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Module 4 Temporal Natural History Model in Cancer and  

Chronic Disease Screening  

 

4.1 The rationale to elucidate the disease natural history 

(A) The purpose of elucidation of disease natural history is to construct a 

pseudo-control group as in the RCT 

 

(B) Applications of natural history 

(a) Estimation of effectiveness and sample size determination before RCT 

(b) Screening interval determination 

(c) Age at start of termination of screening 

(d) Treatment-efficacy 

(e) Cost-effectiveness analysis 

 

(C) Opportunistic screening dominates over mass screening 

(a) Calibrating the survival benefit of screen-detected cancers (Chen et al., 

JASA, 2012) 

(b) Case-cohort design for the disease natural history (Chen et al., Stat 

Med, 2004) 
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4.2 Temporal natural history, sensitivity, and specificity 

 

4.2.1 Temporal natural history 

 

           X                           Y 

 

Born                      aged X                           aged X+Y 

  

Three key variables 

X (fixed for each subject): Age at time of entry into the PCDP  

Y (fixed for each subject): Dewelling time (Sojourn time) in the PCDP 

A (random variables): Age at participating screening 

 

X <= A < X+Y    Screen-detected case 

A >= X+Y      Clinically- detected case 

 

4.2.2 P/I (Prevalence/Incidence) ratio (Chang et al, Preventive Medicine 

2000) 

(1) Prevalence Pool: It is customary to use prevalence pool to denote this 

concept. 

                   Prevalence pool           

     Arrival rate, I                    Departure rate,    

 

Suppose a population with size N consists of m prevalent diabetes mellitus 

(DM) cases. In a cross-sectional survey, prevalence (P) is estimate as  
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          𝑃 =
𝑚

𝑁
 

In a steady population (i.e. inflow = outflow), we have the following balance 

equation in a small time inter (t) 

         𝐼 × (𝑁 − 𝑚) × ∆𝑡 = 𝜇 × 𝑚 × ∆𝑡 

             
𝑚

𝑁−𝑚
=

𝐼

𝜇
 

         If 𝑁 ≫ 𝑚, 𝑁 − 𝑚 ≅ 𝑁 

             𝑃 (𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) =
𝐼 (𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒)

𝜇
 

            
𝑃

𝐼
=

1

𝜇
= 𝐷̅  (Average Duration) 

 

(2) Usefulness: This indicator is used to denote the average duration of 

disease 

If 𝐷̅  is estimable,  can be estimated. We can estimate the survival 

function S(t) by applying an exponential distribution with the parameter of .  

      𝑆(𝑡) = 𝑒−𝜇𝑡 

Ex. In an example of type 2 DM, 𝐷̅=8 years, 𝜇̂ = 0.125 

      𝑆(𝑡) = 𝑒−0.125×𝑡 

(A) The probability of surviving during five years or a type 2 DM patients is 

𝑆(𝑡) = 𝑒−0.125×5 = 0.535 

(B) The mean time to have half of surviving population 

𝑡𝑀 =
0.693

0.125
= 5.544 years 
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4.2.3 Screening performance 

(A) Basic characteristic of screening performance 

 

  True disease, Y 

  1 (+) 0 (-) 

Test   X 1 (+) a b 

 0 (+) c d 

   

(Sensitivity) ( 1 | 1)
a

Sen P X Y
a c

   


 

  ( S p e c i f i c i t y ) ( 0 | 0 )
d

S p e P X Y
b d

   


 

  ( P o s i t i v e P r e d i c t i v e V a l u e ) ( 1 | 1 )
a

P P V P Y X
a b

   


 

  (  P r e d i c t i v e  V a l u e ) ( 0 | 0 )
d

N P V N e g a t i v e P Y X
c d

   


 

(  ) ( 0 | 1)
c

FN False negative P X Y
a c

   


 

(  ) ( 1 | 0)
b

FP False posotive P X Y
b d

   


 

 

(B) Bayesian Theorem for clinical reasoning    

 

Let Y represent true disease status (Y=1: Disease Y=0: non-disease) specified 

by a binomial distribution. Let X represent the result of test (X=1: positive; 

X=0:negative) also specified by a binomial distribution . The positive predictive 

value (PPV) is regarded as posterior probability    

 

P(Y=1|X=1) =  P(Y=1)    × P(X=1|Y=1)/(P(X=1)) 
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Epidemiological viewpoint:    PPV   α  Prevalence     Sensitivity  

Statistical viewpoint:       Posterior  α  Prior × likelihood 

 

P(X=1) is defined as marginal distribution that is irrelevant to true disease 

status and can be decomposed by total law of probability  

 

P(X=1)=P(Y=1) P(X=1|Y=1)+ P(Y=0) P(X=1|Y=0) 

      = P(Y=1) P(X=1|Y=1)+[1-P(Y=1)] P(X=1|Y=0) 

      =Prevalence×sensitivity+ (1-prevalence) ×(1-specificity) 

In terms of statistical viewpoint, P(X=1) is also called “normalizing constant” 

that renders the posterior probability range between 0 and 1. Note that the 

likelihood is not a probability and its value may be higher than 1.  

  

The posterior probability can be also expressed by posterior odds 

  

P(Y=1|X=1)/( P(Y=0|X=1) {posterior odds}=  

 [P(Y=1)/P(Y=0)] × [P(X=1|Y=1)/(P(X=1|Y=0)] 

                 {prior odds}     {sensitivity/(1-specificity=false positive)} 

 

Posterior Odds / prior odds= likelihood ratio (=sensitivity/(1-specificity))  

 

Prevalence and HPV test  

In a population with an HIV prevalence of 0.001 

                      HIV +    HIV – 

           Test   +    95       1998     2093 

           Test   -     5       97902    97909 
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                     100       99900    100,000 

 

Sen=0.95 Spe=0.98, LR=47.5, PPV=0.0454, Posterior odds =0.048; 

 

(D) Receiver operating characteristics (ROC)  

The ROC curve is a very useful indicator for assessing the accuracy of clinical 

diagnosis. The larger the area under curve AUC), the more accurate the test is.   

The curve is delineated by the following curve  

 Y-axis: Posterior probability or sensitivity   

X:Prior probability  

 

P(Y=1|X=1) is highly dependent on P(Y=1). P(Y=1)   P(Y=1|X=1) 。 

When P(Y=1|X=1) = P(Y=1), the posterior probability is equivalent to the prior 

probability (the angle of the linear line is 450) , the test is useless. 

