide to choose the model with all main 
effect to describe factors affecting survival since it is more 
informative. That is, the effects of each study variable was 
already adjusted for effects of all other potential confounders.   
 

Thus the final model which all variables are retained in the 
model is 
 
. xi: logistic  survive  i.center i.age inflam appear [freq=freq] 
i.center              Icente_1-3   (naturally coded; Icente_1 omitted) 
i.age                 Iage_1-3     (naturally coded; Iage_1 omitted) 
 
Logit estimates                                   Number of obs   =        764 
                                                  LR chi2(6)      =      24.49 
                                                  Prob > chi2     =     0.0004 
Log likelihood = -437.01748                       Pseudo R2       =     0.0273 
 
------------------------------------------------------------------------------ 
 survive | Odds Ratio   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
Icente_2 |   .5730183   .1212359     -2.632   0.008       .3785089    .8674828 
Icente_3 |   .6464286   .1381113     -2.042   0.041       .4252643    .9826122 
  Iage_2 |    .952617    .181028     -0.255   0.798       .6563909    1.382529 
  Iage_3 |   .6544147   .1574908     -1.762   0.078       .4083229    1.048823 
  inflam |   .9823988   .2160256     -0.081   0.936       .6384281    1.511693 
  appear |   1.686077   .2987845      2.948   0.003       1.191348    2.386251 
------------------------------------------------------------------------------ 
 

Summary steps for logistic regression model fitting 
1.  All main affects and two-way interactions were 

fitted. 
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2.  Interaction terms were eliminated one at a time 

according to lack of statistical significance. 
 
3. All interaction terms were dropped 
 
4. Settled for main effect model  -  could drop the 

terms for inflammation and age 
 
5. Decide to choose the model with all main effect 

based on clinical judgement.  
 
6. Estimate adjusted odds ratios from the logistic 

regression model 
 

 

Part 4.  Reporting the results 
 
A study on three-year survival of breast cancer patients 
according to two histologic criteria, age, and diagnostic center 
involved 764 patients. Among these, 554 patients still survived 
at three years. The proportion of three-year survival was 
72.5% (95%CI: 69.3% to 75.7%). 
 
Table 2 summarizes effects of selected variables on the 
survival. In an exploratory data analysis, effect of each 
variable on survival were assessed. In summary, after 
adjusting for the effect of all other variables in the Table, 
there is a statistically significant association between centre 
and survival (p-value = 0.003) and appearance and survival 
(p-value = 0.002). The odds of surviving are lower in Boston 
and Glamorgan as compared with Tokyo, and are higher in 
those with benign nuclear grade as compared with malignant 
appearance. However the magnitude of such differences were 
quite small (i.e., all ORs  close to 1 and the largest possible is 
2.6 - based on the lower limit of 95%CI of OR for Boston 
compared to Tokyo). There is no statistically significant 
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relationship between inflammation and survival (p-value = 
0.936) nor age and survival (p-value = 0.317). The similarity 
between crude odds ratios and adjusted ones suggested that 
there was no confounding effect of all variables presented in 
the Table. Interaction effects were also not detected.  
 
Table 2.  Crude odds ratios and odds ratios adjusted for the 

effects of all other variables in the Table describing 
relationship between the variable and survival. 

 
Variable No. Survive

(%) 
Crude 

OR 
Adjusted 

OR 
95% CI p- 

value* 
Center      0.003 
 Tokyo 290 79.3 1    
 Boston 253 67.6 0.54 0.57 0.38 to 0.87  
 Gilanorgar 221 69.2 0.59 0.64 0.43 to 0.98  

       
Age      0.317 
 <50 280 75.7 1    
 50-69 351 73.5 0.89 0.95 0.66 to 1.38  
 70+ 133 63.2 0.55 0.65 0.41 to 1.05  

       
Inflammation      0.936 
 Greater 154 71.4 1    
 Minimal 610 72.8 1.07 0.98 0.64 to 1.51  

       
Appearance      0.002 
 Malignant 344 67.2 1    
 Benign 420 76.9 1.63 1.69 1.19 to 2.39  
* p-value from likelihood ratio tests 
 
