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This introduction to logistic regression describes the reasons for the popu-
larity of the logistic model, the model form, how the model may be applied,
and several of its key features, particularly how an odds ratio can be derived
and computed for this model.

As preparation for this chapter, the reader should have some familiarity
with the concept of a mathematical model, particularly a multiple-regres-
sion-type model involving independent variables and a dependent variable.
Although knowledge of basic concepts of statistical inference is not
required, the learner should be familiar with the distinction between popu-
lation and sample, and the concept of a parameter and its estimate.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

I. The multivariable problem (pages 4–5)

II. Why is logistic regression popular? (pages 5–7)

III. The logistic model (pages 7–8)

IV. Applying the logistic model formula (pages 9–11)

V. Study design issues (pages 11–15)

VI. Risk ratios versus odds ratios (pages 15–16)

VII. Logit transformation (pages 16–22)

VIII. Derivation of OR formula (pages 22–25)

IX. Example of OR computation (pages 25–26)

X. Special case for (0, 1) variables (pages 27–28)
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Upon completing this chapter, the learner should be able to:

1. Recognize the multivariable problem addressed by logistic regression
in terms of the types of variables considered.

2. Identify properties of the logistic function that explain its popularity.
3. State the general formula for the logistic model and apply it to spe-

cific study situations.
4. Compute the estimated risk of disease development for a specified set

of independent variables from a fitted logistic model.
5. Compute and interpret a risk ratio or odds ratio estimate from a fitted

logistic model.
6. Identify the extent to which the logistic model is applicable to follow-

up, case-control, and/or cross-sectional studies.
7. Identify the conditions required for estimating a risk ratio using a

logistic model.
8. Identify the formula for the logit function and apply this formula to

specific study situations.
9. Describe how the logit function is interpretable in terms of an “odds.”

10. Interpret the parameters of the logistic model in terms of log odds.
11. Recognize that to obtain an odds ratio from a logistic model, you

must specify X for two groups being compared.
12. Identify two formulae for the odds ratio obtained from a logistic

model.
13. State the formula for the odds ratio in the special case of (0, 1) vari-

ables in a logistic model.
14. Describe how the odds ratio for (0, 1) variables is an “adjusted” odds

ratio.
15. Compute the odds ratio, given an example involving a logistic model

with (0, 1) variables and estimated parameters.
16. State a limitation regarding the types of variables in the model for use

of the odds ratio formula for (0, 1) variables.
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This presentation focuses on the basic features of
logistic regression, a popular mathematical modeling
procedure used in the analysis of epidemiologic data.
We describe the form and key characteristics of the
model. Also, we demonstrate the applicability of logis-
tic modeling in epidemiologic research.

We begin by describing the multivariable problem fre-
quently encountered in epidemiologic research. A typ-
ical question of researchers is: What is the relationship
of one or more exposure (or study) variables (E) to a
disease or illness outcome (D)?

To illustrate, we will consider a dichotomous disease
outcome with 0 representing not diseased and 1 rep-
resenting diseased. The dichotomous disease outcome
might be, for example, coronary heart disease (CHD)
status, with subjects being classified as either 0 (“with-
out CHD”) or 1 (“with CHD”).

Suppose, further, that we are interested in a single
dichotomous exposure variable, for instance, smoking
status, classified as “yes” or “no.” The research question
for this example is, therefore, to evaluate the extent to
which smoking is associated with CHD status.

To evaluate the extent to which an exposure, like
smoking, is associated with a disease, like CHD, we
must often account or “control for” additional vari-
ables, such as age, race, and/or sex, which are not of
primary interest. We have labeled these three control
variables as C1, C2, and C3.

In this example, the variable E (the exposure variable),
together with C1, C2, and C3 (the control variables),
represent a collection of independent variables that
we wish to use to describe or predict the dependent
variable D.
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More generally, the independent variables can be
denoted as X1, X2, and so on up to Xk where k is the
number of variables being considered.

We have a flexible choice for the X’s, which can represent
any collection of exposure variables, control variables, or
even combinations of such variables of interest.

For example, we may have:

X1 equal to an exposure variable E
X2 and X3 equal to control variables C1 and C2,

respectively
X4 equal to the product E�C1
X5 equal to the product C1�C2
X6 equal to E2

Whenever we wish to relate a set of X’s to a dependent
variable, like D, we are considering a multivariable
problem. In the analysis of such a problem, some kind
of mathematical model is typically used to deal with
the complex interrelationships among many variables.

Logistic regression is a mathematical modeling approach
that can be used to describe the relationship of several X’s
to a dichotomous dependent variable, such as D.

Other modeling approaches are possible also, but
logistic regression is by far the most popular modeling
procedure used to analyze epidemiologic data when
the illness measure is dichotomous. We will show why
this is true.

To explain the popularity of logistic regression, we
show here the logistic function, which describes the
mathematical form on which the logistic model is
based. This function, called f(z), is given by 1 over 1
plus e to the minus z. We have plotted the values of this
function as z varies from �� to ��.
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Notice, in the balloon on the left side of the graph, that
when z is ��, the logistic function f(z) equals 0.

On the right side, when z is ��, then f(z) equals 1.

Thus, as the graph describes, the range of f(z) is
between 0 and 1, regardless of the value of z.

The fact that the logistic function f(z) ranges between
0 and 1 is the primary reason the logistic model is so
popular. The model is designed to describe a probabil-
ity, which is always some number between 0 and 1. In
epidemiologic terms, such a probability gives the risk
of an individual getting a disease.

The logistic model, therefore, is set up to ensure that
whatever estimate of risk we get, it will always be some
number between 0 and 1. Thus, for the logistic model,
we can never get a risk estimate either above 1 or
below 0. This is not always true for other possible mod-
els, which is why the logistic model is often the first
choice when a probability is to be estimated.

Another reason why the logistic model is popular
derives from the shape of the logistic function. As
shown in the graph, if we start at z= �� and move to
the right, then as z increases, the value of f(z) hovers
close to zero for a while, then starts to increase dra-
matically toward 1, and finally levels off around 1 as z
increases toward ��. The result is an elongated, S-
shaped picture.
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The S-shape of the logistic function appeals to epidemi-
ologists if the variable z is viewed as representing an
index that combines contributions of several risk fac-
tors, and f(z) represents the risk for a given value of z.

Then, the S-shape of f(z) indicates that the effect of z on
an individual’s risk is minimal for low z’s until some
threshold is reached. The risk then rises rapidly over a
certain range of intermediate z values, and then remains
extremely high around 1 once z gets large enough.

This threshold idea is thought by epidemiologists to
apply to a variety of disease conditions. In other words,
an S-shaped model is considered to be widely applica-
ble for considering the multivariable nature of an epi-
demiologic research question.

Now, let’s go from the logistic function to the model,
which is our primary focus.

To obtain the logistic model from the logistic function,
we write z as the linear sum � plus �1 times X1 plus �2
times X2, and so on to �k times Xk, where the X’s are
independent variables of interest and � and the �i are
constant terms representing unknown parameters.

In essence, then, z is an index that combines the X’s.

We now substitute the linear sum expression for z in
the right-hand side of the formula for f(z) to get the
expression f(z) equals 1 over 1 plus e to minus the
quantity � plus the sum of �iXi for i ranging from 1 to
k. Actually, to view this expression as a mathematical
model, we must place it in an epidemiologic context.

z����1	1��2	2�…��k	k
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The logistic model considers the following general epi-
demiologic study framework: We have observed
independent variables X1, X2, and so on up to Xk on a
group of subjects, for whom we have also determined
disease status, as either 1 if “with disease” or 0 if “with-
out disease.”

We wish to use this information to describe the proba-
bility that the disease will develop during a defined
study period, say T0 to T1, in a disease-free individual
with independent variable values X1, X2, up to Xk
which are measured at T0.