The ROC curve is also used to identify the optimal cutoff given the test is 

based on a continuous variable such as cholesterol, hypertension etc. The 

optimal cutoff  

Prior probability (P (Y=1)) or 1-specificity 

Posterior      

Probability    

[P(Y=1|X=1)] 

or sensitivity} 
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Clinical implication for false-Positive rate 

   A good test given the constant risk and cost should be characterized by 

high true-positive rate and low false-positive，  

 

 

False-positive rate P(X=1|Y=1)  P(Y=1|X=1) 

(a)  When P(Y=1) is very low we have to find a test with very low false positive 

rat in order to enhance P(Y=1|X=1)。 

Ex: Clinical tests for detecting coronary artery disease 

The prior probability of having coronary-artery disease is low and 

therefore non-invasive test is not very useful because its false positive rate 

ranges from 0.20 to 0.50. We have to consider aggressive test such as 

coronary arteriogram。 

 

(b) When P(Y=1) is high, the influence of false-positive rate is not so        

crucial.  

Ex: The patients diagnosed as angina has higher probability of getting 

Posterior      

Probability  

[P(Y=1|X=1)] or 

sensitivity} 

False positive rate=3% 

False positive rate=5% 

Prior probability (P (Y=1)) or 1-specificity 

Sensitivity=0.90 
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coronary artery disease. The prior probability is around 90% or more. The 之

posterior probability is 99% based on myocardial scan and also 98% based on 

exercise ECG. The difference is very minor.  

 

(E) Sensitivity in screening 

Test sensitivity 

Incidence/Expected Incidence Ratio 

 

(If all of interval cases are from false negative cases) 

 

Program sensitivity 

 

 

c* is obtained as the number of cases arising clinically in a short time 

interval after the screen 

 

Sojourn time of breast cancer in relation to false negative rate estimation 

using interval cancers in a set time period 

 

 

                                                                      

 

 

      t
0
       t

1
                 t

2    Time dimension  

 
 

E

O

I

I
Sen 1

a
Sensitivity=

(a+c*)

A 

B 

C 

False negative cases with sojourn 

time  
Cancers whose PCDP began after screening 

at t1 
False negative cases with sojourn time less 

than t2 – t1 
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t0 : The beginning of PCDP (preclinical detectable phase) for A and B 

t1 : Time of screen 

t2 : Time limit for definition of missed cancers 

 

Program sensitivity 

Algebra-derived for program sensitivity 

 Newly incident cases 

     I × ∫ 𝐹(𝑡)𝑑𝑡
𝑇

0
 

where I is the incidence of a control group; and  

F(t) is the cumulative distribution function of sojourn time 

 False negative cases from previous screening 

     I × (1 − 𝑆) × ∫ (1 − 𝐹(𝑡))𝑑𝑡
𝑇

0
 

The observed interval cancer rate 

It =  +  = I × (1 − 𝑆) × T + I × S × ∫ 𝐹(𝑡)𝑑𝑡
𝑇

0
 

𝑆̂ =
1 −

𝐼𝑡

𝐼

1 − [
1

𝑇
× (∫ 𝐹(𝑡)𝑑𝑡

𝑇

0
]
 

 

4.3 Construct a Markov Chain Model: A simple illustration 

Suppose one wants to use a Markov chain model to describe the life of a 

student after school per day. He distributes questionnaires to ask the possible 

places where students will go after school, also the time of staying in the place. 

In his investigation, pub, theatre, restaurant, library, and dormitory are 

frequently places to go after school. In order to construct a Markov Chain, the 

state space is the first thing to define. 

In this case, we treat each place as a state, and accordingly have a 



78 
 

6-state Markov chain with state space, ={0: school, 1: pub, 2: theatre, 3: 

restaurant, 4: library, and 5: dormitory}.  

 

                   Pub (1)           

                                         Theatre (2) 

                   Restaurant (3)        

School (0)   

                   Library (4)                 Dormitory (5) 

 

4.4 Markov Process and Disease Natural History 

The multi-state model had been widely used to describe the natural 

history model of disease. The applications of multi-state natural history model 

are several-fold. First, estimating sojourn time for the natural history of chronic 

disease can throw light on how disease screening works and how screening 

frequencies can be determined. Second, the natural history model can be used 

to compare different screening frequencies and also to evaluate screening 

programs without a randomized control group (Chen et al, 1997; Chen et al, 

1998; Chen et al, 2004). Third, using the stochastic model can calibrate the 

survival benefit of screen-detected cancers related to potential biases and 

measurement error. 

 

4.4.1 A three-state Markov model for breast cancer (Chen et al, 

Biometrics 2000) 

Chen et al firstly applied the three-state and five-state Markov models to 

the screening data for breast cancer in a Taiwanese screening program under 
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the scenario when interval cancer was not available in the early stage of 

program. In their model, they modeled the disease process for a chronic 

disease as a continuous-time Markov process in which X(t), the state of an 

individual at time t, is a random variable with a state space  ={0,1,2} where 0 

represents no disease, 1 the preclinical detectable phase (PCDP) and 2 the 

clinical phase (CP). The CP in this model is an absorbing state in a language 

of Markov process because the natural history cannot be estimated beyond 

diagnosis, due to the effect of therapy. 

                                        

          

                                                         

               

Since there are only three states (0=“no disease”, 1=“preclincial phase” and 

2=“clinical phase”) in Markov chain model, the transition matrix (Q) is: 























000

0

0

 

2

1

0

State

2   1    0                     

        State                           

22

11





Q

               

                                                                                                 

1 and 2 represent the preclinical incidence rate and the transition rate from 

the PCDP to the CP. The inversion of 2 is the mean sojourn time.  

According to Pt =Adiag{exp(dt)}A-1 (where A is the matrix of eigenvectors from 

Q) the transition probability matrix (Pt) is equal to: 

 

(4-1) 

Healthy 

(0) 

Pre-clinical 

Phase (1) 

Clinical 

Phase (2) 

1  2 
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























































100

10

)(
1

)(

)(

 

100

0 

2

1

0

State

2   1    0                     

        State                           

22

1212

1

21

21

21

1

1211

020100

tt

tttt
t

t ee

eeee
e

PP

PPP

P













 

                                                              (4-2)  

where the diagonal component in Pt is a vector of eigenvalues, d=(-1,2,0), 

which is identified by solving dI-Q=0 (I is 33 unit matrix).  