 
 
 
Answers for the exercise in Chapter 7 
 
1. Log-linear model can be fitted as follows: 
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Firstly we enter the data to Stata using the following format. 
 

beh ris adv freq 
1 1 1 16 
1 2 1 7 
1 1 2 15 
1 2 2 34 
1 1 3 5 
1 2 3 3 
2 1 1 1 
2 2 1 1 
2 1 2 3 
2 2 2 8 
2 1 3 1 
2 2 3 3 

 
This is a 2-by-2-by-3 Table. The analysis using log-linear 
modeling applied to these data yields the following results for 
all eight possible models: 
 
Saturated Model:  
log-frequency  =  BEH + RIS + ADV + BEH*RIS  

+ BEH*ADV + RIS*ADV  
+ BEH*RIS*ADV 

 
 

1. Model:  
log-frequency    =  BEH + RIS + ADV + BEH*RIS  

+ BEH*ADV + RIS*ADV  
 
. loglin freq  beh ris adv, fit( beh, ris, adv, beh ris, beh adv, 
ris adv)  
 
Variable beh = A 
Variable ris = B 
Variable adv = C 
Margins fit: beh, ris, adv, beh ris, beh adv, ris adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -21.374741 
Iteration 1: Log Likelihood = -20.854752 
Iteration 2: Log Likelihood = -20.845886 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(2)     =     0.943             Model chi2(9)    =  99.775 
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Prob > chi2                 =    0.6241             Prob > chi2      =  0.0000 
Log Likelihood              =   -20.846             Pseudo R2        =  0.7053 
 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -2.664174    .786254     -3.388   0.001      -4.205204   -1.123145 
    AB22 |    .589859   .6150592      0.959   0.338      -.6156349    1.795353 
    AC22 |   .7346284   .8388175      0.876   0.381      -.9094237    2.378681 
    AC23 |   1.661531   .9665848      1.719   0.086      -.2329406    3.556002 
      B2 |  -.8047879   .4337849     -1.855   0.064      -1.654991    .0454149 
    BC22 |   1.555037   .5159305      3.014   0.003       .5438317    2.566242 
    BC23 |    .609435   .7387509      0.825   0.409      -.8384902     2.05736 
      C2 |  -.0110953   .3469391     -0.032   0.974      -.6910836    .6688929 
      C3 |  -1.286667   .5106199     -2.520   0.012      -2.287464   -.2858708 
   _cons |   2.765876   .2478813     11.158   0.000       2.280037    3.251714 
------------------------------------------------------------------------------ 
 
 
 

2. Model:  
log-frequency = BEH + RIS + ADV + BEH*RIS + BEH*ADV  
 
. loglin freq  beh ris adv, fit( beh, ris, adv, beh ris, beh adv)  
Variable beh = A 
Variable ris = B 
Variable adv = C 
Margins fit: beh, ris, adv, beh ris, beh adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -27.003891 
Iteration 1: Log Likelihood = -26.049576 
Iteration 2: Log Likelihood = -26.03476 
Iteration 3: Log Likelihood = -26.034744 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(4)     =    11.321             Model chi2(7)    =  89.397 
Prob > chi2                 =    0.0232             Prob > chi2      =  0.0000 
Log Likelihood              =   -26.035             Pseudo R2        =  0.6319 
 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -2.867615   .8366197     -3.428   0.001      -4.507359    -1.22787 
    AB22 |   .6747983   .5777875      1.168   0.243      -.4576444    1.807241 
    AC22 |   .9484221   .8091944      1.172   0.241      -.6375697    2.534414 
    AC23 |     1.7492   .9583727      1.825   0.068      -.1291761    3.627576 
      B2 |   .2006706   .2247333      0.893   0.372      -.2397986    .6411397 
      C2 |    .756326   .2527576      2.992   0.003       .2609301    1.251722 
      C3 |  -1.056053    .410461     -2.573   0.010      -1.860542   -.2515639 
   _cons |   2.336987   .2423964      9.641   0.000       1.861898    2.812075 
------------------------------------------------------------------------------ 
 
 