The probability being modeled can be denoted by 
the conditional probability statement P(D=1⎥ X1, X2,
. . . , Xk).

The model is defined as logistic if the expression for
the probability of developing the disease, given the X’s,
is 1 over 1 plus e to minus the quantity � plus the sum
from i equals 1 to k of �i times Xi.

The terms � and �i in this model represent unknown
parameters that we need to estimate based on data
obtained on the X’s and on D (disease outcome) for a
group of subjects.

Thus, if we knew the parameters � and the �i and we
had determined the values of X1 through Xk for a par-
ticular disease-free individual, we could use this for-
mula to plug in these values and obtain the probability
that this individual would develop the disease over
some defined follow-up time interval.

For notational convenience, we will denote the proba-
bility statement P(D=1 ⎥ X1, X2, . . . , Xk) as simply P(X)
where the bold X is a shortcut notation for the collec-
tion of variables X1 through Xk.

Thus, the logistic model may be written as P(X) equals
1 over 1 plus e to minus the quantity � plus the sum
�iXi.
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To illustrate the use of the logistic model, suppose the
disease of interest is D equals CHD. Here CHD is coded
1 if a person has the disease and 0 if not.

We have three independent variables of interest:
X1=CAT, X2=AGE, and X3=ECG. CAT stands for cate-
cholamine level and is coded 1 if high and 0 if low, AGE
is continuous, and ECG denotes electrocardiogram sta-
tus and is coded 1 if abnormal and 0 if normal.

We have a data set of 609 white males on which we
measured CAT, AGE, and ECG at the start of study.
These people were then followed for 9 years to deter-
mine CHD status.

Suppose that in the analysis of this data set, we con-
sider a logistic model given by the expression shown
here.

We would like to “fit” this model; that is, we wish to
use the data set to estimate the unknown parameters �,
�1, �2, and �3.

Using common statistical notation, we distinguish the
parameters from their estimators by putting a hat
symbol on top of a parameter to denote its estimator.
Thus, the estimators of interest here are � “hat,” �1
“hat,” �2 “hat,” and �3 “hat.”

The method used to obtain these estimates is called
maximum likelihood (ML). In two later chapters
(Chapters 4 and 5), we describe how the ML method
works and how to test hypotheses and derive confi-
dence intervals about model parameters.

Suppose the results of our model fitting yield the esti-
mated parameters shown on the left.
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Our fitted model thus becomes  (X) equals 1 over 1
plus e to minus the linear sum �3.911 plus 0.652 times
CAT plus 0.029 times AGE plus 0.342 times ECG. We
have replaced P by   on the left-hand side of the for-
mula because our estimated model will give us an esti-
mated probability, not the exact probability.

Suppose we want to use our fitted model, to obtain the
predicted risk for a certain individual.

To do so, we would need to specify the values of the
independent variables (CAT, AGE, ECG) for this indi-
vidual, and then plug these values into the formula for
the fitted model to compute the estimated probability,
P̂ for this individual. This estimate is often called a
“predicted risk,” or simply “risk.”

To illustrate the calculation of a predicted risk, sup-
pose we consider an individual with CAT=1, AGE=40,
and ECG=0.

Plugging these values into the fitted model gives us 1
over 1 plus e to minus the quantity �3.911 plus 0.652
times 1 plus 0.029 times 40 plus 0.342 times 0. This
expression simplifies to 1 over 1 plus e to minus the
quantity �2.101, which further reduces to 1 over 1 plus
8.173, which yields the value 0.1090.

Thus, for a person with CAT=1, AGE=40, and ECG=0,
the predicted risk obtained from the fitted model is
0.1090. That is, this person’s estimated risk is about 11%.

Here, for the same fitted model, we compare the pre-
dicted risk of a person with CAT=1, AGE=40, and
ECG=0 with that of a person with CAT=0, AGE=40,
and ECG=0.

We previously computed the risk value of 0.1090 for
the first person. The second probability is computed
the same way, but this time we must replace CAT=1
with CAT=0. The predicted risk for this person turns
out to be 0.0600. Thus, using the fitted model, the per-
son with a high catecholamine level has an 11% risk
for CHD, whereas the person with a low catecholamine
level has a 6% risk for CHD over the period of follow-
up of the study.
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Note that, in this example, if we divide the predicted risk
of the person with high catecholamine by that of the
person with low catecholamine, we get a risk ratio esti-
mate, denoted by RR, of 1.82. Thus, using the fitted
model, we find that the person with high CAT has
almost twice the risk of the person with low CAT,
assuming both persons are of AGE 40 and have no pre-
vious ECG abnormality.

We have just seen that it is possible to use a logistic model
to obtain a risk ratio estimate that compares two types of
individuals. We will refer to the approach we have illus-
trated above as the direct method for estimating RR.

Two conditions must be satisfied to estimate RR
directly. First, we must have a follow-up study so that
we can legitimately estimate individual risk. Second, for
the two individuals being compared, we must specify
values for all the independent variables in our fitted
model to compute risk estimates for each individual.

If either of the above conditions is not satisfied, then
we cannot estimate RR directly. That is, if our study
design is not a follow-up study or if some of the X’s are
not specified, we cannot estimate RR directly.
Nevertheless, it may be possible to estimate RR indi-
rectly. To do this, we must first compute an odds
ratio, usually denoted as OR, and we must make some
assumptions that we will describe shortly.

In fact, the odds ratio (OR), not the risk ratio (RR), is
the only measure of association directly estimated from
a logistic model (without requiring special assumptions),
regardless of whether the study design is follow-up, case-
control, or cross-sectional. To see how we can use the
logistic model to get an odds ratio, we need to look more
closely at some of the features of the model.

An important feature of the logistic model is that it is
defined with a follow-up study orientation. That is,
as defined, this model describes the probability of
developing a disease of interest expressed as a function
of independent variables presumed to have been mea-
sured at the start of a fixed follow-up period. For this
reason, it is natural to wonder whether the model can
be applied to case-control or cross-sectional studies.
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The answer is yes: logistic regression can be applied to
study designs other than follow-up.

Two papers, one by Breslow and Day in 1981 and the
other by Prentice and Pike in 1979 have identified
certain “robust” conditions under which the logistic
model can be used with case-control data. “Robust”
means that the conditions required, which are quite
complex mathematically and equally as complex to
verify empirically, apply to a large number of data sit-
uations that actually occur.

The reasoning provided in these papers carries over to
cross-sectional studies also, though this has not been
explicitly demonstrated in the literature.

In terms of case-control studies, it has been shown
that even though cases and controls are selected first,
after which previous exposure status is determined,
the analysis may proceed as if the selection process
were the other way around, as in a follow-up study.

In other words, even with a case-control design, one
can pretend, when doing the analysis, that the depen-
dent variable is disease outcome and the independent
variables are exposure status plus any covariates of
interest. When using a logistic model with a case-con-
trol design, you can treat the data as if it came from a
follow-up study, and still get a valid answer.

Although logistic modeling is applicable to case-con-
trol and cross-sectional studies, there is one important
limitation in the analysis of such studies. Whereas in
follow-up studies, as we demonstrated earlier, a fitted
logistic model can be used to predict the risk for an
individual with specified independent variables, this
model cannot be used to predict individual risk for
case-control or cross-sectional studies. In fact, only
estimates of odds ratios can be obtained for case-con-
trol and cross-sectional studies.
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The fact that only odds ratios, not individual risks, can
be estimated from logistic modeling in case-control or
cross-sectional studies is not surprising. This phenom-
enon is a carryover of a principle applied to simpler
data analysis situations, in particular, to the simple
analysis of a 2�2 table, as shown here.

For a 2�2 table, risk estimates can be used only if the
data derive from a follow-up study, whereas only odds
ratios are appropriate if the data derive from a case-
control or cross-sectional study.