 

This means, for example, that the probability of progressing from no 

disease to the PCDP (0  1) during a time period of length t is 
)(

)(

21

1
12



 




 tt

ee
 

 

Epidemiological aspect 

1: annual incidence rate 

2: annual transition rate (1/mean sojourn time) 

P01: Cumulative incidence of disease in the PCDP from normal  

P02: Cumulative incidence of disease in the CP from normal 

P12: Cumulative incidence of disease in the CP from the PCDP 
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Likelihood function 

     The likelihood function based on the prevalent screen in a screening 

cohort consisting N individuals is: 

       mm x

mm

mx

mm

m
N

m vPvP

vP

vPvP

vP
L



 


1

0100

00

0100

01

1

1 )
)()(

)(
()

)()(

)(
((.)           (4-3) 

where m represents age at first screen for mth subject, xm=1 when mth subject 

is detected as positive cases, xm=0 for otherwise. 

 

     Suppose there were r-1 rounds of subsequent screens, the likelihood 

function based on them was: 

                     ji

j

ji y

ijji

r

j

n

i

y

ijji ttPttP.L




 

 
1

100

2 1

1012
            (4-4) 

where j represent the jth round of screen (j=2,…r), tji –t (j-1)i represents 

inter-screening interval between (j -1)th screen and jth screen for ith subject, nj 

represents number of attendants in the jth screen, yji =1 when ith subject enters 

the PCDP during tji –t (j-1)i, yji =1 otherwise. The total likelihood function, say, L (.) 

will be the product of L1(.) and L2(.).  

 

Table 4-1 Numerical Results from the Swedish Two-County Trial  

      Age  group   

 

Parameters 

 

40-49 

 

50-59 

 

60-69 

1: no disease to 

   preclinical phase  

0.00122       

(0.0012-0.0013) 

0.00176 

(0.0017-0.0018) 

0.00263 

(0.0025-0.0028) 

2: pre-clinical to  

   clinical phase 

0.488        

(0.420-0.556) 

0.320 

(0.295-0.345) 

0.275 

(0.253-0.297) 

Mean Sojourn Time 

(1/2) 

2.06 

(1.79-2.38) 

3.13 

(2.90-3.39) 

3.66 

(3.48-3.86) 
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4.4.2 Five-state Markov model with regional lymph node spread or 

tumour size for breast cancer (Chen et al, Biometrics 2000) 

A stochastic model with three transient (S00, S11 and S12) and two 

absorbing states (S21, S22) and transition rates (1,2, 3,4,5) representing 

either node status or tumour size (< 2cm, 2cm) 

 

(S00) : Normal  

(S11) : preclinical phase, without nodal involvement (or tumour size < 2cm)  

(S12) : preclinical phase, with nodal involvement (or tumour size 2cm) 

(S21 ) : clinical phase, without nodal involvement (or tumour size < 2cm)  

(S22) : clinical phase, with nodal involvement or (tumour size 2cm) 

                                    States

                     no       pre-clinical         clinical

                 disease    N(-)      N(+)   N(-)   N(+)

                      0           1        

1 1

2 3 2 3

4 4

5 5

    2        3       4

0 - 0 0 0

1 0 -( ) 0

     =   2 0 0 0

3 0 0 0

4 0 0 0 0 0

Q

 

   

 

 

 
 


 
 
 

 
 
 

 

N(-): without node involvement; N(+): with node involvement  

     In realisation of breast cancer screening, 5 should be constrained as 0.  

Given the intensity matrix, the derivation of transition probabilities is 

straightforward. Referring to the previous section, the procedure used in the 
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three state Markov chain model to derive the transition probabilities is also 

applicable to the extension of the Markov chain model in this section. The 

transition probabilities are  

                                   States

                     no           pre-

                disease       clinical        clinical

                               N(-)    N(+)  N(-)  N(+) 

           

00 01 02 03 04

11 12 13 14

22 23 24

33 34

            0   1    2  3   4         

0 p p p p p

1 0 p p p p

   States     2 0 0 p p p

3 0 0 0 p p

4 0 0 0 0 0

 
 
 
 
 
 
 
 

          (4-5) 

where  
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 , 
f
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tt
)(

)(

13

325  
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  

2 3 54

4 4

5 5

( )

14

22 23 24

33 34

( )
1 -

d

 ,      0 ,    1

 ,  1 ,         

t tt

t t

t t

bf cd df e b e c e
p

df f

p e p p e

p e p e

  

 

 

  

 

 

    
  

   

  

 

1 2 3 1 4 1 5

1 1 1

1 4 2 3 4 1 5 2 3 5

1 2 1 3

( )
a=   b=   c=

( )( ) ( )( )
d=   f=

      

  

         

   

   

     
 

Note that the summation of transition probabilities in each row of the transition 

matrix mentioned above is equal to unity, eg. P00+P01+P02+P03+P04=1.  
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Likelihood function for a case in the five-state Markov model (M-N model)  

Suppose one woman has screening history as follows: 

(i) first screen at age 45 -(no disease (0), 540 months),   

(ii) 2nd and 3rd screen with two-year interval-(no disease (0), 24 months) 

(iii) diagnosed as interval cancer with node involvement between 3rd and  

4th screen -(clinical cancer with node involvement (4), 14month) 

 

The likelihood function for this individual is: 

P00(540)   P00(24)   P00(24)   P04(14) 

 

 

1st screen  second screen  third screen  interval cancers 

The overall likelihood function is equal to the product of individual likelihood 

functions.  

The Markov property that given the state at time t, the probability of any 

given state after time t is independent of the history before time t implies that 

probabilities of successive transitions in the same individuals can simply be 

multiplied in the likelihood function as if they were from different individuals. 

Thus, the likelihood function can be developed using the numbers of 

transitions between states as shown in the Table 4-2 for the Swedish 

Two-County trial. For illustration, the likelihood function for the age group 

40-49 is given below  
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Table 4-2 Number of women randomized at 40-49 years old by detection mode, Two-County Trial  

Age groups 

 

Detection mode 

and node status 

40-49 

           Transition 

Number    history 

         (Time, state
+
) 

 

Transition 

probabilities 

applied 

1. First screen 

(1) Negative cases 

(2) Prevalent cases 

-without nodal involvement 

-with nodal involvement 

  

18456     (540,00) 

        

    31     (540,01) 

     6     (540,02) 

 

P00 

 

P01 

P02 

(3) Interval cancers 

(between 1st and 2nd screen) 

-without nodal involvement 

-with nodal involvement 

 

 

     14     (TSL,03) 

 9     (TSL,04) 

 

 

P03 

P04 

2. Second screen 

(1) Negative cases 

(2) Prevalent cases 

-without nodal involvement 

-with nodal involvement 

 

 16396      (24,00) 

  

     35      (24,01) 

     10      (24,02) 

 

P00 

 

P01 

P02 

(3) Interval cancers 

(between 2nd and 3rd screen) 

-without nodal involvement 

-with nodal involvement 

 

    

12    (TSL,03) 

      10    (TSL,04) 

 

 

P03 

P04 

3. Third screen 

(1) Negative cases 

(2) Prevalent cases 

-without nodal involvement 

-with nodal involvement 

 

14437     (24,00) 

        

      30     (24,01) 

       6     (24,02) 

 

P00 

 

P01 

P02 

(3) Interval cancers 

(between 3rd and 4th screen) 

-without nodal involvement 

-with nodal involvement 

       

 

  15   (TSL,03) 

      10   (TSL,04) 

 

 

P03 

P04 

+TSL=time since last negative screen 

Note that: in the model the actual times to occurrence of interval cancers are used. 

