Module 4 Temporal Natural History Model in Cancer and

Chronic Disease Screening

4.1 The rationale to elucidate the disease natural history
(A) The purpose of elucidation of disease natural history is to construct a

pseudo-control group as in the RCT

(B) Applications of natural history
(a) Estimation of effectiveness and sample size determination before RCT
(b) Screening interval determination
(c) Age at start of termination of screening
(d) Treatment-efficacy

(e) Cost-effectiveness analysis

(C) Opportunistic screening dominates over mass screening
(a) Calibrating the survival benefit of screen-detected cancers (Chen et al.,
JASA, 2012)
(b) Case-cohort design for the disease natural history (Chen et al., Stat

Med, 2004)
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4.2 Temporal natural history, sensitivity, and specificity

4.2.1 Temporal natural history

Born aged X aged X+Y

Three key variables
X (fixed for each subject): Age at time of entry into the PCDP
Y (fixed for each subject): Dewelling time (Sojourn time) in the PCDP

A (random variables): Age at participating screening

X <=A< X+Y = Screen-detected case

A>= X+Y - Clinically- detected case

4.2.2 P/l (Prevalence/Incidence) ratio (Chang et al, Preventive Medicine
2000)

(1) Prevalence Pool: It is customary to use prevalence pool to denote this

concept.

Prevalence pool

Arrival rate, | Departure rate, p

>

Suppose a population with size N consists of m prevalent diabetes mellitus

(DM) cases. In a cross-sectional survey, prevalence (P) is estimate as
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m
P=3

In a steady population (i.e. inflow = outflow), we have the following balance

equation in a small time inter (At)

IX(N—m)XAt=uxmxAt

m—

I
N—-m u
If N>m, N—m=N

P (Prevalence) = M

P 1

L= D (Average Duration)

(2) Usefulness: This indicator is used to denote the average duration of
disease

If D is estimable, p can be estimated. We can estimate the survival
function S(t) by applying an exponential distribution with the parameter of p.

S(t) = e H

Ex. In an example of type 2 DM, D=8 years, g = 0.125
S(t) = g~ 0:125%t
(A) The probability of surviving during five years or a type 2 DM patients is

S(t) = e~0125%5 = 0.535

(B) The mean time to have half of surviving population

0.693
ty = 0125 = 5.544 years
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4.2.3 Screening performance

(A) Basic characteristic of screening performance

True disease, Y

1(+) 0()
Test X 1(+) a b
0 (+) c d

Sen(Sensitivity) = P(X =1]Y =1) = —2>—
a+cC

SpSpecidficPity ) I
b+d

PP(\/PositivePre:did%ti(ve\/X:a—ﬁ%
a+

N PV Negé’trievdeicti:ve=VaHBe¥%%

FN (False negative) =P(X =0|Y =1) -
a+c

FP(False posotive) = P(X =1|Y =0) = b
b+d

(B) Bayesian Theorem for clinical reasoning

Let Y represent true disease status (Y=1: Disease Y=0: non-disease) specified

by a binomial distribution. Let X represent the result of test (X=1: positive;

X=0:negative) also specified by a binomial distribution . The positive predictive

value (PPV) is regarded as posterior probability

P(Y=1|X=1)= P(Y=1)  x P(X=1|Y=1)/(P(X=1))
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Epidemiological viewpoint: PPV a Prevalence Sensitivity

Statistical viewpoint: Posterior a Prior x likelihood

P(X=1) is defined as marginal distribution that is irrelevant to true disease

status and can be decomposed by total law of probability

P(X=1)=P(Y=1) P(X=1|Y=1)+ P(Y=0) P(X=1|Y=0)
= P(Y=1) P(X=1|Y=1)+[1-P(Y=1)] P(X=1|Y=0)
=Prevalencexsensitivity+ (1-prevalence) x(1-specificity)
In terms of statistical viewpoint, P(X=1) is also called “normalizing constant’
that renders the posterior probability range between 0 and 1. Note that the

likelihood is not a probability and its value may be higher than 1.

The posterior probability can be also expressed by posterior odds

P(Y=1|X=1)/( P(Y=0|X=1) {posterior odds}=

[P(Y=1)/P(Y=0)] x [P(X=1|Y=1)/(P(X=1|Y=0)]

{prior odds} {sensitivity/(1-specificity=false positive)}

Posterior Odds / prior odds= likelihood ratio (=sensitivity/(1-specificity))

Prevalence and HPV test

In a population with an HIV prevalence of 0.001

HIV + HIV —
Test + 95 1998 2093
Test - 5 97902 97909
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100 99900 100,000

Sen=0.95 Spe=0.98, LR=47.5, PPV=0.0454, Posterior odds =0.048;

(D) Receiver operating characteristics (ROC)
The ROC curve is a very useful indicator for assessing the accuracy of clinical
diagnosis. The larger the area under curve AUC), the more accurate the test is.
The curve is delineated by the following curve

Y-axis: Posterior probability or sensitivity

X:Prior probability

Posterior
Probability
[P(Y=1]X=1)]

or sensitivity}

Prior probability (P (Y=1)) or 1-specificity

P(Y=1|X=1) is highly dependent on P(Y=1). P(Y=1) T — P(Y=1|X=1) T -
When P(Y=1|X=1) = P(Y=1), the posterior probability is equivalent to the prior
probability (the angle of the linear line is 452 , the test is useless.