To explain this further, recall that for 2�2 tables, the
odds ratio is calculated as ÔR equals a times d over b
times c, where a, b, c, and d are the cell frequencies
inside the table.

In case-control and cross-sectional studies, this OR
formula can alternatively be written, as shown here, as
a ratio involving probabilities for exposure status con-
ditional on disease status.

In this formula, for example, the term (E=1⎥ D=1) is
the estimated probability of being exposed, given that
you are diseased. Similarly, the expression (E=1⎥
D=0) is the estimated probability of being exposed
given that you are not diseased. All the probabilities in
this expression are of the general form P(E⎥ D).

In contrast, in follow-up studies, formulae for risk esti-
mates are of the form P(D⎥ E), in which the exposure
and disease variables have been switched to the oppo-
site side of the “given” sign.

For example, the risk ratio formula for follow-up stud-
ies is shown here. Both the numerator and denomina-
tor in this expression are of the form P(D⎥ E).

P̂

P̂
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Thus, in case-control or cross-sectional studies, risk
estimates cannot be estimated because such estimates
require conditional probabilities of the form P(D⎥E),
whereas only estimates of the form P(E⎥D) are possi-
ble. This classic feature of a simple analysis also car-
ries over to a logistic analysis.

There is a simple mathematical explanation for why
predicted risks cannot be estimated using logistic
regression for case-control studies. To see this, we con-
sider the parameters � and the �’s in the logistic model.
To get a predicted risk P̂(X) from fitting this model, we
must obtain valid estimates of � and the �’s, these esti-
mates being denoted by “hats” over the parameters in
the mathematical formula for the model.

When using logistic regression for case-control data,
the parameter � cannot be validly estimated without
knowing the sampling fraction of the population.
Without having a “good” estimate of �, we cannot
obtain a good estimate of the predicted risk P̂ (X)
because �̂ is required for the computation.

In contrast, in follow-up studies, � can be estimated
validly, and, thus, P(X) can also be estimated.

Now, although � cannot be estimated from a case-con-
trol or cross-sectional study, the �’s can be estimated
from such studies. As we shall see shortly, the �’s pro-
vide information about odds ratios of interest. Thus,
even though we cannot estimate � in such studies, and
therefore cannot obtain predicted risks, we can, never-
theless, obtain estimated measures of association in
terms of odds ratios.

Note that if a logistic model is fit to case-control data,
most computer packages carrying out this task will
provide numbers corresponding to all parameters
involved in the model, including �. This is illustrated
here with some fictitious numbers involving three vari-
ables, X1, X2, and X3. These numbers include a value
corresponding to �, namely, �4.5, which corresponds
to the constant on the list.

ˆ
ˆ ˆP X( ) =

+
−⎛

⎝
⎞
⎠

1

1 e
+ iXiα Σβ

estimates

Case control:

⇒ (X)P̂α̂

ˆ ˆ

Follow-up:

⇒ (X)P̂α̂

Case-control and cross-sectional:

✓ �i, OR

Case-control or cross-sectional studies: 
P(D⎥ E)

✓ P(E⎥ D) ⇒ risk

EXAMPLE

Printout

Variable Coefficient

constant �4.50 = �

X1 0.70 = �1

X2 0.05 = �2

X3 0.42 = �3

�

ˆ

ˆ

ˆ

ˆ



However, according to mathematical theory, the value
provided for the constant does not really estimate �. In
fact, this value estimates some other parameter of no
real interest. Therefore, an investigator should be fore-
warned that, even though the computer will print out a
number corresponding to the constant �, the number
will not be an appropriate estimate of � in case-control
or cross-sectional studies.

The use of an odds ratio estimate may still be of some
concern, particularly when the study is a follow-up
study. In follow-up studies, it is commonly preferred to
estimate a risk ratio rather than an odds ratio.

We previously illustrated that a risk ratio can be esti-
mated for follow-up data provided all the independent
variables in the fitted model are specified. In the exam-
ple, we showed that we could estimate the risk ratio for
CHD by comparing high catecholamine persons (that
is, those with CAT=1) to low catecholamine persons
(those with CAT=0), given that both persons were 40
years old and had no previous ECG abnormality. Here,
we have specified values for all the independent vari-
ables in our model, namely, CAT, AGE, and ECG, for
the two types of persons we are comparing.
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SUMMARY We have described that the logistic model can be
applied to case-control and cross-sectional data, even
though it is intended for a follow-up design. When
using case-control or cross-sectional data, however, a
key limitation is that you cannot estimate risks like 
P̂ (X), even though you can still obtain odds ratios.
This limitation is not extremely severe if the goal of the
study is to obtain a valid estimate of an exposure–
disease association in terms of an odds ratio.

Logistic Model P(X) OR

Follow-up ✓ ✓ ✓

Case-control ✓ X ✓

Cross-sectional ✓ X ✓

ˆ

OR

vs. follow-up study

RR ?
EXAMPLE

RR =
P CHD   CAT , AGE , ECG

P CHD   CAT , AGE , ECG

Model :

P
1 2 3CAT AGE ECG

ˆ

ˆ
= = = =( )
= = = =( )

( ) =
+ −( )

1 1 40 0

1 0 40 0

1

1
X

e + + +α β β β

EXAMPLE (repeated)

Printout

Variable Coefficient

constant �4.50 = �

X1 0.70 = �1

X2 0.05 = �2

X3 0.42 = �3

�

ˆ

ˆ

ˆ

ˆ

VI. Risk Ratios Versus Odds Ratios

ˆ



Nevertheless, it is more common to obtain an estimate
of a risk ratio or odds ratio without explicitly specify-
ing the control variables. In our example, for instance,
it is typical to compare high CAT with low CAT persons
keeping the control variables like AGE and ECG fixed
but unspecified. In other words, the question is typi-
cally asked, What is the effect of the CAT variable con-
trolling for AGE and ECG, considering persons who
have the same AGE and ECG regardless of the values of
these two variables?

When the control variables are generally considered to
be fixed, but unspecified, as in the last example, we
can use logistic regression to obtain an estimate of the
odds ratio directly, but we cannot estimate the risk
ratio. We can, however, stretch our interpretation to
obtain a risk ratio indirectly provided we are willing
to make certain assumptions. The key assumption
here is that the odds ratio provides a good approxima-
tion to the risk ratio.

From previous exposure to epidemiologic principles,
you may recall that one way to justify an odds ratio
approximation for a risk ratio is to assume that the dis-
ease is rare. Thus, if we invoke the rare disease
assumption, we can assume that the odds ratio esti-
mate from a logistic regression model approximates a
risk ratio.

If we cannot invoke the rare disease assumption, we
cannot readily claim that the odds ratio estimate
obtained from logistic modeling approximates a risk
ratio. The investigator, in this case, may have to review
the specific characteristics of the study before making
a decision. It may be necessary to conclude that the
odds ratio is a satisfactory measure of association in its
own right for the current study.

Having described why the odds ratio is the primary
parameter estimated when fitting a logistic regression
model, we now explain how an odds ratio is derived
and computed from the logistic model.
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Control variables unspecified:

OR directly

RR indirectly
provided OR ≈ RR

OR ≈ RR if rare disease

EXAMPLE (continued)

AGE uspecified but fixed

ECG unspecified but fixed

RR =
P CHD   CAT , AGE , ECG

P CHD   CAT , AGE , ECG

ˆ

ˆ
= = = =( )
= = = =( )

1 1 40 0

1 0 40 0

ˆ ˆ

ˆˆ
ˆ

ˆ

Rare disease OR RR
yes ✓ ✓
no ✓ ?

VII. Logit Transformation

OR: Derive and Compute

ˆ



To begin the description of the odds ratio in logistic
regression, we present an alternative way to write the
logistic model, called the logit form of the model. To
get the logit from the logistic model, we make a trans-
formation of the model.