 

The likelihood function for the first screen (Active Study Population, ASP) 

The above transition probability matrix gives unconditional probabilities. 

We, however, need conditional probabilities at the first screen for the ASP 

because those found to be free of disease or to have preclinical disease at first 

screen are not from an entire cohort followed from birth: women with a 

previous (clinical) breast cancer were excluded from the trial. Thus the 

probability of being free of breast cancer and of having preclinical breast 



86 
 

cancer at the first screen should be conditional on having no clinical breast 

cancer between birth and first screen.  

By this definition, the conditional probability of being free of disease(S00) 

at first screen, 00, is given as: 

00=Pr[S00 at first screen conditional on the fact that the there was no disease 

(S00) or preclinical disease only (S11 or S12) between birth and the first screen]. 

The conditional probabilities of prevalent disease without node involvement, 

11 and with node involvement, 12 , at first screen are of the same essential 

form. In terms of transition probabilities, 00, 11 and 12 are     

00
00

00 01 02

01
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12
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( )
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
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                             (4-6) 

Referring to the data in the form of Table 4-1, the likelihood function for first 

screen in the age group of 40-49, is equal to  

1 1 1 1 1

18456 31 6

( ) 1 5 00( ) 11( ) 12( )( ) ( ) ( ) ( )   s t t t tL                        (4-7) 

where t1 (=45) is average age at first screen. 

 

The likelihood function for later screens 

The likelihood function for later screens is based on the unconditional 

probabilities from the transition matrix (4-5). Since the screening interval was 

constant and the Markov property assumed to hold as mentioned earlier, the 

second and third screens may be aggregated as later screens. Accordingly, 

the probabilities of being disease free and of cancers without and with node 

involvement are P00, P01 and P02 respectively. The likelihood function of later 
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screens in the age group of 40-49 is: 

       )()()()( 16

)(02

65

)(01

833,30

)(0051)( 22222 tttts PPPL            

where t2 (=2) is screening interval  

 

The likelihood function of interval cancers 

Since the exact time of diagnosis is known for interval cancers, their 

probabilities should therefore be of becoming clinical at the time ti rather than 

at some time before 0 and ti. Since the model does not allow the probability of 

instantaneous transition from no disease to the CP (the transition between the 

transient states can be only to adjacent states), and since we wish to explicitly 

allow for the probability of both rapid and slow progression through the PCDP, 

we use our limit of accuracy, in this case one month, and further approximate 

the correct probability for interval cancers by the compound probability. 

Although it is technically possible to use the instantaneous rates in practice this 

leads to instability of estimation and precludes explicit modelling of both long 

and short preclinical times. Thus, the probabilities for interval cancers without 

node involvement (01) and with node involvement (02) are: 

01(ui)=P00(ui-1) P03(1) +P01(ui-1)P13(1) and 

02(uj)=P00(uj-1)P04(1)+P01(uj-1)P14(1)+P02(uj-1)P24(1) 

where ui and uj are time since last negative screen for interval cancers with 

and without node involvement, respectively 

The likelihood function for interval cancers in the age group 40-49 is: 

  
3

41 29

01( )( , ) 02( )
1 1

           
ii j j

us u u t u
i j

L  


 

    

The derivation of the likelihood function for a five-state model is 
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particularly difficult for data without interval cases. Chen et al has proposed a 

reparameterization procedure in conjunction with external information on the 

proportion of node negative cases for a five-state Markov model to solve this 

issue (Chen et al, Biometrics 2000). 

 

4.5 Examples 

4.5.1 A Markov chain model to assess the efficacy of screening for 

non-insulin dependent diabetes mellitus (NIDDM) 

The high prevalence and severe consequences of non-insulin dependent 

diabetes mellitus (NIDDM) in Taiwan calls for urgency to detect this disease in 

the asymptomatic phase. However, the efficacy of early detection of NIDDM is 

highly dependent on its natural history from the disease free, through the 

asymptomatic phase, symptomatic phase and death from NIDDM or other 

causes. In order to project the above progression, a five-state 

illness-and-death Markov chain model was proposed to estimate these 

transition parameters using data from two rounds of a blood sugar screening 

program for NIDDM in Puli, the middle area of Taiwan. 

 

  disease     asymptomatic     symptomatic     death from 

   free            phase             phase             NIDDM 

 (state 0)        (state 1)           (state 2)            (state 3) 

 

                       

         other causes of death   (state 4) 

: incidence of asymptomatic cases 
: transition rate from asymptomatic to symptomatic phase 
: hazard rate from symptomatic phase to death from NIDDM 
: hazard rate from disease free to other causes of death 
: hazard rate from asymptomatic phase to other causes of death  
: hazard rate from symptomatic phase to other causes of death  

1 2 3

u1 u2 u3

1
2
3
u1
u2
u3
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Results showed that the annual incidence for asymptomatic NIDDM was 

0.011 (95% CI: 0.0083–0.01379) and the average duration between the 

asymptomatic and symptomatic phases (called the sojourn time) is 8 years 

(95%CI: 5.74–11.29). The 10-year survival rate for asymptomatic NIDDM 

(79.35%) is better than that for symptomatic NIDDM (69.45%). Prediction of 

deaths from NIDDM was performed to assess how the efficacy of screening for 

NIDDM varied by different screening frequencies (annual, biennial, four-yearly 

and the control group). Results indicated there is no substantial difference in 

mortality reduction from NIDDM among the annual, biennial and four-yearly 

screening regimens. By contrast, a four-yearly screening regimen significantly 

reduced deaths from NIDDM by 40% (95% CI: 1%–62%). A long sojourn time 

and a substantial mortality reduction suggest that a four-yearly screening 

regime for NIDDM would be most effective and feasible in Taiwan. 