The ROC curve is also used to identify the optimal cutoff given the test is
based on a continuous variable such as cholesterol, hypertension etc. The

optimal cutoff
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Clinical implication for false-Positive rate
A good test given the constant risk and cost should be characterized by

high true-positive rate and low false-positive -

False positive rate=3%

False positive rate=5%

Posterior

Probability
[P(Y=1|X=1)] of
sensitivity}

Sensitivity=0.90

Prior probability (P (Y=1)) or 1-specificity

False-positive rate P(X=1]Y=1) 4 P(Y=1|X=1)"T
(@) When P(Y=1) is very low we have to find a test with very low false positive
rat in order to enhance P(Y=1|X=1) -
Ex: Clinical tests for detecting coronary artery disease
The prior probability of having coronary-artery disease is low and
therefore non-invasive test is not very useful because its false positive rate
ranges from 0.20 to 0.50. We have to consider aggressive test such as

coronary arteriogram -

(b) When P(Y=1) is high, the influence of false-positive rate is not so
crucial.

Ex: The patients diagnosed as angina has higher probability of getting
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coronary artery disease. The prior probability is around 90% or more. The z
posterior probability is 99% based on myocardial scan and also 98% based on

exercise ECG. The difference is very minor.

(E) Sensitivity in screening

Test sensitivity
Incidence/Expected Incidence Ratio
Sen=1--2

le

(If all of interval cases are from false negative cases)

Program sensitivity

Sensitivity=

(a+c®)

c* is obtained as the number of cases arising clinically in a short time

interval after the screen

Sojourn time of breast cancer in relation to false negative rate estimation

using interval cancers in a set time period

A False negative cases with sojourn

+imn A

— B Cancers whose PCDP began after screening

C False negative cases with sojourn time less
thant2 —t1

0 1 5 Time dimension
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to : The beginning of PCDP (preclinical detectable phase) for Aand B
ty : Time of screen

to : Time limit for definition of missed cancers

Program sensitivity
Algebra-derived for program sensitivity
@ Newly incident cases
Ix [ F(t)dt

where | is the incidence of a control group; and
F(t) is the cumulative distribution function of sojourn time

@ False negative cases from previous screening
Ix(1-8)x [/ (1-F(®)dt

The observed interval cancer rate

k=0 +®@=1x(1-8)xT+IxSx [ F(t)dt

I
1 -
I

=1 2% (J, Foat]

4.3 Construct a Markov Chain Model: A simple illustration

Suppose one wants to use a Markov chain model to describe the life of a
student after school per day. He distributes questionnaires to ask the possible
places where students will go after school, also the time of staying in the place.
In his investigation, pub, theatre, restaurant, library, and dormitory are
frequently places to go after school. In order to construct a Markov Chain, the
state space is the first thing to define.

In this case, we treat each place as a state, and accordingly have a
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6-state Markov chain with state space, 2={0: school, 1: pub, 2: theatre, 3:

restaurant, 4: library, and 5: dormitory}.

Pub (1)

Theatre (2)

/ Restaurant (3
School (O)\

Library (4) > Dormitory (5)

4.4 Markov Process and Disease Natural History

The multi-state model had been widely used to describe the natural
history model of disease. The applications of multi-state natural history model
are several-fold. First, estimating sojourn time for the natural history of chronic
disease can throw light on how disease screening works and how screening
frequencies can be determined. Second, the natural history model can be used
to compare different screening frequencies and also to evaluate screening
programs without a randomized control group (Chen et al, 1997; Chen et al,
1998; Chen et al, 2004). Third, using the stochastic model can calibrate the
survival benefit of screen-detected cancers related to potential biases and

measurement error.

4.4.1 A three-state Markov model for breast cancer (Chen et al,

Biometrics 2000)

Chen et al firstly applied the three-state and five-state Markov models to

the screening data for breast cancer in a Taiwanese screening program under
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the scenario when interval cancer was not available in the early stage of
program. In their model, they modeled the disease process for a chronic
disease as a continuous-time Markov process in which X(t), the state of an
individual at time t, is a random variable with a state space Q ={0,1,2} where 0
represents no disease, 1 the preclinical detectable phase (PCDP) and 2 the
clinical phase (CP). The CP in this model is an absorbing state in a language
of Markov process because the natural history cannot be estimated beyond

diagnosis, due to the effect of therapy.

M

Healthy Pre-clinical Clinical

(0) Phase (1) Phase (2)

Since there are only three states (0="no disease”, 1="preclincial phase” and

2="clinical phase”) in Markov chain model, the transition matrix (Q) is:

State
0 1 2
o(-4 A4 O
Q=Statel| 0 -4, 4,
20 0 O (4-1)

A1 and A, represent the preclinical incidence rate and the transition rate from
the PCDP to the CP. The inversion of A, is the mean sojourn time.
According to P;=Adiag{exp(dt)}A™ (where A is the matrix of eigenvectors from

Q) the transition probability matrix (P;) is equal to:
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0 1 2
e_ﬂit Al(eflzt _efﬂ{[) 1_ ﬂleflzt _/flzefﬂlt
0 I:)oo P01 Poz (/ll - /12) (/11 - ﬂvz)
P =Statel| 0 P, P,|=| O e 1-e
200 O 1 0 0 1

(4-2)
where the diagonal component in P; is a vector of eigenvalues, d=(-A1,12,0),

which is identified by solving dI-Q=0 (I is 3x3 unit matrix).

This means, for example, that the probability of progressing from no

G

disease to the PCDP (0 — 1) during a time period of length t is 1)
N

Epidemiological aspect

A1: annual incidence rate

A2: annual transition rate (1/mean sojourn time)

Po1: Cumulative incidence of disease in the PCDP from normal
Po2: Cumulative incidence of disease in the CP from normal

P1,: Cumulative incidence of disease in the CP from the PCDP
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Likelihood function

The likelihood function based on the prevalent screen in a screening

cohort consisting N individuals is:

_ " Po (Vi) X Poo(Vin) 1, i
LO=L Gy m o) B + P’ 43)

where v, represents age at first screen for m™ subject, x,=1 when m" subject

is detected as positive cases, xm=0 for otherwise.