The logit transformation, denoted as logit P(X), is
given by the natural log (i.e., to the base e) of the quan-
tity P(X) divided by one minus P(X), where P(X)
denotes the logistic model as previously defined.

This transformation allows us to compute a number,
called logit P(X), for an individual with independent
variables given by X. We do so by:

(1) computing P(X) and
(2) 1 minus P(X) separately, then
(3) dividing one by the other, and finally
(4) taking the natural log of the ratio.

For example, if P(X) is 0.110, then 

1 minus P(X) is 0.890, 

the ratio of the two quantities is 0.123, 

and the log of the ratio is �2.096.

That is, the logit of 0.110 is �2.096.

Now we might ask, what general formula do we get
when we plug the logistic model form into the logit
function? What kind of interpretation can we give
to this formula? How does this relate to an odds
ratio?

Let us consider the formula for the logit function. We
start with P(X), which is 1 over 1 plus e to minus the
quantity � plus the sum of the �iXi.
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Logit

logit P ln
P

P

where

P
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EXAMPLE

( )

( )

( ) .

( ) ln( . ) .

.

1

2

3 123

4 0 123 2 096

2 096

   P( ) = 0.110 

  1 P( ) = 0.890

  = 0

  ln

i.e., logit (0.110)
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Also, using some algebra, we can write 1�P(X) as:

e to minus the quantity � plus the sum of �iXi divided
by one over 1 plus e to minus � plus the sum of the 
�iXi.

If we divide P(X) by 1�P(X), then the denominators
cancel out,

and we obtain e to the quantity � plus the sum of the 
�iXi.

We then compute the natural log of the formula just
derived to obtain:

the linear sum � plus the sum of �i Xi.

Thus, the logit of P(X) simplifies to the linear sum
found in the denominator of the formula for P(X).

For the sake of convenience, many authors describe
the logistic model in its logit form rather than in its
original form as P(X). Thus, when someone describes
a model as logit P(X) equal to a linear sum, we should
recognize that a logistic model is being used.

Now, having defined and expressed the formula for the
logit form of the logistic model, we ask, where does the
odds ratio come in? As a preliminary step to answering
this question, we first look more closely at the definition
of the logit function. In particular, the quantity P(X)
divided by 1�P(X), whose log value gives the logit,
describes the odds for developing the disease for a per-
son with independent variables specified by X.

In its simplest form, an odds is the ratio of the proba-
bility that some event will occur over the probability
that the same event will not occur. The formula for an
odds is, therefore, of the form P divided by 1�P, where
P denotes the probability of the event of interest.
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For example, if P equals 0.25, then 1�P, the probabil-
ity of the opposite event, is 0.75 and the odds is 0.25
over 0.75, or one-third.

An odds of one-third can be interpreted to mean that
the probability of the event occurring is one-third the
probability of the event not occurring. Alternatively,
we can state that the odds are 3 to 1 that the event will
not happen.

The expression P(X) divided by 1�P(X) has essentially
the same interpretation as P over 1�P, which ignores
X.

The main difference between the two formulae is that
the expression with the X is more specific. That is, 
the formula with X assumes that the probabilities
describe the risk for developing a disease, that this risk
is determined by a logistic model involving indepen-
dent variables summarized by X, and that we are inter-
ested in the odds associated with a particular specifi-
cation of X.

Thus, the logit form of the logistic model, shown again
here, gives an expression for the log odds of develop-
ing the disease for an individual with a specific set 
of X’s.

And, mathematically, this expression equals � plus the
sum of the �i Xi.

As a simple example, consider what the logit becomes
when all the X’s are 0. To compute this, we need to
work with the mathematical formula, which involves
the unknown parameters and the X’s.

If we plug in 0 for all the X’s in the formula, we find
that the logit of P(X) reduces simply to �.

Because we have already seen that any logit can be
described in terms of an odds, we can interpret this
result to give some meaning to the parameter �.

One interpretation is that � gives the log odds for a
person with zero values for all X’s.
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EXAMPLE

1 ← event occurs
3 ← event does not occur

3 to 1 event will not happen

P

P
P

=

=
−

= =

0.25

odds
1

0.25
0.75

1
3

odds :
P

1 P
vs.

1

X

X
( )

− ( )
⎡

⎣
⎢

⎤

⎦
⎥ −

P
P

describes risk in
logistic model for
individual X

↑

logit P ln
P

1 P

log odds for individual 

X
X

X

X

( ) =
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− ( )
⎡

⎣
⎢

⎤

⎦
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=
= +

e

i iXα βΣ

EXAMPLE

all Xi = 0: logit P(X) = ?

logit P

logit P

X

X

( ) = +

( ) ⇒

α β

α

Σ i iX

INTERPRETATION

(1) � = log odds for individual with all
Xi = 0

0



A second interpretation is that � gives the log of the
background, or baseline, odds.

The first interpretation for �, which considers it as the
log odds for a person with 0 values for all X’s, has a
serious limitation: There may not be any person in the
population of interest with zero values on all the X’s.

For example, no subject could have zero values for nat-
urally occurring variables, like age or weight. Thus, it
would not make sense to talk of a person with zero val-
ues for all X’s.

The second interpretation for � is more appealing: to
describe it as the log of the background, or baseline,
odds.

By background odds, we mean the odds that would
result for a logistic model without any X’s at all.

The form of such a model is 1 over 1 plus e to minus �.
We might be interested in this model to obtain a base-
line risk or odds estimate that ignores all possible pre-
dictor variables. Such an estimate can serve as a start-
ing point for comparing other estimates of risk or odds
when one or more X’s are considered.

Because we have given an interpretation to �, can we
also give an interpretation to �i? Yes, we can, in terms
of either odds or odds ratios. We will turn to odds
ratios shortly.

With regard to the odds, we need to consider what hap-
pens to the logit when only one of the X’s varies while
keeping the others fixed.

For example, if our X’s are CAT, AGE, and ECG, we
might ask what happens to the logit when CAT changes
from 0 to 1, given an AGE of 40 and an ECG of 0.

To answer this question, we write the model in logit
form as � � �1CAT � �2AGE � �3ECG.

20 1. Introduction to Logistic Regression

EXAMPLE (continued)

(2) � = log of background odds

LIMITATION OF (1)
All Xi = 0 for any individual?

↓
AGE ≠ 0

WEIGHT ≠ 0

(2) � = log of background odds

DEFINITION OF (2)
background odds: ignores all X’s

model : P
1

1
X( ) =

+ −e α

� ✓
�i?

X1, X2, . . . , Xi, . . . , Xk
fixed          varies           fixed

EXAMPLE

CAT changes from 0 to 1;
AGE = 40, ECG = 0

fixed

}
logit P(X) = ���1CAT��2AGE��3ECG



The first expression below this model shows that when
CAT=1, AGE=40, and ECG=0, this logit reduces to � �
�1 � 40�2.

The second expression shows that when CAT=0, but
AGE and ECG remain fixed at 40 and 0, respectively,
the logit reduces to � � 40 �2.

If we subtract the logit for CAT=0 from the logit for
CAT=1, after a little arithmetic, we find that the differ-
ence is �1, the coefficient of the variable CAT.

Thus, letting the symbol � denote change, we see that
�1 represents the change in the logit that would result
from a unit change in CAT, when the other variables
are fixed.

An equivalent explanation is that �1 represents the
change in the log odds that would result from a one
unit change in the variable CAT when the other vari-
ables are fixed. These two statements are equivalent
because, by definition, a logit is a log odds, so that the
difference between two logits is the same as the differ-
ence between two log odds.