3. Model:  
log-frequency = BEH + RIS + ADV + BEH*RIS + RIS*ADV  
 
. loglin freq  beh ris adv, fit( beh, ris, adv, beh ris, ris adv)  
Variable beh = A 
Variable ris = B 
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Variable adv = C 
Margins fit: beh, ris, adv, beh ris, ris adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -23.313782 
Iteration 1: Log Likelihood = -22.448441 
Iteration 2: Log Likelihood = -22.433456 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(4)     =     4.118             Model chi2(7)    =  96.600 
Prob > chi2                 =    0.3903             Prob > chi2      =  0.0000 
Log Likelihood              =   -22.433             Pseudo R2        =  0.6828 
 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -1.974081   .4772605     -4.136   0.000      -2.909495   -1.038668 
    AB22 |   .6747981   .5777873      1.168   0.243      -.4576443     1.80724 
      B2 |  -.8648807   .4382707     -1.973   0.048      -1.723875    -.005886 
    BC22 |    1.60107   .5130191      3.121   0.002       .5955707    2.606569 
    BC23 |   .7537717   .7191361      1.048   0.295      -.6557092    2.163253 
      C2 |   .0571585   .3381997      0.169   0.866      -.6057008    .7200178 
      C3 |  -1.041454   .4748581     -2.193   0.028      -1.972159   -.1107491 
   _cons |    2.70316   .2494214     10.838   0.000       2.214303    3.192017 
------------------------------------------------------------------------------ 
 
 
 

4. Model:  
log-frequency = BEH + RIS + ADV + BEH*ADV + RIS*ADV 
 
. loglin freq  beh ris adv, fit( beh, ris, adv, beh adv, ris adv)  
Variable beh = A 
Variable ris = B 
Variable adv = C 
Margins fit: beh, ris, adv, beh adv, ris adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -21.969559 
Iteration 1: Log Likelihood = -21.339813 
Iteration 2: Log Likelihood = -21.326447 
Iteration 3: Log Likelihood = -21.326431 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(3)     =     1.904             Model chi2(8)    =  98.814 
Prob > chi2                 =    0.5926             Prob > chi2      =  0.0000 
Log Likelihood              =   -21.326             Pseudo R2        =  0.6985 
 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -2.442347   .7372098     -3.313   0.001      -3.887252   -.9974424 
    AC22 |    .948422   .8091944      1.172   0.241      -.6375698    2.534414 
    AC23 |     1.7492   .9583727      1.825   0.068      -.1291762    3.627576 
      B2 |  -.7537717   .4287465     -1.758   0.079      -1.594099    .0865559 
    BC22 |   1.601069   .5130191      3.121   0.002       .5955704    2.606568 
    BC23 |   .7537717   .7191362      1.048   0.295      -.6557093    2.163253 
      C2 |  -.0619841   .3487103     -0.178   0.859      -.7454436    .6214755 
      C3 |  -1.363537    .520226     -2.621   0.009      -2.383162    -.343913 
   _cons |   2.749832   .2496033     11.017   0.000       2.260618    3.239045 
------------------------------------------------------------------------------ 
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5. Model:  
log-frequency = BEH + RIS + ADV + BEH*RIS  
 
. loglin freq  beh ris adv, fit( beh, ris, adv, beh ris)  
Variable beh = A 
Variable ris = B 
Variable adv = C 
Margins fit: beh, ris, adv, beh ris 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -29.197449 
Iteration 1: Log Likelihood = -27.87973 
Iteration 2: Log Likelihood = -27.862915 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(6)     =    14.977             Model chi2(5)    =  85.741 
Prob > chi2                 =    0.0204             Prob > chi2      =  0.0000 
Log Likelihood              =   -27.863             Pseudo R2        =  0.6061 
 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -1.974081   .4772606     -4.136   0.000      -2.909495   -1.038667 
    AB22 |   .6747982   .5777874      1.168   0.243      -.4576443    1.807241 
      B2 |   .2006706   .2247333      0.893   0.372      -.2397986    .6411397 
      C2 |   .8754688   .2380476      3.678   0.000        .408904    1.342034 
      C3 |  -.7339692   .3511884     -2.090   0.037      -1.422286   -.0456525 
   _cons |   2.227684   .2397259      9.293   0.000        1.75783    2.697538 
------------------------------------------------------------------------------ 
 