Suppose there were r-1 rounds of subsequent screens, the likelihood
function based on them was:
r N
L2 () = HH{POl(tji _t(j—l)i )}yji {Poo (tji _t(j—l)i )}l g (4'4)
j=2 i=1
where j represent the " round of screen (j=2,...r), tj —t (1) represents
inter-screening interval between (j -1)™ screen and | screen for i subject, n;
represents number of attendants in the | screen, yji =1 when i™ subject enters
the PCDP during tj—t .1y, Yji =1 otherwise. The total likelihood function, say, L (.)

will be the product of L1(.) and Ly(.).

Table 4-1 Numerical Results from the Swedish Two-County Trial

Age group
40-49 50-59 60-69

Parameters
A1: no disease to 0.00122 0.00176 0.00263

preclinical phase (0.0012-0.0013)  (0.0017-0.0018)  (0.0025-0.0028)
A2: pre-clinical to 0.488 0.320 0.275

clinical phase (0.420-0.556) (0.295-0.345) (0.253-0.297)
Mean Sojourn Time 2.06 3.13 3.66
(1/%2) (1.79-2.38) (2.90-3.39) (3.48-3.86)
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4.4.2 Five-state Markov model with regional lymph node spread or
tumour size for breast cancer (Chen et al, Biometrics 2000)
A stochastic model with three transient (Spo, Su1 and Sio) and two
absorbing states (Sz;, Sz2) and transition rates (A1,A2, A3,A4,A5) representing

either node status or tumour size (< 2cm, >2cm)

Aq EE]

(Soo) (S1)— (Si2)

As=0
(S }———— (S22)
(Soo) : Normal
(S11) : preclinical phase, without nodal involvement (or tumour size < 2cm)
(S12) : preclinical phase, with nodal involvement (or tumour size >2cm)
(S21) : clinical phase, without nodal involvement (or tumour size < 2cm)

(S22) : clinical phase, with nodal involvement or (tumour size >2cm)

States

no pre-clinical clinical

disease N(-) N(+) N() N(+)

0 1 2 3 4

0 (-4 A 0 0O O
110 -(L+4) 4 4 O
Q=210 0 -4, 0 4,
3|10 0 0 A A4

4 (0 0 0 0O O

N(-): without node involvement; N(+): with node involvement
In realisation of breast cancer screening, As should be constrained as 0.
Given the intensity matrix, the derivation of transition probabilities is

straightforward. Referring to the previous section, the procedure used in the
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three state Markov chain model to derive the transition probabilities is also

applicable to the extension of the Markov chain model in this section. The

transition probabilities are

States
no pre-
disease clinical clinical
N(G)  N(+) N(G-) N()
0] 1 2 3 4
0] Poo Poi Poz Poz Posg (4-5)
1 O pll p12 p13 pl4
States 2 0 O P P P
3 0 0 O Pas Pz
4 0] 0] 0] 0] 0]
where
e—(iz+ﬂe)t _ e—ﬂqt (b _ a) x e—/ht —bx e—(ﬂzﬂe)t +ax e—/14t
= —At f = y =
Poo =€ Po1 a Po2 ad
(c—a)xe™ —cxe )l L gxe™
Pos =
ae
(ad +af +df —bf —cd —adf)xe™  (bf +cd —df )xe o)t g™t o=t
Pos =1+ + - -
adf adf d f

B b x (e—ﬂ%t N e—(ﬂﬁ—ﬂs)t)
d

- t
P, =¢€ (fo ) v Pz

] pl3

(bf +cd —df)xe ™" bxe™ cxe ™

_1
Pra = 3% df d f

At — At

P, =€ ' p23:0, p24:1—e
Pss =e v Pay :1_e_ﬂst7

e A) A hb A
A 7 z

e = A = A= 2) o (s = 2) 0y — g — )

_ C X (efzﬁt _ ef(j’ZJrZ’s)t)

Ak Ay

Note that the summation of transition probabilities in each row of the transition

matrix mentioned above is equal to unity, eg. Poo+Po1+Po2tPo3+Pos=1.
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Likelihood function for a case in the five-state Markov model (M-N model)
Suppose one woman has screening history as follows:

® first screen at age 45 -(no disease (0), 540 months),

(i) 2nd and 3rd screen with two-year interval-(no disease (0), 24 months)

(i)  diagnosed as interval cancer with node involvement between 3rd and

4th screen -(clinical cancer with node involvement (4), 14month)

The likelihood function for this individual is:

Poo(540)x Poo(24)x P00(24)X Po4(14)

VNN

1st screen second screen third screen interval cancers
The overall likelihood function is equal to the product of individual likelihood
functions.

The Markov property that given the state at time t, the probability of any
given state after time t is independent of the history before time t implies that
probabilities of successive transitions in the same individuals can simply be
multiplied in the likelihood function as if they were from different individuals.
Thus, the likelihood function can be developed using the numbers of
transitions between states as shown in the Table 4-2 for the Swedish
Two-County trial. For illustration, the likelihood function for the age group

40-49 is given below
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Table 4-2 Number of women randomized at 40-49 years old by detection mode, Two-County Trial

Age groups 40-49
Transition Transition

Detection mode Number history probabilities
and node status (Time, state”) applied
1. First screen
(1) Negative cases 18456 (540,0—-0) Poo
(2) Prevalent cases

-without nodal involvement 31 (540,0-1) Po1

-with nodal involvement 6 (540,0—2) Py,
(3) Interval cancers

(between 1st and 2nd screen)

-without nodal involvement 14 (TSL,0—>3) Poz

-with nodal involvement 9 (TSL,0—~4) Po4
2. Second screen
(1) Negative cases 16396 (24,0-0) Poo
(2) Prevalent cases

-without nodal involvement 35 (24,0>1) Po1

-with nodal involvement 10 (24,0-2) Po2
(3) Interval cancers

(between 2nd and 3rd screen)

-without nodal involvement 12 (TSL,0—-3) Pos

-with nodal involvement 10 (TSL,0—4) Pos
3. Third screen
(1) Negative cases 14437 (24,0-0) Pao
(2) Prevalent cases

-without nodal involvement 30 (24,01) Po1

-with nodal involvement 6 (24,0-2) Py
(3) Interval cancers

(between 3rd and 4th screen)

-without nodal involvement 15 (TSL,0-3) Pos

-with nodal involvement 10 (TSL,0-4) Pos

+TSL=time since last negative screen

Note that: in the model the actual times to occurrence of interval cancers are used.