 

Table 4-4 Results of the five-state Markov illness-and-death model  

Parameters Annual 

transition rate 

95% CI 

 (Disease free-Asymptomatic NIDDM) 0.01067 0.00826–0.01379 

 (Asymptomatic NIDDM-Symptomatic 

NIDDM) 

0.12418 0.08858–0.17409 

 (Symptomatic NIDDM-Death from 

NIDDM) 

0.02267 0.00687–0.07480 

 (Disease free-Other causes of death) 0.00093 0.00062–0.00140 

 =  (Asymptomatic NIDDM or  

Symptomatic NIDDM-Other causes of death) 

0.01378 0.00561–0.03384 

 

 

  

1

2

3

u1
u2 u3
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4.5.2 Mover-Stayer Mixture Model-Phenotypic drift for breast cancer 

 

A mover-stayer mixture model was applied to evaluate the proportion of 

tumour with potential of progression as follows: 

 

A stayer is the tumour without potential of progression and the intensity 

transition matrix follow M1 : 

 

                    no  disease          Preclincial phase             Clinical phase

                                         Grade 1 / 2      Grade 3   Grade 1 / 2       Grade3

                     S              S             S            S                S

     M =   

-(                                                        
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0         0           0       0 0

00 11 12 21 22

1

1

5 5

   

 

 

























2 1 2

4 4

0 0

0

0 0

)
       

 

A mover is the tumour with potential of progression and the intensity 

transition matrix follow M2 

                    no  disease               Preclincial phase                   Clinical phase

                                              Grade 1 / 2          Grade 3       Grade1 / 2       Grade3

                     S                   S                  S            S                S

     M =   

-(                                                        

                         0

                 -       0  

0         0           0       0 0

0         0           0       0 0
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Building up the likelihood function in accordance with a mixture 

distribution from M1 and M2 enables one to estimate the proportion of tumours 

with potential of progression and transition rates 
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Table 4-5 Results from the two-county county trial   

            Age groups 

 

Transition   

parameters & 

Mixing weight      

 

40-49 

 

50-59 

 

60-69 

1 
no disease to 

preclinical  grade 1/2 

0.00096 

(0.00082-0.00110) 

0.00166 

(0.00097-0.00235) 

0.00227 

(0.00192-0.00262) 

2  no disease to  

 preclinical  grade 3 

0.000262 

(0.00013-0.00039) 

0.00011 

(0.00000-0.05000) 

0.00036 

(0.00002-0.00070) 

3 preclinical grade1/2 to  

 preclinical  grade 3 

0.0630 

(0.0005-7.7369) 

0.6672 

(0.0029-150.70) 

0.2168 

(0.0173-2.8107) 

4 preclinical grade1/2 to  

 clinical grade 1/ 2 

0.6944 

(0.5013-0.8874) 

0.3071 

(0.0013-7.0148) 

0.2791 

(0.2156-0.3426) 

5 preclinical grade 3 to  

clinical  grade 3 

0.6655 

(0.4412-0.8898) 

0.4726 

(0.1452-0.8000) 

0.3786 

(0.2716-0.4856) 

 Proportion of tumours 

without potential of 

progression  

 

0.1921 

(0.0158-2.3350) 

 

0.5158 

(0.2630-1.0120) 

 

0.4917 

(0.2506-0.9664) 

 

Results indicated that 

(1) 81% of tumours in women aged 40-49 have the potential to deteriorate 

from grade1/2 to grade 3 (although they need not necessarily do so if the 

tumour is detected early) and only 19% will always have the same grade. 

(2) For the age groups of 50-59 and 60-69, 50% have potential to deteriorate 

and 50% always remain the same.  

This means that in terms of grade, the 40-49 group is more susceptible to 

phenotypic drift than over 50. 
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4.5.3 Estimation of natural history parameters of breast cancer based on 

non-randomized organized screening data - subsidiary analysis of 

effects of inter-screening interval, sensitivity, and attendance rate on 

reduction of advanced cancer (Wu et al, BCRT 2012) 

Estimating the natural history parameters of breast cancer not only 

elucidates the disease progression but also make contributions to assessing 

the impact of inter-screening interval, sensitivity and attendance rate on 

reducing advanced breast cancer. We applied three-state and five-state 

Markov model to data on a two-yearly routine mammography screening in 

Finland between 1988 and 2000. The mean sojourn time was computed from 

estimated transition parameters. Computer simulation was implemented to 

examine the effect of inter-screening interval, sensitivity, and attendance rate 

on reducing advanced breast cancers. In three-state model, the mean sojourn 

time was 2.02 years and the sensitivity for detecting preclinical breast cancer 

was 84.83%. In five-state model, the mean sojourn time was 2.21 years for 

localised tumor and 0.82 year for non-localised tumor. Annual, biennial and 

triennial screening programs can reduce 53%, 37% and 28% of advanced 

cancer. The effectiveness of intensive screening with poor attendance is the 

same as that of infrequent screening with high attendance rate. We 

demonstrated how to estimate the natural history parameters using a service 

screening program and applied these parameters to assess the impact of 

inter-screening interval, sensitivity, and attendance rate on reducing advanced 

cancer. The proposed method makes contribution to further cost-effectiveness 

analysis. However, these findings had better be validated by using a further 

long-term follow-up data. 
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Table 4-6 Estimated parameters for progression rate and the sensitivity in three-state 

Markov model and five-state Markov model, Pirukamma, Finland 

Parameters Estimates 95% CI 

Three-state modela   

50-59   

Normal  Preclinical cancer (λ1) 0.0025 (0.0022, 0.0028) 

Preclinical cancer  Clinical cancer (λ2) 0.4956 (0.3816, 0.6097) 

  Mean sojourn time (1/λ2) 2.02 (1.64, 2.62) 

Sensitivity 84.83% (74.88%, 94.79%) 

Specificity 99.97% (99.89%, 100%) 

50-54   

Normal  Preclinical cancer (λ1) 0.0025 (0.0022, 0.0027) 

Preclinical cancer  Clinical cancer (λ2) 0.5207 (0.4057, 0.6356) 

  Mean sojourn time (1/λ2) 1.92 (1.57, 2.46) 

Sensitivity 83.75% (71.26%, 96.23%) 

55-59   

Normal  Preclinical cancer (λ1) 0.0025 (0.0021, 0.0029) 