6. Model:  
log-frequency = BEH + RIS + ADV + BEH*ADV  
 
. loglin freq  beh ris adv, fit( beh, ris, adv, beh adv)  
Variable beh = A 
Variable ris = B 
Variable adv = C 
Margins fit: beh, ris, adv, beh adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -27.803162 
Iteration 1: Log Likelihood = -26.767899 
Iteration 2: Log Likelihood = -26.755905 
Iteration 3: Log Likelihood = -26.75589 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(5)     =    12.763             Model chi2(6)    =  87.955 
Prob > chi2                 =    0.0257             Prob > chi2      =  0.0000 
Log Likelihood              =   -26.756             Pseudo R2        =  0.6217 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -2.442347   .7372098     -3.313   0.001      -3.887252   -.9974425 
    AC22 |    .948422   .8091943      1.172   0.241      -.6375698    2.534414 
    AC23 |     1.7492   .9583727      1.825   0.068      -.1291761    3.627576 
      B2 |   .3117796   .2055417      1.517   0.129      -.0910747    .7146339 
      C2 |   .7563261   .2527576      2.992   0.003       .2609302    1.251722 
      C3 |  -1.056053    .410461     -2.573   0.010      -1.860542   -.2515639 
   _cons |   2.274355    .239915      9.480   0.000       1.804131     2.74458 
------------------------------------------------------------------------------ 
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7. Model:  
log-frequency = BEH + RIS + ADV + RIS*ADV  
 
. loglin freq  beh ris adv, fit( beh, ris, adv, ris adv)  
Variable beh = A 
Variable ris = B 
Variable adv = C 
Margins fit: beh, ris, adv, ris adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -24.179001 
Iteration 1: Log Likelihood = -23.173065 
Iteration 2: Log Likelihood = -23.154617 
Iteration 3: Log Likelihood = -23.154602 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(5)     =     5.560             Model chi2(6)    =  95.158 
Prob > chi2                 =    0.3514             Prob > chi2      =  0.0000 
Log Likelihood              =   -23.155             Pseudo R2        =  0.6726 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -1.548813   .2670647     -5.799   0.000       -2.07225   -1.025376 
      B2 |  -.7537718   .4287465     -1.758   0.079      -1.594099    .0865559 
    BC22 |    1.60107   .5130191      3.121   0.002       .5955706    2.606569 
    BC23 |   .7537717   .7191362      1.048   0.295      -.6557093    2.163253 
      C2 |   .0571586   .3381998      0.169   0.866      -.6057008    .7200179 
      C3 |  -1.041454   .4748581     -2.193   0.028      -1.972158    -.110749 
   _cons |   2.640529   .2470106     10.690   0.000       2.156397    3.124661 
------------------------------------------------------------------------------ 
 

8. Model:  
log-frequency = BEH + RIS + ADV  
 
. loglin freq  beh ris adv, fit( beh, ris, adv)  
Variable beh = A 
Variable ris = B 
Variable adv = C 
Margins fit: beh, ris, adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -30.132355 
Iteration 1: Log Likelihood = -28.606613 
Iteration 2: Log Likelihood = -28.584061 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(7)     =    16.419             Model chi2(4)    =  84.299 
Prob > chi2                 =    0.0216             Prob > chi2      =  0.0000 
Log Likelihood              =   -28.584             Pseudo R2        =  0.5959 
 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -1.548813   .2670646     -5.799   0.000       -2.07225   -1.025376 
      B2 |   .3117797   .2055417      1.517   0.129      -.0910746     .714634 
      C2 |   .8754688   .2380476      3.678   0.000       .4089041    1.342034 
      C3 |  -.7339691   .3511884     -2.090   0.037      -1.422286   -.0456525 
   _cons |   2.165052   .2372165      9.127   0.000       1.700117    2.629988 
------------------------------------------------------------------------------ 
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Summary results: 
Denoted BEH = 1, RIS = 2, and ADV = 3. 
 