The likelihood function for the first screen (Active Study Population, ASP)

The above transition probability matrix gives unconditional probabilities.
We, however, need conditional probabilities at the first screen for the ASP
because those found to be free of disease or to have preclinical disease at first
screen are not from an entire cohort followed from birth: women with a
previous (clinical) breast cancer were excluded from the trial. Thus the

probability of being free of breast cancer and of having preclinical breast
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cancer at the first screen should be conditional on having no clinical breast
cancer between birth and first screen.

By this definition, the conditional probability of being free of disease(Sqo)
at first screen, Yoo, is given as:
Yoo=Pr[Soo at first screen conditional on the fact that the there was no disease
(Soo) or preclinical disease only (S1; or S12) between birth and the first screen).
The conditional probabilities of prevalent disease without node involvement,
Y1; and with node involvement, W1,  at first screen are of the same essential

form. In terms of transition probabilities, Yoo, Y11 and ¥, are

Yoo = P
(Foo + Por + Roz)
P -
W, = 01 (4-6)
(Poo + Pos + R2)
P
Vi 92

B (POO + POl + POZ)
Referring to the data in the form of Table 4-1, the likelihood function for first

screen in the age group of 40-49, is equal to

L ) (4 4) = (WOO(tl))18456(Wll(tl))al(WH(tl))6 (4-7)

where t; (=45) is average age at first screen.

The likelihood function for later screens

The likelihood function for later screens is based on the unconditional
probabilities from the transition matrix (4-5). Since the screening interval was
constant and the Markov property assumed to hold as mentioned earlier, the
second and third screens may be aggregated as later screens. Accordingly,
the probabilities of being disease free and of cancers without and with node

involvement are Pqo, Po1 and Pg; respectively. The likelihood function of later
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screens in the age group of 40-49 is:

|—s2 (t,) (4 4s)= (Pooaz))30'833(P01(t2))65(P02(t2))16

where t, (=2) is screening interval

The likelihood function of interval cancers

Since the exact time of diagnosis is known for interval cancers, their
probabilities should therefore be of becoming clinical at the time t; rather than
at some time before 0 and t;. Since the model does not allow the probability of
instantaneous transition from no disease to the CP (the transition between the
transient states can be only to adjacent states), and since we wish to explicitly
allow for the probability of both rapid and slow progression through the PCDP,
we use our limit of accuracy, in this case one month, and further approximate
the correct probability for interval cancers by the compound probability.
Although it is technically possible to use the instantaneous rates in practice this
leads to instability of estimation and precludes explicit modelling of both long
and short preclinical times. Thus, the probabilities for interval cancers without
node involvement (to1) and with node involvement (to,) are:

101(U;)=Poo(Ui-1) Po3(1) +Po1(ui-1)P13(1) and

T02(U')=Poo(U’j-1)P0a(1)+Po1(u’j-1)P14(1)+Po2(u’j-1)P24(1)
where u; and u’; are time since last negative screen for interval cancers with
and without node involvement, respectively

The likelihood function for interval cancers in the age group 40-49 is:

41 29
Lss(ui,u’tj) - 1__1[2-01(ui) XF!:Toz(u D)
i= i=

The derivation of the likelihood function for a five-state model is
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particularly difficult for data without interval cases. Chen et al has proposed a
reparameterization procedure in conjunction with external information on the
proportion of node negative cases for a five-state Markov model to solve this

issue (Chen et al, Biometrics 2000).

4.5 Examples
4.5.1 A Markov chain model to assess the efficacy of screening for
non-insulin dependent diabetes mellitus (NIDDM)

The high prevalence and severe consequences of non-insulin dependent
diabetes mellitus (NIDDM) in Taiwan calls for urgency to detect this disease in
the asymptomatic phase. However, the efficacy of early detection of NIDDM is
highly dependent on its natural history from the disease free, through the
asymptomatic phase, symptomatic phase and death from NIDDM or other
causes. In order to project the above progression, a five-state
illness-and-death Markov chain model was proposed to estimate these
transition parameters using data from two rounds of a blood sugar screening

program for NIDDM in Puli, the middle area of Taiwan.

disease A1 asymptomatic A  symptomatic A death from
free > phase > phase > NIDDM

(state 0) (state 1) (state 2) (state 3)

i 1)) i

other causes of death  (state 4)

A1 : incidence of asymptomatic cases

A2 : transition rate from asymptomatic to symptomatic phase

A3 : hazard rate from symptomatic phase to death from NIDDM

1, : hazard rate from disease free to other causes of death

1, : hazard rate from asymptomatic phase to other causes of death
i, : hazard rate from symptomatic phase to other causes of death
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Results showed that the annual incidence for asymptomatic NIDDM was
0.011 (95% CI: 0.0083-0.01379) and the average duration between the
asymptomatic and symptomatic phases (called the sojourn time) is 8 years
(95%CI: 5.74-11.29). The 10-year survival rate for asymptomatic NIDDM
(79.35%) is better than that for symptomatic NIDDM (69.45%). Prediction of
deaths from NIDDM was performed to assess how the efficacy of screening for
NIDDM varied by different screening frequencies (annual, biennial, four-yearly
and the control group). Results indicated there is no substantial difference in
mortality reduction from NIDDM among the annual, biennial and four-yearly
screening regimens. By contrast, a four-yearly screening regimen significantly
reduced deaths from NIDDM by 40% (95% CI: 1%—62%). A long sojourn time
and a substantial mortality reduction suggest that a four-yearly screening

regime for NIDDM would be most effective and feasible in Taiwan.