More generally, using the logit expression, if we focus
on any coefficient, say �L, for i=L, we can provide the
following interpretation:

�L represents the change in the log odds that would
result from a one unit change in the variable XL, when
all other X’s are fixed.
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EXAMPLE (continued)

(1)  CAT = 1, AGE = 40, ECG = 0
logit P(X) = ���11��240��30

= ���1�40�2

(2)  CAT = 0, AGE = 40, ECG = 0
logit P(X) = ���10��240��30

= ��40�2

logit P1(X) � logit P0(X)

= (���1�40�2) � (��40�2)

= �1

NOTATION

� = change

�1 = � logit

= � log odds
when � CAT = 1 
AGE and ECG fixed

logit P(X) = ��
�i Xi

i = L:

�L= � ln (odds)

when = � XL = 1, other X’s fixed

SUMMARY In summary, by looking closely at the expression for
the logit function, we provide some interpretation for
the parameters � and �i in terms of odds, actually log
odds.

logit P(X)

� = background �i = change in 
log odds log odds



Now, how can we use this information about logits to
obtain an odds ratio, rather than an odds? After all,
we are typically interested in measures of association,
like odds ratios, when we carry out epidemiologic
research.

Any odds ratio, by definition, is a ratio of two odds,
written here as odds1 divided by odds0, in which the
subscripts indicate two individuals or two groups of
individuals being compared.

Now we give an example of an odds ratio in which we
compare two groups, called group 1 and group 0.
Using our CHD example involving independent vari-
ables CAT, AGE, and ECG, group 1 might denote per-
sons with CAT=1, AGE=40, and ECG=0, whereas
group 0 might denote persons with CAT=0, AGE=40,
and ECG=0.

More generally, when we describe an odds ratio, the
two groups being compared can be defined in terms of
the bold X symbol, which denotes a general collection
of X variables, from 1 to k.

Let X1 denote the collection of X’s that specify group 1
and let X0 denote the collection of X’s that specify
group 0.

In our example, then, k, the number of variables,
equals 3, and

X is the collection of variables CAT, AGE, and ECG,
X1 corresponds to CAT=1, AGE=40, and ECG=0,

whereas
X0 corresponds to CAT=0, AGE=40 and ECG=0.

Notationally, to distinguish the two groups X1 and X0
in an odds ratio, we can write ORX1

, X0
equals the

odds for X1 divided by the odds for X0.

We will now apply the logistic model to this expression
to obtain a general odds ratio formula involving the
logistic model parameters.
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VIII. Derivation of OR Formula

?logit OR

OR =
odds1

odds0

EXAMPLE

(1)  CAT = 1, AGE = 40, ECG = 0

(0)  CAT = 0, AGE = 40, ECG = 0

X = (X1, X2, . . . , Xk)

(1) X1 = (X11, X12, . . . , X1k)

(0) X0 = (X01, X02, . . . , X0k)

EXAMPLE

X = (CAT, AGE, ECG)

(1) X1 = (CAT = 1, AGE = 40, ECG = 0)
(0) X0 = (CAT = 0, AGE = 40, ECG = 0)

NOTATION

OR
odds for 
odds for 1 0,

1

0
X X

X
X

=



Given a logistic model of the general form P(X),

we can write the odds for group 1 as P(X1) divided by
1�P(X1)

and the odds for group 0 as P(X0) divided by 1�P(X0).

To get an odds ratio, we then divide the first odds by
the second odds. The result is an expression for the
odds ratio written in terms of the two risks P(X1) and
P(X0), that is, P(X1) over 1�P(X1) divided by P(X0)
over 1�P(X0).

We denote this ratio as ROR, for risk odds ratio, as
the probabilities in the odds ratio are all defined as
risks. However, we still do not have a convenient 
formula.

Now, to obtain a convenient computational formula,
we can substitute the mathematical expression 1 over
1 plus e to minus the quantity (��
�iXi) for P(X) into
the risk odds ratio formula above.

For group 1, the odds P(X1) over 1�P(X1)  reduces
algebraically to e to the linear sum � plus the sum of �i
times X1i, where X1i denotes the value of the variable Xi
for group 1.

Similarly, the odds for group 0 reduces to e to the lin-
ear sum � plus the sum of �i times X0i, where X0i
denotes the value of variable Xi for group 0.

To obtain the ROR, we now substitute in the numera-
tor and denominator the exponential quantities just
derived to obtain e to the group 1 linear sum divided by
e to the group 0 linear sum.

The above expression is of the form e to the a divided by
e to the b, where a and b are linear sums for groups 1
and 0, respectively. From algebraic theory, it then fol-
lows that this ratio of two exponentials is equivalent to e
to the difference in exponents, or e to the a minus b.
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We then find that the ROR equals e to the difference
between the two linear sums.

In computing this difference, the �’s cancel out and the
�i’s can be factored for the ith variable.

Thus, the expression for ROR simplifies to the quan-
tity e to the sum �i times the difference between X1i
and X0i.

We thus have a general exponential formula for the
risk odds ratio from a logistic model comparing any
two groups of individuals, as specified in terms of X1
and X0. Note that the formula involves the �i’s but 
not �.

We can give an equivalent alternative to our ROR for-
mula by using the algebraic rule that says that the
exponential of a sum is the same as the product of the
exponentials of each term in the sum. That is, e to the
a plus b equals e to the a times e to the b.

More generally, e to the sum of zi equals the product 
of e to the zi over all i, where the zi’s denote any set of
values.

We can alternatively write this expression using the
product symbol �, where � is a mathematical notation
which denotes the product of a collection of terms.

Thus, using algebraic theory and letting zi correspond
to the term �i times (X1i � X0i),

we obtain the alternative formula for ROR as the
product from i=1 to k of e to the �i times the difference
(X1i � X0i)

That is, � of e to the �i times (X1i � X0i) equals e to the
�1 times (X11 � X01) multiplied by e to the �2 times (X12
� X02) multiplied by additional terms, the final term 

being e to the �k times (X1k � X0k).
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The product formula for the ROR, shown again here,
gives us an interpretation about how each variable in a
logistic model contributes to the odds ratio.

In particular, we can see that each of the variables Xi
contributes jointly to the odds ratio in a multiplicative
way.

For example, if 

e to the �i times (X1i � X0i) is 

3 for variable 2 and 

4 for variable 5, 

then the joint contribution of these two variables to the
odds ratio is 3 � 4, or 12.

Thus, the product or � formula for ROR tells us that,
when the logistic model is used, the contribution of the
variables to the odds ratio is multiplicative.

A model different from the logistic model, depending
on its form, might imply a different (for example, an
additive) contribution of variables to the odds ratio. An
investigator not willing to allow a multiplicative rela-
tionship may, therefore, wish to consider other models
or other OR formulae. Other such choices are beyond
the scope of this presentation.

Given the choice of a logistic model, the version of the
formula for the ROR, shown here as the exponential of
a sum, is the most useful for computational purposes.

For example, suppose the X’s are CAT, AGE, and ECG,
as in our earlier examples.

Also suppose, as before, that we wish to obtain an
expression for the odds ratio that compares the follow-
ing two groups: group 1 with CAT=1, AGE=40, and
ECG=0, and group 0 with CAT=0, AGE=40, and ECG=0.

For this situation, we let X1 be specified by CAT=1,
AGE=40, and ECG=0,
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ROR
1 0

1 0
,

1
X X = −( )

=
∏ e i i iX X

i

k
β

• Multiplicative

EXAMPLE

e X Xβ2 12 02 3−( ) =

e X Xβ5 15 05 4−( ) =

3 4 1× = 2

Logistic model ⇒ multiplicative
OR formula

Other models ⇒ other OR formulae

ROR
1 0

1 0
1,X X = −( )

=
∑e i i i

i

k
X Xβ

EXAMPLE

X = (CAT, AGE, ECG)
(1)  CAT = 1, AGE = 40, ECG = 0
(0)  CAT = 0, AGE = 40, ECG = 0

X1 = (CAT = 1, AGE = 40, ECG = 0)

IX. Example of OR Computation



and let X0 be specified by CAT=0, AGE=40, and
ECG=0.