Model Likelihood 
ratio Chi-

square  

Degree of 
freedom 

p-value 

    
All pairwise association    
1. u123 0.943 2 0.624 
    
Conditional independence    
2. u12 = u123 = 0 11.321 4 0.023 
3. u13 = u123 = 0 4.118 4 0.390 
4. u23 = u123 = 0 1.904 3 0.593 
    
Partial independence    
5. u12 = u13 = u123 = 0 14.977 6 0.020 
6. u12 = u23 = u123 = 0 12.763 5 0.026 
7. u12 = u23 = u123 = 0 5.560 5 0.351 
    
Complete independence    
8. u12 = u13 = u23 = u123 = 0 16.419 7 0.0216 
    
 
The model that fitted well to the data and yet less complicated 
is Model 7. It can also be expressed as  

 
log-frequency = BEH + RIS + ADV + RIS*ADV  
 

Comparing the two models that adequately fitted the data 
(Models 7 and 4) we have  

 
 2

4
2
7 GG −  = 5.560 - 1.904  =  3.656 

 with 5 - 3 = 2 df 
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Use Stata to find a p-value as follows: 
 
. disp chiprob(2, 3.656) 
.16073473 
 
Thus adding the term BEH*ADV to Model 7 did not improve 
the fit. This term can really be removed. 
 
We examine further by comparing Model 7 with Model 3 
 

  2
3

2
7 GG −  = 5.560 - 4.118  =  1.442 

 with 5 - 4 = 1 df ;  p-value = 0.230 
 
and Model 7 with Model 1 
 

 2
1

2
7 GG −  = 5.560 - 0.943  =  4.617 

 with 5 - 2 = 3 df;  p-value = 0.202 
 

Thus there was no need to add any other two-way interaction 
terms to Model 7 and it is the best model for describing the 
data. We can examine the residual from the output below.  
 
. loglin freq  beh ris adv, fit( beh, ris, adv, ris adv) resid 
Variable beh = A 
Variable ris = B 
Variable adv = C 
Margins fit: beh, ris, adv, ris adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -24.179001 
Iteration 1: Log Likelihood = -23.173065 
Iteration 2: Log Likelihood = -23.154617 
Iteration 3: Log Likelihood = -23.154602 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(5)     =     5.560             Model chi2(6)    =  95.158 
Prob > chi2                 =    0.3514             Prob > chi2      =  0.0000 
Log Likelihood              =   -23.155             Pseudo R2        =  0.6726 
 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -1.548813   .2670647     -5.799   0.000       -2.07225   -1.025376 
      B2 |  -.7537718   .4287465     -1.758   0.079      -1.594099    .0865559 
    BC22 |    1.60107   .5130191      3.121   0.002       .5955706    2.606569 
    BC23 |   .7537717   .7191362      1.048   0.295      -.6557093    2.163253 
      C2 |   .0571586   .3381998      0.169   0.866      -.6057008    .7200179 
      C3 |  -1.041454   .4748581     -2.193   0.028      -1.972158    -.110749 
   _cons |   2.640529   .2470106     10.690   0.000       2.156397    3.124661 
------------------------------------------------------------------------------ 
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freq  beh  ris  adv   cellhat    resid   stdres   
 16    1    1    1    14.021    1.979    0.529   
 15    1    1    2    14.845    0.155    0.040   
  5    1    1    3     4.948    0.052    0.023   
  7    1    2    1     6.598    0.402    0.157   
 34    1    2    2    34.639   -0.639   -0.109   
  3    1    2    3     4.948   -1.948   -0.876   
  1    2    1    1     2.979   -1.979   -1.147   
  3    2    1    2     3.155   -0.155   -0.087   
  1    2    1    3     1.052   -0.052   -0.050   
  1    2    2    1     1.402   -0.402   -0.340   
  8    2    2    2     7.361    0.639    0.236   
  3    2    2    3     1.052    1.948    1.900   
 

 

 

Conclusions: 

The model with only one interaction term, i.e., risk index and 
adversity of school condition, fit the data adequately (p-value 
= 0.351). This is a partial independence model. It is implied 
that there is an association between the two  variables whilst 
the behavior is completely independent. Therefore, behavior 
can be omitted from the table. The two-way contingency table 
of risk index and adversity of school condition is sufficient to 
describe this data. That is, from the following table 
 
 
 

Adversity of school condition  
Low Medium High 

Risk index Not 
at 

risk 

At 
risk 

Not 
at 

risk 

At 
risk 

Not 
at 

risk 

At 
risk 

 
 

Total 

Not deviant 16 7 15 34 5 3 80 Behavior 
Deviant 1 1 3 8 1 3 17 

Total 17 8 18 42 6 6 97 
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then we can get a simpler table shown below. 
 