Table 4-4 Results of the five-state Markov illness-and-death model

Parameters Annual 95% ClI

transition rate

A, (Disease free-Asymptomatic NIDDM) 0.01067 0.00826-0.01379
A, (Asymptomatic NIDDM-Symptomatic 0.12418 0.08858-0.17409
NIDDM)

A, (Symptomatic NIDDM-Death from 0.02267 0.00687-0.07480
NIDDM)

u, (Disease free-Other causes of death) 0.00093 0.00062-0.00140
u, = u; (Asymptomatic NIDDM or 0.01378 0.00561-0.03384

Symptomatic NIDDM-Other causes of death)
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4.5.2 Mover-Stayer Mixture Model-Phenotypic drift for breast cancer

A mover-stayer mixture model was applied to evaluate the proportion of

tumour with potential of progression as follows:

A stayer is the tumour without potential of progression and the intensity

transition matrix follow M; :

no disease Preclincial phase Clinical phase
Grade1/2 Grade3 Gradel/2  Grade3
S00 S11 S12 SZl S22
-(A,+4,) Ay A, 0 0
0 -, 0 A, 0
M, = 0 0 - Ag 0 As
0 0 0 0 0
0 0 0 0 0

A mover is the tumour with potential of progression and the intensity

transition matrix follow M,
no disease Preclincial phase Clinical phase

Grade 1/2 Grade 3 Gradel/ 2 Grade3

SOO Sll SlZ SZl 822
A+ 4) A , 0 0
0 (4, + A) % l 0
M, = 0 0 - s 0 A
0 0 0 0 0
0 0 0 0 0

Building up the likelihood function in accordance with a mixture
distribution from M; and M, enables one to estimate the proportion of tumours

with potential of progression and transition rates
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Table 4-5 Results from the two-county county trial

Age groups
40-49 50-59 60-69
Transition
parameters &
Mixing weight
no disease to 0.00096 0.00166 0.00227
preclinical grade 1/2 (0.00082-0.00110) (0.00097-0.00235) (0.00192-0.00262)
Ao no disease to 0.000262 0.00011 0.00036
preclinical grade 3 (0.00013-0.00039) (0.00000-0.05000) (0.00002-0.00070)
A3 preclinical gradel/2 to 0.0630 0.6672 0.2168
preclinical grade 3 (0.0005-7.7369) (0.0029-150.70) (0.0173-2.8107)
s preclinical gradel/2 to 0.6944 0.3071 0.2791
clinical grade 1/ 2 (0.5013-0.8874) (0.0013-7.0148) (0.2156-0.3426)
As preclinical grade 3 to 0.6655 0.4726 0.3786

clinical grade 3

(0.4412-0.8898)

(0.1452-0.8000)

(0.2716-0.4856)

Proportion of tumours
without potential of
progression

0.1921
(0.0158-2.3350)

0.5158
(0.2630-1.0120)

0.4917
(0.2506-0.9664)

Results indicated that

(1) 81% of tumours in women aged 40-49 have the potential to deteriorate

from gradel/2 to grade 3 (although they need not necessarily do so if the

tumour is detected early) and only 19% will always have the same grade.

(2) For the age groups of 50-59 and 60-69, 50% have potential to deteriorate

and 50% always remain the same.

This means that in terms of grade, the 40-49 group is more susceptible to

phenotypic drift than over 50.
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4.5.3 Estimation of natural history parameters of breast cancer based on
non-randomized organized screening data - subsidiary analysis of
effects of inter-screening interval, sensitivity, and attendance rate on
reduction of advanced cancer (Wu et al, BCRT 2012)

Estimating the natural history parameters of breast cancer not only
elucidates the disease progression but also make contributions to assessing
the impact of inter-screening interval, sensitivity and attendance rate on
reducing advanced breast cancer. We applied three-state and five-state
Markov model to data on a two-yearly routine mammography screening in
Finland between 1988 and 2000. The mean sojourn time was computed from
estimated transition parameters. Computer simulation was implemented to
examine the effect of inter-screening interval, sensitivity, and attendance rate
on reducing advanced breast cancers. In three-state model, the mean sojourn
time was 2.02 years and the sensitivity for detecting preclinical breast cancer
was 84.83%. In five-state model, the mean sojourn time was 2.21 years for
localised tumor and 0.82 year for non-localised tumor. Annual, biennial and
triennial screening programs can reduce 53%, 37% and 28% of advanced
cancer. The effectiveness of intensive screening with poor attendance is the
same as that of infrequent screening with high attendance rate. We
demonstrated how to estimate the natural history parameters using a service
screening program and applied these parameters to assess the impact of
inter-screening interval, sensitivity, and attendance rate on reducing advanced
cancer. The proposed method makes contribution to further cost-effectiveness
analysis. However, these findings had better be validated by using a further

long-term follow-up data.
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Table 4-6 Estimated parameters for progression rate and the sensitivity in three-state