Preclinical cancer  Clinical cancer (λ2) 0.4269 (0.3131, 0.5408) 

  Mean sojourn time (1/λ2) 2.34 (1.85-3.19) 

Sensitivity 89.48% (76.56%, 100%) 

Five-state model   

50-59   

Normal  Preclinical N(-) (λ1) 0.0025 (0.0023, 0.0027) 

Preclinical N(-)  Preclinical N(+) (λ2) 0.3371 (0.2549, 0.4192) 

Preclinical N(-)  Clinical N(-) (λ3) 0.2897 (0.2186, 0.3609) 

  Mean sojourn time (

432

2

32

)(

)(

1












) 2.04  

Preclinical N(+)  Clinical N(+) (λ4) 1.2230 (0.9259, 1.5201) 

  Mean sojourn time (1/λ4) 0.82 (0.66, 1.08) 

Sensitivity of preclinical N(-) cancer 68.21% (54.63%, 81.79%) 
bPeriod as a covariate for 1   

Normal  Preclinical N(-) (λ1)    

  Period 1988-1991 0.0026 (0.0023, 0.0028) 

 Period 1992-1996 0.0026 (0.0022, 0.0031) 

Period 1997-2000 0.0020 (0.0015, 0.0028) 

Preclinical N(-)  Preclinical N(+) (λ2) 0.3298 (0.2488, 0.4109) 

Preclinical N(-)  Clinical N(-) (λ3) 0.2828 (0.2126, 0.3531) 

Preclinical N(+)  Clinical N(+) (λ4) 1.2052 (0.9054, 1.505) 

Sensitivity of preclinical N(-) cancer 67.56% (54.04%, 81.07%) 

Goodness-of-fit for three-state model X
2
 = 2.69, d.f. = 4, p-value = 0.61 

Goodness-of-fit for five-state model X
2
 = 12.12, d.f. = 7, p-value = 0.10 

Goodness-of-fit for five-state model (piecewise method) X
2
 = 37.88, d.f. = 29, p-value = 0.13 

a the estimation were independently performed for three age groups 
b
 baseline period: 1988-1991 
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Table 4-7 Relative risk of non-localised breast cancer of different screening regime by 

screening sensitivity 

 Control 

group 

Screening annually Screening 

biennially 

Screening triennially 

Sensitivity of 

localised tumor 

    

68.2% 
a
 1 0.47 (0.41, 0.55) 0.63 (0.55, 0.72) 0.72 (0.63, 0.82) 

60% 1 0.51 (0.44, 0.59) 0.67 (0.59, 0.76) 0.75 (0.66, 0.85) 

80% 1 0.42 (0.36, 0.49) 0.58 (0.50, 0.66) 0.67 (0.59, 0.77) 

90% 1 0.38 (0.33, 0.45) 0.54 (0.47, 0.62) 0.64 (0.56, 0.73) 

a
 estimate from five-state Markov model 

 

Table 4-8 Relative risk of non-localised breast cancer by attendance rate with 68.2
a
 sensitivity 

for localized breast cancer  

Attendance rate  Control 

group 

Screening 

annually 

Screening 

biennially 

Screening triennially 

100% 1 0.44 (0.38, 0.51) 0.61 (0.53, 0.69) 0.70 (0.62, 0.80) 

90% 1 0.49 (0.43, 0.57) 0.65 (0.57, 0.74) 0.73 (0.64, 0.83) 

60% 1 0.66 (0.58, 0.75) 0.76 (0.67, 0.86) 0.82 (0.73, 0.93) 

30% 1 0.83 (0.74, 0.94) 0.88 (0.78, 0.99) 0.91 (0.81, 1.03) 

a
 Estimate from five-state Markov model 

 

Fig. 4-1 Cumulative incidence of non-localised tumor by different screening regimes 
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4.5.4 Model over-diagnosis in screening program via multistate model 

(Wu et al, Biometrical J 2012) 

Wu et al further proposed a stochastic model for survival of early prostate 

cancer with adjustments for leadtime, length bias, and over-detection and 

applied it to a randomized controlled trial for PSA screening for prostate 

cancer.  

To deal with over-diagnosis, they used two intensity matrices: (i) Q() for 

those with potential to progress to the CP (so-called mover); and (ii) QS() for 

those without potential to progress to the CP (so-called stayer). The reason for 

two matrices is to capture the over-detection problem: it is assumed that one 

group of individuals can never progress to state 2 (stayers) and that these are 

different from the group who do not progress to state 2 but could have done 

(movers). 
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where PCa refers to prostate cancer; 0(), 1(), and 2() represent the 

incidence rates of pre-clinical prostate cancer (state 0state 1), the transition 

rate from the PCDP to the CP (state 1state 2), which determines the 

distribution of sojourn time, and the hazard rate of prostate cancer death 

among prostate cancers in the CP (state 2state 3); and u0(), u1(), and u2() 

are three hazard rates of death from other causes (state 4) for respectively 

subjects in state 0, state 1, and state 2. Again, the transition probability matrix 

can be derived from the backward Kolmogorov equation (Cox and Miller, 1965), 

and has been used for breast cancer screening (Chen et al, 1997).  

 

4.5.5 Evaluation of the different screening frequencies (Chen et al, 

Cancer 1999) 

To assess the effect of inter-screening interval on the efficacy of 

screening, one can conduct the computer simulation. As in Chen et al (1999), 

they use a simulation program to assess the effect of colorectal cancer 

screening for a high-risk group based on a split design. This design is a variant 

of stop-screen design. The unique characteristic of this design is that at the 

time the last screening is offered to the screened group, a screening is also 

offered to all those in the control group. The merit of this design is that it 

enhances the comparability of cancer cases identified in the control and 

intervention arms. From the practical aspect of screening, this may also partly 

resolve the ethical issue for the control group. This design was used in some 

Swedish randomized trials for breast carcinoma, such as the Stockholm trial 

and the Two- County trial. A hypothetical population of 25,596 subjects was 

randomly assigned to four groups: annual, biennial, and triennial screening 

regimes and a control group. Each group consists of 6399 subjects (as in the 
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study cohort), similar to the sample size in the current study. One hundred 

percent attendance and 100% sensitivity was assumed. To predict the number 

of cases of preclinical and clinical CRC and the corresponding deaths from 

CRC, transition probabilities for 1-year, 2-year, and 3-year inter-screening 

intervals were calculated using the estimated transition parameters from the 

5-state Markov model. Taking the control group as a baseline group, relative 

mortalities for annual, biennial, and triennial regimes were predicted. 