Adversity of school condition  
Low Medium High 

Total 

Not at 
risk 

17 18 6 41 Risk index 

At risk 8 42 6 56 
Total 25 60 12 97 

 
From this table, we can analyze the data using approaches for 
analysis of a 2-by-C Table presented in Chapter 3. 
 
We might examine further whether or not behavior can be 
disregarded, i.e., examining for collapsibility. Notice that the 
coefficient of RIS*ADV in the models with and without BEH, 
in ovals respectively, are almost identical. This suggested that 
the measure of association between risk index and adversity of 
school condition was not affected by whether or not behavior 
was accounted for. 
 
. loglin freq  beh ris adv, fit( beh, ris, adv, ris adv) 
Variable beh = A 
Variable ris = B 
Variable adv = C 
Margins fit: beh, ris, adv, ris adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -24.179001 
Iteration 1: Log Likelihood = -23.173065 
Iteration 2: Log Likelihood = -23.154617 
Iteration 3: Log Likelihood = -23.154602 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(5)     =     5.560             Model chi2(6)    =  95.158 
Prob > chi2                 =    0.3514             Prob > chi2      =  0.0000 
Log Likelihood              =   -23.155             Pseudo R2        =  0.6726 
 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -1.548813   .2670647     -5.799   0.000       -2.07225   -1.025376 
      B2 |  -.7537718   .4287465     -1.758   0.079      -1.594099    .0865559 
    BC22 |    1.60107   .5130191      3.121   0.002       .5955706    2.606569 
    BC23 |   .7537717   .7191362      1.048   0.295      -.6557093    2.163253 
      C2 |   .0571586   .3381998      0.169   0.866      -.6057008    .7200179 
      C3 |  -1.041454   .4748581     -2.193   0.028      -1.972158    -.110749 
   _cons |   2.640529   .2470106     10.690   0.000       2.156397    3.124661 
------------------------------------------------------------------------------ 
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. loglin freq  ris adv, fit(ris, adv, ris adv) 
Variable ris = A 
Variable adv = B 
Margins fit: ris, adv, ris adv 
Note: Regression-like constraints are assumed.  The first level of each 
variable (and all iteractions with it) will be dropped from estimation. 
 
Iteration 0: Log Likelihood = -50.343819 
Iteration 1: Log Likelihood = -45.486633 
Iteration 2: Log Likelihood = -45.369843 
Iteration 3: Log Likelihood = -45.369675 
 
Poisson regression                                  Number of obs    =      12 
Goodness-of-fit chi2(6)     =    49.990             Model chi2(5)    =  50.728 
Prob > chi2                 =    0.0000             Prob > chi2      =  0.0000 
Log Likelihood              =   -45.370             Pseudo R2        =  0.3586 
 
------------------------------------------------------------------------------ 
    freq |      Coef.   Std. Err.       z     P>|z|       [95% Conf. Interval] 
---------+-------------------------------------------------------------------- 
      A2 |  -.7537717   .4287465     -1.758   0.079      -1.594099    .0865559 
    AB22 |   1.601069   .5130191      3.121   0.002       .5955705    2.606568 
    AB23 |   .7537718   .7191362      1.048   0.295      -.6557093    2.163253 
      B2 |   .0571586   .3381998      0.169   0.866      -.6057008     .720018 
      B3 |  -1.041454   .4748581     -2.193   0.028      -1.972159   -.1107491 
   _cons |   2.140066   .2425356      8.824   0.000       1.664705    2.615427 
------------------------------------------------------------------------------ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