Markov model and five-state Markov model, Pirukamma, Finland

Parameters Estimates 95% ClI
Three-state model®
50-59
Normal — Preclinical cancer (A,) 0.0025 (0.0022, 0.0028)
Preclinical cancer — Clinical cancer (A,) 0.4956 (0.3816, 0.6097)
Mean sojourn time (1/A;) 2.02 (1.64, 2.62)
Sensitivity 84.83% (74.88%, 94.79%)
Specificity 99.97% (99.89%, 100%)
50-54
Normal — Preclinical cancer (A,) 0.0025 (0.0022, 0.0027)
Preclinical cancer — Clinical cancer (A,) 0.5207 (0.4057, 0.6356)
Mean sojourn time (1/A;) 1.92 (1.57, 2.46)
Sensitivity 83.75% (71.26%, 96.23%)
55-59
Normal — Preclinical cancer (A;) 0.0025 (0.0021, 0.0029)
Preclinical cancer — Clinical cancer (A,) 0.4269 (0.3131, 0.5408)
Mean sojourn time (1/A,) 2.34 (1.85-3.19)
Sensitivity 89.48% (76.56%, 100%)
Five-state model
50-59
Normal — Preclinical N(-) (A;) 0.0025 (0.0023, 0.0027)
Preclinical N(-) — Preclinin\I N(+) (A) 0.3371 (0.2549, 0.4192)
Preclinical !\l(—) —> CllnlW)ﬁ’é) 0.2897 (0.2186, 0.3609)
Mean sojourn time ( ) 2.04
Preclinical N(+) — Clini 4) 1.2230 (0.9259, 1.5201)
Mean sojourn time ( &%)+ 37774 0.82 (0.66, 1.08)
Sensitivity of preclinical N(-) cancer 68.21% (54.63%, 81.79%)
®Period as a covariate for i,
Normal — Preclinical N(-) (A1)
Period 1988-1991 0.0026 (0.0023, 0.0028)
Period 1992-1996 0.0026 (0.0022, 0.0031)
Period 1997-2000 0.0020 (0.0015, 0.0028)
Preclinical N(-) — Preclinical N(+) (Ay) 0.3298 (0.2488, 0.4109)
Preclinical N(-) — Clinical N(-) (As) 0.2828 (0.2126, 0.3531)
Preclinical N(+) — Clinical N(+) (A4) 1.2052 (0.9054, 1.505)
Sensitivity of preclinical N(-) cancer 67.56% (54.04%, 81.07%)

Goodness-of-fit for three-state model X* = 2.69, d.f. =4, p-value =0.61
Goodness-of-fit for five-state model X = 12.12,d.f. =7, p-value =0.10
Goodness-of-fit for five-state model (piecewise method) X = 37.88, d.f. = 29, p-value =0.13

% the estimation were independently performed for three age groups

b baseline period: 1988-1991



Table 4-7 Relative risk of non-localised breast cancer of different screening regime by

screening sensitivity

Control  Screening annually Screening Screening triennially
group biennially
Sensitivity of
localised tumor
68.2% 2 1 0.47 (0.41,0.55)  0.63 (0.55, 0.72) 0.72 (0.63, 0.82)
60% 1 0.51 (0.44, 0.59) 0.67 (0.59, 0.76) 0.75 (0.66, 0.85)
80% 1 0.42 (0.36, 0.49) 0.58 (0.50, 0.66) 0.67 (0.59, 0.77)
90% 1 0.38 (0.33, 0.45) 0.54 (0.47, 0.62) 0.64 (0.56, 0.73)

& estimate from five-state Markov model

Table 4-8 Relative risk of non-localised breast cancer by attendance rate with 68.2% sensitivity

for localized breast cancer

Attendance rate Control Screening Screening Screening triennially
group annually biennially

100% 1 0.44 (0.38, 0.51) 0.61 (0.53, 0.69) 0.70 (0.62, 0.80)

90% 1 0.49 (0.43, 0.57) 0.65 (0.57, 0.74) 0.73 (0.64, 0.83)

60% 1 0.66 (0.58, 0.75) 0.76 (0.67, 0.86) 0.82 (0.73, 0.93)

30% 1 0.83 (0.74, 0.94) 0.88 (0.78, 0.99) 0.91 (0.81, 1.03)

& Estimate from five-state Markov model

Fig. 4-1 Cumulative incidence of non-localised tumor by different screening regimes
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4.5.4 Model over-diagnosis in screening program via multistate model
(Wu et al, Biometrical J 2012)

Wau et al further proposed a stochastic model for survival of early prostate
cancer with adjustments for leadtime, length bias, and over-detection and
applied it to a randomized controlled trial for PSA screening for prostate
cancer.

To deal with over-diagnosis, they used two intensity matrices: (i) Q(:) for
those with potential to progress to the CP (so-called mover); and (i) Q3(-) for
those without potential to progress to the CP (so-called stayer). The reason for
two matrices is to capture the over-detection problem: it is assumed that one
group of individuals can never progress to state 2 (stayers) and that these are

different from the group who do not progress to state 2 but could have done

(movers).
Normal PCDP CcP PCadeath OCD
(State 0) (State 1) (State 2)  (State 3)  (State 4)
Normal (State 0) (% ()+uy () % () 0 0 Uy ()
PCDP (State 1) 0 ~(4()+u () A() 0 u, ()
Q(~)= CP (State 2) 0 0 _(ﬂz (-)+u2(-)) /12() u, ()
PCa death (State 3) 0 0 0 0 0
OCD (State 4) 0 0 0 0 0
and
Normal PCDP CP PCadeath OCD
(State 0) (State 1) (State 2)  (State 3)  (State 4)
Normal (State 0)( —(4 (-)+U,(-)) 4 (") 0 0 U ()
PCDP (State 1) 0 —u, (+) 0 0 u, (+)
Q° ()= CP (State 2) 0 0 0 0 0
PCa death (State 3) 0 0 0 0 0
OCD (State 4) 0 0 0 0 0
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where PCa refers to prostate cancer; Ao(-), A1(-), and Ax(-) represent the
incidence rates of pre-clinical prostate cancer (state 0->state 1), the transition
rate from the PCDP to the CP (state 1->state 2), which determines the
distribution of sojourn time, and the hazard rate of prostate cancer death
among prostate cancers in the CP (state 2->state 3); and uo(-), ui(-), and ux(-)
are three hazard rates of death from other causes (state 4) for respectively
subjects in state O, state 1, and state 2. Again, the transition probability matrix
can be derived from the backward Kolmogorov equation (Cox and Miller, 1965),

and has been used for breast cancer screening (Chen et al, 1997).