 

Table 4-7 The Relative Mortalities for Annual, Biennial, Three-Yearly Screening 

Regime Compared to the Control Group, TAMCAS Screening Project 

 Estimated number of cases Relative  

Risk (RR) 

of death  

from CRC 

 

95% CI First 

screen 

Second 

screen 

Interval  

cancer 

Death of 

CRC 

OCD 

Annual 70.46 130.85 25.03 41.97 38.68 0.74 (0.50~1.10) 

Biennial 70.46 110.05 43.88 43.47 39.53 0.77 (0.52~1.14) 

Three-yearly 70.46 93.63 58.08 44.94 40.35 0.79 (0.53~1.17) 

Control 68.64 ----- 132.94 56.58 46.83 1  

 

Table 4-8 Results of the simulation for predicting asymptomatic cases, symptomatic 

cases and deaths from NIDDM by different screening regimens  

 First screen 

Asymptomatic 

NIDDM 

Second 

screen 

Asymptoma

tic 

NIDDM 

Symptomati

c 

NIDDM 

Deaths from 

NIDDM 

 

Deaths 

from 

other 

causes 

Relative 

mortality 

Annual  777.37 701.77 44.19 129.99 70.76 0.54 

Biennial 777.37 655.18 83.70 134.64 75.95 0.56 

Four-yearly 777.37 571.75 150.38 144.00 86.18 0.60 

Control group  709.29 -------- 638.72 241.24 184.96 1 
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4.5.6 The natural history and computer-simulation approach to 

demonstrate the effectiveness prediction and sample size calculation for 

population-based colorectal cancer screening (Chiu et al., JECP, 2011).  

(A) Estimate the natural history of colorectal cancer: transition rates from 

normal to preclinical and clinical stage 

(1) Five-state natural history of colorectal cancer 

 

(2) Empirical data from screening 

A. RCT by Hardcastle et al. from UK 

B. RCT by Kronborg et al. from Denmark  

C. Data included prevalent screen-detected, subsequent 

screen-detected, interval cancer, non-responder 

(3) Model validation 

A. Internal validation 

Examination for observed and expected numbers using Pearson 

Chi-squared test 

B. External Validation 

Using observed data from control group with different detected 

modes 

(4) Meta-analysis for natural history 
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(5) Computer-simulation 

A. Markov decision tree  

B. Transition probabilities from transition rate 

C. Parameters about the screening scenario, ex. first round screening 

information from Finland (attendance arte, compliance rate of 

colonoscopy) or literature (sensitivity, specificity of screening tool) 

 

(B) Predict and compare the effectiveness of surrogate endpoint (stage 

distribution) of colorectal cancer by different screening strategies 

(1) Outcome with Dukes’ stage distribution were simulated from both 

invited and control arms 

 

(C) Predict and compare the effectiveness of mortality of colorectal cancer by 

different screening strategies 

(1) Taking the prognosis of colorectal cancer into account 

(2) Prognosis (survival rate) by different stage from cancer registry (before 

screening implementation) 

 

(D) Calculate the required sample size for randomized trial using either 

colorectal cancer mortality or surrogate endpoint for program evaluation 

(1) Based on the Chen’s method (Chen et al., BJC, 1999), according to the 

RR of surrogate and primary endpoint, required sample size and power 

were computed.  

(2) Surrogate endpoint provides an opportunity for early evaluation of 

cancer screening and reducing required sample size for hypothetical 

study design. 
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4.5.7 Population-based Hypertension Screening (Tseng et al., 2013, Am J 

Hypertension) 

We used population-based screening data to identify the multiple risk 

factors responsible for multi-step transitions between prehypertension and 

hypertension. 

 

Temporal Natural Course of Hypertension   

     According to the JNC 7, blood pressure can be classified into four states: 

normal (systolic blood pressure [SBP] <120 mmHg and diastolic blood 

pressure [DBP] <80 mmHg), prehypertension (SBP 120–139 mmHg or DBP 

80–89 mmHg), stage 1 hypertension (SBP 140–159 mmHg or DBP 90–99 

mmHg), and stage 2 hypertension (SBP 160 mmHg or DBP 100 mmHg) to 

construct a four-state illness model in continuous time that delineates natural 

course of disease progression from normal to stage 2 hypertension and 

regression from prehypertension to normal. 

                                                   

            

 

 

  

Normal Prehypertension 
Stage 1 

hypertension 

Stage 2 

hypertension 
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Figure  The distribution of risk scores for stage 2 hypertension under different 

intervention scenarios 

 

 

Figure  Five-year predicted cumulative probabilities for stage 2 hypertension under 

different intervention scenarios, 1999-2002 

  

Strategy 1 for male: “4-component intervention” with TC + AC + Betel +BMI 

Strategy 2 for male: “6-component intervention” with TC + AC + Betel +BMI + Drink + UA 

Strategy 1 for female: “5-component intervention” with TC + AC + BMI + Waist + UA  
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4.6 Case-cohort design for the disease natural history and the 

application of natural history for treatment efficacy (Chen et al, Stat Med, 

2004) 

 

4.6.1 Study design 

The study design was based on a variant of case-cohort design. Firstly, in 

the traditional case-cohort design, the disease status is usually classified into 

two states, disease and non-disease. By contrast, our design was tailored for 

multi-state disease status. Secondly, the traditional case-cohort design follows 

the whole cohort to ascertain cases at different times and randomly selects a 

proportion of controls from the original cohort. In our design, since subjects in 

the cohort may progress to different disease states at different times in the light 

of the specific disease natural history, a series of random samples, instead of 

accruing all cases, for each state were selected for estimating parameters. 

 

4.6.2 Bayesian inversion for a non-standard case–cohort design 

In the three-state Markov model, for example, related to pre-cancerous 

lesions for oral cancer and colorectal cancer, we have three states (j=3), 

normal, leukoplakia, and invasive carcinoma for oral cancer, and normal, 

adenoma and invasive carcinoma for colorectal cancer, respectively. Following 

the above design, three sets of random samples for each state were selected 

for estimation. Let Sj (j=1,2,3) be denoted as an indicator of whether a subject 

in the j group was sampled.   