Starting with the general formula for the ROR, we
then substitute the values for the X1 and X0 variables
in the formula.

We then obtain ROR equals e to the �1 times (1 � 0)
plus �2 times (40 � 40) plus �3 times (0 � 0).

The last two terms reduce to 0,

so that our final expression for the odds ratio is e to
the �1, where �1 is the coefficient of the variable CAT.

Thus, for our example, even though the model involves
the three variables CAT, ECG, and AGE, the odds ratio
expression comparing the two groups involves only the
parameter involving the variable CAT. Notice that of
the three variables in the model, the variable CAT is the
only variable whose value is different in groups 1 and
0. In both groups, the value for AGE is 40 and the value
for ECG is 0.

The formula e to the �1 may be interpreted, in the con-
text of this example, as an adjusted odds ratio. This is
because we have derived this expression from a logistic
model containing two other variables, namely, AGE,
and ECG, in addition to the variable CAT. Further-
more, we have fixed the values of these other two vari-
ables to be the same for each group. Thus, e to �1 gives
an odds ratio for the effect of the CAT variable
adjusted for AGE and ECG, where the latter two vari-
ables are being treated as control variables.

The expression e to the �1 denotes a population odds
ratio parameter because the term �1 is itself an
unknown population parameter.

An estimate of this population odds ratio would be
denoted by e to the �1. This term, �1, denotes an esti-
mate of �1 obtained by using some computer package
to fit the logistic model to a set of data.
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EXAMPLE (continued)

X0 = (CAT = 0, AGE = 40, ECG = 0)

ROR
1 0

1 0
1,X X = −( )

=
∑e i i i

i

k
X Xβ

= −( )+ −( )+ −( )eβ β β1 2 31 0 40 40 0 0

= + +eβ1 0 0

= eβ1

logit P CAT AGE ECG1 2 3X( ) = + + +α β β β
coefficient of CAT in

ROR
1 0

1
,X X = eβ

(1)  CAT = 1, AGE = 40, ECG = 0
(0)  CAT = 0, AGE = 40, ECG = 0

ROR
1 0,X X = eβ1

= an “adjusted” OR

AGE and ECG:

• fixed
• same
• control variables

e�1: population ROR

e�1: estimated RORˆ
ˆ ˆ



Our example illustrates an important special case of
the general odds ratio formula for logistic regression
that applies to (0, 1) variables. That is, an adjusted
odds ratio can be obtained by exponentiating the coef-
ficient of a (0, 1) variable in the model.

In our example, that variable is CAT, and the other two
variables, AGE and ECG, are the ones for which we
adjusted.

More generally, if the variable of interest is Xi, a (0, 1)
variable, then e to the �i, where �i is the coefficient of
Xi, gives an adjusted odds ratio involving the effect of
Xi adjusted or controlling for the remaining X variables
in the model.

Suppose, for example, our focus had been on ECG, also
a (0, 1) variable, instead of on CAT in a logistic model
involving the same variables CAT, AGE, and ECG.

Then e to the �3, where �3 is the coefficient of ECG,
would give the adjusted odds ratio for the effect of
ECG, controlling for CAT and AGE.

Note, however, that the example we have considered
involves only main effect variables, like CAT, AGE
and ECG, and that the model does not contain product
terms like CAT � AGE or AGE � ECG.
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X. Special Case for (0, 1)
Variables

Adjusted OR = e�

where � = coefficient of (0, 1) variable

EXAMPLE

logit P    CAT   AGE ECG1 2 3X( ) = + + +α β β β

adjusted

Xi(0, 1): adj. ROR = e�i

controlling   for other X’s

EXAMPLE

logit P CAT AGE    ECG1 2 3X( ) = + + +α β β β

adjusted

SUMMARY Thus, we can obtain an adjusted odds ratio for each
(0, 1) variable in the logistic model by exponentiating
the coefficient corresponding to that variable. This
formula is much simpler than the general formula for
ROR described earlier.

X e

e

i

X X

i

i i i
i

k

 is 0,  1 :  ROR

General OR formula :

ROR 1 0
1

( ) =

= −( )
=
∑

β

β

EXAMPLE

logit P CAT AGE ECG1 2 3X( ) = + + +α β β β

main effect variables

ECG (0, 1): adj. ROR = e�3

controlling for CAT and AGE



When the model contains product terms, like CAT �
AGE, or variables that are not (0, 1), like the continuous
variable AGE, the simple formula will not work if the
focus is on any of these variables. In such instances, we
must use the general formula instead.

This presentation is now complete. We suggest that
you review the material covered here by reading the
summary section. You may also want to do the prac-
tice exercises and the test which follows. Then con-
tinue to the next chapter entitled, “Important Special
Cases of the Logistic Model.”
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product terms
or

non-(0, 1) variables

general OR
formula

CAT AGE, AGE ECG× ×

e i i iX XΣβ 1 0−( )

AGE
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I. The multivariable problem (pages 4–5)
A. Example of a multivariate problem in epidemiologic research,

including the issue of controlling for certain variables in the
assessment of an exposure–disease relationship.

B. The general multivariate problem: assessment of the relationship
of several independent variables, denoted as X’s, to a dependent
variable, denoted as D.

C. Flexibility in the types of independent variables allowed in most
regression situations: A variety of variables is allowed.

D. Key restriction of model characteristics for the logistic model:
The dependent variable is dichotomous.

II. Why is logistic regression popular? (pages 5–7)
A. Description of the logistic function.
B. Two key properties of the logistic function: Range is between 0

and 1 (good for describing probabilities) and the graph of func-
tion is S-shaped (good for describing combined risk factor effect
on disease development).

III. The logistic model (pages 7–8)
A. Epidemiologic framework
B. Model formula: P(D = 1⎥ X1,..., Xk) = P(X)

= 1/{1 � exp[�(� � 
�iXi)]}.
IV. Applying the logistic model formula (pages 9–11)

A. The situation: independent variables CAT (0, 1), AGE (constant),
ECG (0, 1); dependent variable CHD(0, 1); fit logistic model to
data on 609 people.

B. Results for fitted model: estimated model parameters are 
=�3.911, 1(CAT)=0.65, 2(AGE)=0.029, and 3 (ECG)=0.342.

C. Predicted risk computations:
(X) for CAT=1, AGE=40, ECG=0: 0.1090, 
(X) for CAT=0, AGE=40, ECG=0: 0.0600.

D. Estimated risk ratio calculation and interpretation:
0.1090/0.0600=1.82.

E. Risk ratio (RR) vs. odds ratio (OR): RR computation requires
specifying all X’s; OR is more natural measure for logistic model.

V. Study design issues (pages 11–15)
A. Follow-up orientation.
B. Applicability to case-control and cross-sectional studies? Yes.
C. Limitation in case-control and cross-sectional studies: cannot

estimate risks, but can estimate odds ratios.
D. The limitation in mathematical terms: for case-control and cross-

sectional studies, cannot get a good estimate of the constant.

β̂β̂β̂α̂
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VI. Risk ratios versus odds ratios (pages 15–16)
A. Follow-up studies:

i. When all the variables in both groups compared are speci-
fied. [Example using CAT, AGE, and ECG comparing group 1
(CAT=1, AGE=40, ECG=0) with group 0 (CAT=0, AGE=40,
ECG=0).]

ii. When control variables are unspecified, but assumed fixed
and rare disease assumption is satisfied.

B. Case-control and cross-sectional studies: when rare disease
assumption is satisfied.

C. What if rare disease assumption is not satisfied? May need to
review characteristics of study to decide if the computed OR
approximates an RR.