4.5.5 Evaluation of the different screening frequencies (Chen et al,
Cancer 1999)

To assess the effect of inter-screening interval on the efficacy of
screening, one can conduct the computer simulation. As in Chen et al (1999),
they use a simulation program to assess the effect of colorectal cancer
screening for a high-risk group based on a split design. This design is a variant
of stop-screen design. The unique characteristic of this design is that at the
time the last screening is offered to the screened group, a screening is also
offered to all those in the control group. The merit of this design is that it
enhances the comparability of cancer cases identified in the control and
intervention arms. From the practical aspect of screening, this may also partly
resolve the ethical issue for the control group. This design was used in some
Swedish randomized trials for breast carcinoma, such as the Stockholm trial
and the Two- County trial. A hypothetical population of 25,596 subjects was
randomly assigned to four groups: annual, biennial, and triennial screening

regimes and a control group. Each group consists of 6399 subjects (as in the
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study cohort), similar to the sample size in the current study. One hundred

percent attendance and 100% sensitivity was assumed. To predict the number

of cases of preclinical and clinical CRC and the corresponding deaths from

CRC, transition probabilities for 1-year, 2-year, and 3-year inter-screening

intervals were calculated using the estimated transition parameters from the

5-state Markov model. Taking the control group as a baseline group, relative

mortalities for annual, biennial, and triennial regimes were predicted.

Table 4-7 The Relative Mortalities for Annual, Biennial, Three-Yearly Screening

Regime Compared to the Control Group, TAMCAS Screening Project

Estimated number of cases Relative
. Risk (RR)
First Second Interval Deathof OCD 95% CI
of death
screen  screen  cancer CRC
from CRC
Annual 70.46  130.85 25.03 41.97 38.68 0.74 (0.50~1.10)
Biennial 70.46  110.05 43.88 43.47 39.53 0.77 (0.52~1.14)
Three-yearly 70.46 93.63 58.08 44 .94 40.35 0.79 (0.53~1.17)
Control 68.64  ----- 132.94 56.58 46.83 1

Table 4-8 Results of the simulation for predicting asymptomatic cases, symptomatic

cases and deaths from NIDDM by different screening regimens

First screen Second Symptomati Deaths from Deaths Relative
Asymptomatic  screen o NIDDM from mortality
NIDDM  Asymptoma NIDDM other
tic causes
NIDDM
Annual 777.37 701.77 44.19 129.99 70.76 0.54
Biennial 777.37 655.18 83.70 134.64 75.95 0.56
Four-yearly 777.37 571.75 150.38 144.00 86.18 0.60
Control group 709.29 - 638.72 241.24 184.96 1
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45.6 The natural history and computer-simulation approach to

demonstrate the effectiveness prediction and sample size calculation for

population-based colorectal cancer screening (Chiu et al., JECP, 2011).

(A) Estimate the natural history of colorectal cancer: transition rates from
normal to preclinical and clinical stage

(1) Five-state natural history of colorectal cancer

Mean sojourn time MST:

(XIQEEY (VMST) 275 years g 1.38years T
0.22 0.72 Natural history
Clinical Dukes’ A,B Clinical Dukes’ C,D
|
T
0.03 0.17
Prognosis*

Death of CRC I

(2) Empirical data from screening
A. RCT by Hardcastle et al. from UK
B. RCT by Kronborg et al. from Denmark
C. Data included prevalent screen-detected, subsequent
screen-detected, interval cancer, non-responder
(3)  Model validation
A. Internal validation
Examination for observed and expected numbers using Pearson
Chi-squared test
B. External Validation
Using observed data from control group with different detected
modes

(4) Meta-analysis for natural history
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(5) Computer-simulation
A. Markov decision tree
B. Transition probabilities from transition rate
C. Parameters about the screening scenario, ex. first round screening
information from Finland (attendance arte, compliance rate of

colonoscopy) or literature (sensitivity, specificity of screening tool)

(B) Predict and compare the effectiveness of surrogate endpoint (stage
distribution) of colorectal cancer by different screening strategies

(1) Outcome with Dukes’ stage distribution were simulated from both

invited and control arms

(C) Predict and compare the effectiveness of mortality of colorectal cancer by

different screening strategies

(1) Taking the prognosis of colorectal cancer into account

(2) Prognosis (survival rate) by different stage from cancer registry (before

screening implementation)

(D) Calculate the required sample size for randomized trial using either
colorectal cancer mortality or surrogate endpoint for program evaluation
(1) Based on the Chen’s method (Chen et al., BJC, 1999), according to the
RR of surrogate and primary endpoint, required sample size and power
were computed.
(2) Surrogate endpoint provides an opportunity for early evaluation of
cancer screening and reducing required sample size for hypothetical

study design.
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4.5.7 Population-based Hypertension Screening (Tseng et al., 2013, Am J

Hypertension)

We used population-based screening data to identify the multiple risk

factors responsible for multi-step transitions between prehypertension and

hypertension.

Temporal Natural Course of Hypertension

According to the JNC 7, blood pressure can be classified into four states:

normal (systolic blood pressure [SBP] <120 mmHg and diastolic blood

pressure [DBP] <80 mmHg), prehypertension (SBP 120-139 mmHg or DBP

80-89 mmHg), stage 1 hypertension (SBP 140-159 mmHg or DBP 90-99

mmHg), and stage 2 hypertension (SBP >160 mmHg or DBP >100 mmHg) to

construct a four-state illness model in continuous time that delineates natural

course of disease progression from normal to stage 2 hypertension and

regression from prehypertension to normal.