Let 0, 1, 2 be sampling fractions for normal, pre-cancerous lesion 

(adenoma and leukoplakia) and invasive carcinoma at time ti. 
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The probability of being the j state at time ti given a subject was sampled (S=1) 

is: 

 

 

   
           

 

     iii

ij

iiiiii

ii

i

tPtPtP

tjP

tPtSPtPtSPtPtSP

tjPtjSP

StjP

,20,10,00

,0

,20,20|1,10,10|1,00,00|1

,0,0|1

1|,0

210 















   j=0, 1, 2                                                                

 

Chen et al. (Chen et al., BJC, 2003) applied the colorectal cancer natural 

history model together with the adenoma–carcinoma sequence associated 

with adenoma size and histological type to estimate dwelling times, the 

efficacy of colonoscopy, and the surveillance of polyp after polypectomy. The 

estimates of overall efficacy of colonoscopy in reducing CRC is 73% for the 

model allowing for de novo carcinoma and 88% for the model without 

considering de novo carcinoma theory. 

 

Shiu et al. (Shiu, et al., EJCP, 2004) simultaneously quantified the effects 

of three risk factors, including betel chewing, smoking, and drinking habits, on 
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occurrence of oral leukoplakia and malignant transformation to oral cancer. 

Subjects who chewed betel quid were at greater risk of leukoplakia (adjusted 

odds ratio (OR) 17.7 (9.03–34.5)) but there was no significant effect on 

malignant transformation (OR 1.04 (0.61–1.76)). Smoking played a major role 

in the onset of leukoplakia (OR 4.26 (2.21–8.23)) but a minor role in malignant 

transformation (OR 1.36 (0.69–2.68)). Alcohol was positively associated with 

malignant transformation (OR 2.37 (1.47–3.82)) but unrelated to occurrence of 

leukoplakia (OR 0.76 (0.04–1.43)). This study also estimated the treatment 

efficacy based on a three-state Markov model. 

 

Table 4-9 Parameter estimation and treatment efficacy based on a three-state Markov 

model 

Parameters Progress rate 95%CI 

1. Nature history    

Normal  Leukoplakia() 0.0016 0.0013~0.0020 

Leukoplakia  Oral Cancer(N) 0.0979 0.0759~0.120 

Average Duration of Malignant 

transformation of leukoplakia(years) 
10.2 8.3~13.7 

2. Progress rate after treatment    

Leukoplakia  Oral Cancer(T) 0.0267 0.0204~0.0349 

3. Efficacy of treatment(1-T/N) 72.7% 57.2~88.3% 

  



105 
 

4.7. The effects of covariates on multi-state transitions  

 

4.7.1 Assessing chronic disease progression using non-homogeneous 

exponential regression Markov models (Heish et al, Stat Med 2002) 

 

Modeling the impact of relevant covariates on multi-state transitions has a 

significant implication for prevention of chronic disease. 

(1) Covariates acting as an initiator 

 for onset of preclinical screen-detectable breast cancer (PCDP) 

 primary prevention by removing the factor should be addressed 

(2) Covariates acting as a promoter 

 accelerating the progression from PCDP to the CP 

 different screening policies such as more frequent screening for 

people carrying this factor might be required. 

 

Addressing the association between risk factors and the disease natural 

history may be even more important for those removable variables such as 

obesity or smoking. Medical consultation at regular intervals for different 

characteristics among women can be suggested based on this knowledge. 

The transition rates from abovementioned models may vary with time. 

Heish et al. proposed non-homogeneous models to consider age-dependent 

incidence rate of preclinical disease, and to incorporate covariates of interest 

to the multi-state model (Hsieh et al, 2002). 

(State 0) 01(t) (State 1) 12(t) (State 2) 

Normal  PCDP  Clinical phase 
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The model specification was similar to previous ones, expect that the 

transition rates was function of time and covariates. Taking three-state Markov 

process as an example, the transition intensities for the process are 

  0

P{X( ) | ( ) }
( ) lim         for  0,1,2    and  ij

dt 

t +dt j X t i
t i, j i j

dt




 
    

( ) -        for  0,1,2   ii ij

i j

t i 


   

They also used the exponential regression models to take account of 

covariate effects on intensities to model the different characteristics of random 

process between individuals. Let W denote a vector which contains the values 

of all p covariates of an individual, i.e.,
T

1 2[ , , ]pw w wW , and ij0 (t) denotes 

the baseline intensity at W=0. The intensity for an individual with covariate W is 

then modeled as  

ij (t,W)= ij0 (t) exp (ijW)               

where ij is a regression coefficient vector with components (ij1, ij2,..., ijp) 

corresponding to w1,…,wp. 

 

To apply a Weibull distribution with scale parameter j and shape 

parameter kj, the intensity formula is:  

       01(t,X)= 010(t)exp (01W), where 1 1

010 1 1( ) kt k t             

 

Similar to transition from the PCDP (state 1) to clinical phase (state 2), 

12(t,X)= 120 (t)exp (12W), where 
1

22120
2)(



k

tktq       

In their study, we also developed a SAS program using PROC IML to 

estimate the parameters. The relative computer program was developed in 

2004 by Wu et al. (2004) 
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Model selection: Likelihood ratio test can be used for selecting the 

parsimonious model among a series of nested models, not only include the 

addition of significant covariates or the deletion of superfluous covariates but 

also compare the models with covariates affecting both types of transitions 

(state 0 to state 1 and state 1 to state 2) with those that only include the 

transition from state 0 to state 1 or from state 1 to state 2.  

 

Model diagnosis: We may compare the observed number of transitions 

between particular states with the expected, and a Pearson 2 test statistics 

can be used to judge whether there is a good fit for the model. 

 

4.7.2 Individually tailored screening or breast cancer with genes, tumour 

phenotypes, clinical attributes, and conventional risk factors (Wu et al, 

Brit J Cancer 2013) 

 

(1) Health policy makers are concerned that the harm (false negative and false 

positive cases) and cost of screening should be minimized and the benefits, 

mainly measured by the reduction of mortality from breast cancer, 

maximized. This may be relieved by using an individually tailored screening 

with emphasis on 

 optimal age of screening 

 inter-screening interval and 

 the expedient use of alternative image technique.  

These subsidiary issues are related to individual variation on the 

temporal natural history of breast cancer from free of breast cancer, 

through the pre-clinical detectable phase (PCDP) and finally to clinical 
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phase (CP). Screen-detected breast cancer represents the PCDP whereas 

clinically-detected one (such as interval cancer) stands for the CP. 

 

(2) With the advent of genetic and biological markers for breast cancer, 

individually tailored screening for breast cancer can now be achieved by 

making use of information on genes, conventional risk factors, clinical 

attributes, and relevant tumor phenotypes such as HER-2/neu. 
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Table 4-10 The recommend age to start screening and inter-screening interval  

at different percentiles of risk score 
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