VII. Logit transformation (pages 16–22)
A. Definition of the logit transformation:

logit P(X) = lne[P(X)/(1�P(X))].
B. The formula for the logit function in terms of the parameters of

the logistic model: logit P(X) = � � 
�iXi.
C. Interpretation of the logit function in terms of odds:

i. P(X)/[1�P(X)] is the odds of getting the disease for an indi-
vidual or group of individuals identified by X.

ii. The logit function describes the “log odds” for a person or
group specified by X.

D. Interpretation of logistic model parameters in terms of log odds:
i. � is the log odds for a person or group when all X’s are zero—

can be critiqued on grounds that there is no such person.
ii. A more appealing interpretation is that � gives the “back-

ground or baseline” log odds, where “baseline” refers to a
model that ignores all possible X’s.

iii. The coefficient �i represents the change in the log odds that
would result from a one unit change in the variable Xi when
all the other X’s are fixed.

iv. Example given for model involving CAT, AGE, and ECG: �1
is the change in log odds corresponding to one unit change in
CAT, when AGE and ECG are fixed.

VIII. Derivation of OR formula (pages 22–25)
A. Specifying two groups to be compared by an odds ratio: X1 and

X0 denote the collection of X’s for groups 1 and 0.
B. Example involving CAT, AGE, and ECG variables:

X1=(CAT=1, AGE=40, ECG=0), X0=(CAT=0, AGE=40, ECG=0).
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C. Expressing the risk odds ratio (ROR) in terms of P(X):

D. Substitution of the model form for P(X) in the above ROR for-
mula to obtain general ROR formula:
ROR=exp[
�i(X1i � X0i)] = �{exp[�i(X1i � X0i)]}

E. Interpretation from the product (�) formula: The contribution of
each Xi variable to the odds ratio is multiplicative.

IX. Example of OR computation (pages 25–26)
A. Example of ROR formula for CAT, AGE, and ECG example using

X1 and X0 specified in VIII B above:
ROR=exp(�1), where �1 is the coefficient of CAT.

B. Interpretation of exp(�1): an adjusted ROR for effect of CAT,
controlling for AGE and ECG.

X. Special case for (0, 1) variables (pages 27–28)
A. General rule for (0, 1) variables: If variable is Xi, then ROR for

effect of Xi controlling for other X’s in model is given by the for-
mula ROR=exp(�i), where �i is the coefficient of Xi.

B. Example of formula in A for ECG, controlling for CAT and AGE.
C. Limitation of formula in A: Model can contain only main effect

variables for X’s, and variable of focus must be (0, 1).

Key Formulae 31

[exp(a)=ea for any number a]

LOGISTIC FUNCTION: f(z)=1/[1�exp(�z)]

LOGISTIC MODEL: P(X)=1/{1�exp[�(��
�iXi)]}

LOGIT TRANSFORMATION: logit P(X)= ��
�iXi

RISK ODDS RATIO (general formula): 
RORX1, X0

: =exp[
�i(X1i � X0i)]=�{exp[�i(X1i � X0i)]}

RISK ODDS RATIO [(0, 1) variables]: ROR=exp(�i) for the effect of the
variable Xi adjusted for the other X’s

KEY FORMULAE

ROR
odds for 

odds for 

P 1 P

P 1 P
.

1

0

1 1

0 0

=
( )
( )

=
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( ) − ( )

X
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Suppose you are interested in describing whether social status, as measured
by a (0, 1) variable called SOC, is associated with cardiovascular disease
mortality, as defined by a (0, 1) variable called CVD. Suppose further that
you have carried out a 12-year follow-up study of 200 men who are 60 years
old or older. In assessing the relationship between SOC and CVD, you
decide that you want to control for smoking status [SMK, a (0, 1) variable]
and systolic blood pressure (SBP, a continuous variable).

In analyzing your data, you decide to fit two logistic models, each involving
the dependent variable CVD, but with different sets of independent vari-
ables. The variables involved in each model and their estimated coefficients
are listed below:

Model 1 Model 2

VARIABLE COEFFICIENT VARIABLE COEFFICIENT

CONSTANT �1.1800 CONSTANT �1.1900
SOC �0.5200 SOC �0.5000
SBP 0.0400 SBP 0.0100
SMK �0.5600 SMK �0.4200
SOC � SBP �0.0330
SOC � SMK 0.1750

1. For each of the models fitted above, state the form of the logistic model
that was used (i.e., state the model in terms of the unknown population
parameters and the independent variables being considered).

Model 1:

Model 2:

2. For each of the above models, state the form of the estimated model in
logit terms.

Model 1: logit P(X)=

Model 2: logit P(X)=
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3. Using Model 1, compute the estimated risk for CVD death (i.e., CVD=1)
for a high social class (SOC=1) smoker (SMK=1) with SBP=150. (You
will need a calculator to answer this. If you don’t have one, just state the
computational formula that is required, with appropriate variable val-
ues plugged in.)

4. Using Model 2, compute the estimated risk for CVD death for the fol-
lowing two persons:

Person 1: SOC=1, SMK=1, SBP=150.
Person 2: SOC=0, SMK=1, SBP=150.
(As with the previous question, if you don’t have a calculator, you may
just state the computations that are required.)

Person 1:

Person 2:

5. Compare the estimated risk obtained in Exercise 3 with that for person
1 in Exercise 4. Why aren’t the two risks exactly the same?

6. Using Model 2 results, compute the risk ratio that compares person 1
with person 2. Interpret your answer.

7. If the study design had been either case-control or cross-sectional,
could you have legitimately computed risk estimates as you did in the
previous exercises? Explain.

8. If the study design had been case-control, what kind of measure of asso-
ciation could you have legitimately computed from the above models?

9. For Model 2, compute and interpret the estimated odds ratio for the
effect of SOC, controlling for SMK and SBP? (Again, if you do not have
a calculator, just state the computations that are required.)
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10. Which of the following general formulae is not appropriate for comput-
ing the effect of SOC controlling for SMK and SBP in Model 1? (Circle
one choice.) Explain your answer.

a. exp(�S), where �S is the coefficient of SOC in model 1.
b. exp[
�i(X1i � X0i)].
c. �{exp[�i(X1i � X0i)]}.

True or False (Circle T or F)

T F 1. We can use the logistic model provided all the independent vari-
ables in the model are continuous.

T F 2. Suppose the dependent variable for a certain multivariable
analysis is systolic blood pressure, treated continuously. Then, a
logistic model should be used to carry out the analysis.

T F 3. One reason for the popularity of the logistic model is that the
range of the logistic function, from which the model is derived,
lies between 0 and 1.

T F 4. Another reason for the popularity of the logistic model is that the
shape of the logistic function is linear.

T F 5. The logistic model describes the probability of disease develop-
ment, i.e., risk for the disease, for a given set of independent 
variables.

T F 6. The study design framework within which the logistic model is
defined is a follow-up study.

T F 7. Given a fitted logistic model from case-control data, we can esti-
mate the disease risk for a specific individual.

T F 8. In follow-up studies, we can use a fitted logistic model to esti-
mate a risk ratio comparing two groups provided all the inde-
pendent variables in the model are specified for both groups.

T F 9. Given a fitted logistic model from a follow-up study, it is not pos-
sible to estimate individual risk as the constant term cannot be
estimated.

T F 10. Given a fitted logistic model from a case-control study, an odds
ratio can be estimated.

T F 11. Given a fitted logistic model from a case-control study, we can
estimate a risk ratio if the rare disease assumption is appropri-
ate.

T F 12. The logit transformation for the logistic model gives the log odds
ratio for the comparison of two groups.

T F 13. The constant term, �, in the logistic model can be interpreted as
a baseline log odds for getting the disease.
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T F 14. The coefficient �i in the logistic model can be interpreted as the
change in log odds corresponding to a one unit change in the
variable Xi that ignores the contribution of other variables.

T F 15. We can compute an odds ratio for a fitted logistic model by iden-
tifying two groups to be compared in terms of the independent
variables in the fitted model.

T F 16. The product formula for the odds ratio tells us that the joint con-
tribution of different independent variables to the odds ratio is
additive.

T F 17. Given a (0, 1) independent variable and a model containing only
main effect terms, the odds ratio that describes the effect of that
variable controlling for the others in the model is given by e to
the �, where � is the constant parameter in the model.

T F 18. Given independent variables AGE, SMK [smoking status (0, 1)],
and RACE (0, 1), in a logistic model, an adjusted odds ratio for
the effect of SMK is given by the natural log of the coefficient for
the SMK variable.

T F 19. Given independent variables AGE, SMK, and RACE, as before,
plus the product terms SMK � RACE and SMK � AGE, an
adjusted odds ratio for the effect of SMK is obtained by expo-
nentiating the coefficient of the SMK variable.

T F 20. Given the independent variables AGE, SMK, and RACE as in
Question 18, but with SMK coded as (1, �1) instead of (0, 1),
then e to the coefficient of the SMK variable gives the adjusted
odds ratio for the effect of SMK.

21. Which of the following is not a property of the logistic model? (Circle
one choice.)
a. The model form can be written as P(X)=1/{1�exp[�(��
�iXi)]},

where “exp{.}” denotes the quantity e raised to the power of the
expression inside the brackets.

b. logit P(X)=��
�iXi is an alternative way to state the model.
c. ROR=exp[
�i(X1i�X0i)] is a general expression for the odds ratio

that compares two groups of X variables.
d. ROR=�{exp[�i(X1i�X0i)]} is a general expression for the odds ratio

that compares two groups of X variables.
e. For any variable Xi, ROR=exp[�i], where �i is the coefficient of Xi,

gives an adjusted odds ratio for the effect of Xi.

Suppose a logistic model involving the variables D=HPT[hypertension status
(0, 1)], X1=AGE(continuous), X2=SMK(0, 1), X3=SEX(0, 1), X4=CHOL (cho-
lesterol level, continuous), and X5=OCC[occupation (0, 1)] is fit to a set of
data. Suppose further that the estimated coefficients of each of the variables
in the model are given by the following table:
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VARIABLE COEFFICIENT

CONSTANT �4.3200
AGE 0.0274
SMK 0.5859
SEX 1.1523
CHOL 0.0087
OCC �0.5309

22. State the form of the logistic model that was fit to these data (i.e., state
the model in terms of the unknown population parameters and the
independent variables being considered).

23. State the form of the estimated logistic model obtained from fitting the
model to the data set.

24. State the estimated logistic model in logit form.
25. Assuming the study design used was a follow-up design, compute the

estimated risk for a 40-year-old male (SEX=1) smoker (SMK=1) with
CHOL=200 and OCC=1. (You need a calculator to answer this question.)

26. Again assuming a follow-up study, compute the estimated risk for a 40-
year-old male nonsmoker with CHOL=200 and OCC=1. (You need a
calculator to answer this question.)

27. Compute and interpret the estimated risk ratio that compares the risk
of a 40-year-old male smoker to a 40-year-old male nonsmoker, both of
whom have CHOL=200 and OCC=1.

28. Would the risk ratio computation of Question 27 have been appropriate
if the study design had been either cross-sectional or case-control?
Explain.

29. Compute and interpret the estimated odds ratio for the effect of SMK
controlling for AGE, SEX, CHOL, and OCC. (If you do not have a cal-
culator, just state the computational formula required.)

30. What assumption will allow you to conclude that the estimate obtained
in Question 29 is approximately a risk ratio estimate?

31. If you could not conclude that the odds ratio computed in Question 29
is approximately a risk ratio, what measure of association is appropri-
ate? Explain briefly.

32. Compute and interpret the estimated odds ratio for the effect of OCC
controlling for AGE, SMK, SEX, and CHOL. (If you do not have a cal-
culator, just state the computational formula required.)

33. State two characteristics of the variables being considered in this
example that allow you to use the exp(�i) formula for estimating the
effect of OCC controlling for AGE, SMK, SEX, and CHOL.

34. Why can you not use the formula exp(�i) formula to obtain an adjusted
odds ratio for the effect of AGE, controlling for the other four variables?
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1. Model 1: P(X)=1/(1�exp{�[�1.18�0.52(SOC)�0.04(SBP)�0.56(SMK)
�0.033(SOC�SBP)�0.175(SOC�SMK)]}).

Model 2: P(X)=1/(1�exp{�[�1.19�0.50(SOC)�0.01(SBP)�0.42(SMK)]}).

2. Model 1: logit P(X) =�1.18�0.52(SOC)�0.04(SBP)�0.56(SMK)
�0.033(SOC�SBP)�0.175(SOC�SMK).

Model 2: logit P(X)=�1.19�0.50(SOC)�0.01(SBP)�0.42(SMK).

3. For SOC=1, SBP=150, and SMK=1,
X=(SOC, SBP, SMK, SOC�SBP, SOC�SMK)=(1, 150, 1, 150, 1) and

Model 1 P(X)=1/(1�exp{�[�1.18�0.52(1)�0.04(150)�0.56(1)
�0.033(1�150)�0.175(1�1)]}).

=1/{1�exp[�(�1.035)]}
=1/(1�2.815)
=0.262

4. For Model 2, person 1 (SOC=1, SMK=1, SBP=150):

P(X)=1/(1�exp{�[�1.19 � 0.50(1) � 0.01 (150) � 0.42(1)]})
=1/{1 � exp [� (�0.61)]}
=1/(1 � 1.84)
=0.352

For Model 2, person 2 (SOC=0, SMK=1, SBP=150):

P(X)=1/(1 � exp{�[�1.19 � 0.50(0) � 0.01(150) � 0.42(1)]})
=1/{1 � exp[�(�0.11)]}
=1/(1 � 1.116)
=0.473

5. The risk computed for Model 1 is 0.262, whereas the risk computed for
Model 2, person 1 is 0.352. Note that both risks are computed for the
same person (i.e., SOC=1, SMK=150, SBP=150), yet they yield different
values because the models are different. In particular, Model 1 contains
two product terms that are not contained in Model 2, and consequently,
computed risks for a given person can be expected to be somewhat dif-
ferent for different models.

Answers to Practice Exercises 37

Answers to
Practice
Exercises

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ



6. Using model 2 results,

P(SOC=0, SMK=1, SBP=150)

P(SOC=1, SMK=1, SBP=150)

= 0.352/0.473 = 1/1.34 = 0.744

This estimated risk ratio is less than 1 because the risk for high social
class persons (SOC=1) is less than the risk for low social class per-
sons (SOC=0) in this data set. More specifically, the risk for low
social class persons is 1.34 times as large as the risk for high social
class persons.

7. No. If the study design had been either case-control or cross-sectional,
risk estimates could not be computed because the constant term (�) in
the model could not be estimated. In other words, even if the com-
puter printed out values of �1.18 or �1.19 for the constant terms,
these numbers would not be legitimate estimates of �.

8. For case-control studies, only odds ratios, not risks or risk ratios, can
be computed directly from the fitted model.

9. OR(SOC=1 vs. SOC=0 controlling for SMK and SBP)

=e�, where �=�0.50 is the estimated coefficient of SOC in the fitted
model

=exp(�0.50)
=0.6065 = 1/1.65.

The estimated odds ratio is less than 1, indicating that, for this data
set, the risk of CVD death for high social class persons is less than the
risk for low social class persons. In particular, the risk for low social
class persons is estimated as 1.65 times as large as the risk for high
social class persons.

10. Choice (a) is not appropriate for the effect of SOC using model 1.
Model 1 contains interaction terms, whereas choice (a) is appropriate
only if all the variables in the model are main effect terms. Choices (b)
and (c) are two equivalent ways of stating the general formula for cal-
culating the odds ratio for any kind of logistic model, regardless of the
types of variables in the model.
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