Y

Normal [ Prehypertension

\ 4

Stage 1
hypertension

Y

Stage 2
hypertension
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Figure The distribution of risk scores for stage 2 hypertension under different
intervention scenarios

Score for Stage 2 Hypertension (Ma|e) ® o o o o No intervention (mean: 45.9, sd: 13.2)
e a» o TC + AC + Betel + BMI (mean: 39.0, sd: 11.5)

e TC + AC + Betel + BMI + Drink + UA (mean: 30.0, sd: 10.3)
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Figure Five-year predicted cumulative probabilities for stage 2 hypertension under
different intervention scenarios, 1999-2002
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Strategy 1 for male: “4-component intervention” with TC + AC + Betel +BMI
Strategy 2 for male: “6-component intervention” with TC + AC + Betel +BMI + Drink + UA
Strategy 1 for female: “5-component intervention” with TC + AC + BMI + Waist + UA
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4.6 Case-cohort design for the disease natural history and the
application of natural history for treatment efficacy (Chen et al, Stat Med,

2004)

4.6.1 Study design

The study design was based on a variant of case-cohort design. Firstly, in
the traditional case-cohort design, the disease status is usually classified into
two states, disease and non-disease. By contrast, our design was tailored for
multi-state disease status. Secondly, the traditional case-cohort design follows
the whole cohort to ascertain cases at different times and randomly selects a
proportion of controls from the original cohort. In our design, since subjects in
the cohort may progress to different disease states at different times in the light
of the specific disease natural history, a series of random samples, instead of

accruing all cases, for each state were selected for estimating parameters.

4.6.2 Bayesian inversion for a non-standard case—cohort design

In the three-state Markov model, for example, related to pre-cancerous
lesions for oral cancer and colorectal cancer, we have three states (j=3),
normal, leukoplakia, and invasive carcinoma for oral cancer, and normal,
adenoma and invasive carcinoma for colorectal cancer, respectively. Following
the above design, three sets of random samples for each state were selected
for estimation. Let S; (j=1,2,3) be denoted as an indicator of whether a subject
in the j group was sampled.

Let mp, mi1, m be sampling fractions for normal, pre-cancerous lesion

(adenoma and leukoplakia) and invasive carcinoma at time t;.
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7, =P(S=1]0—>0,t,)
7, =P(S=1]0>1t,)

7, =P(S=1]0>2,t,)

t, may be age at diagnosis or time since last negative examination
The probability of being the j state at time t; given a subject was sampled (S=1)

is:

P(0— j,t|S=1)

_ P(S=1]0— j,t,)P(0— j,t,)
" P(S=110-0,t)P(0—>0,t)+P(S=1]0>1t)P(0>1Lt,)+P(S=1]0—> 2,t, )P(0 > 2,t,)

~ PO j.t)
7,P(0—>0,t,)+7,P(0 > 1t,)+7,P(0 > 2,t,)

i=0, 1, 2

Chen et al. (Chen et al., BJC, 2003) applied the colorectal cancer natural
history model together with the adenoma—carcinoma sequence associated
with adenoma size and histological type to estimate dwelling times, the
efficacy of colonoscopy, and the surveillance of polyp after polypectomy. The
estimates of overall efficacy of colonoscopy in reducing CRC is 73% for the
model allowing for de novo carcinoma and 88% for the model without

considering de novo carcinoma theory.

Shiu et al. (Shiu, et al., EJCP, 2004) simultaneously quantified the effects

of three risk factors, including betel chewing, smoking, and drinking habits, on
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occurrence of oral leukoplakia and malignant transformation to oral cancer.
Subjects who chewed betel quid were at greater risk of leukoplakia (adjusted
odds ratio (OR) 17.7 (9.03-34.5)) but there was no significant effect on
malignant transformation (OR 1.04 (0.61-1.76)). Smoking played a major role
in the onset of leukoplakia (OR 4.26 (2.21-8.23)) but a minor role in malignant
transformation (OR 1.36 (0.69-2.68)). Alcohol was positively associated with
malignant transformation (OR 2.37 (1.47-3.82)) but unrelated to occurrence of
leukoplakia (OR 0.76 (0.04-1.43)). This study also estimated the treatment

efficacy based on a three-state Markov model.

Table 4-9 Parameter estimation and treatment efficacy based on a three-state Markov

model

Parameters Progress rate 95%Cl

1. Nature history

Normal — Leukoplakia(\) 0.0016 0.0013~0.0020
Leukoplakia — Oral Cancer(A\y) 0.0979 0.0759~0.120
Average Duration of Malignant
. . 10.2 8.3~13.7
transformation of leukoplakia(years)
2. Progress rate after treatment
Leukoplakia — Oral Cancer(Ar) 0.0267 0.0204~0.0349
3. Efficacy of treatment(1-At/Ay) 72.7% 57.2~88.3%
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4.7. The effects of covariates on multi-state transitions

4.7.1 Assessing chronic disease progression using non-homogeneous

exponential regression Markov models (Heish et al, Stat Med 2002)

Modeling the impact of relevant covariates on multi-state transitions has a
significant implication for prevention of chronic disease.
(1) Covariates acting as an initiator
* for onset of preclinical screen-detectable breast cancer (PCDP)
* primary prevention by removing the factor should be addressed
(2) Covariates acting as a promoter
* accelerating the progression from PCDP to the CP
* different screening policies such as more frequent screening for

people carrying this factor might be required.

Addressing the association between risk factors and the disease natural
history may be even more important for those removable variables such as
obesity or smoking. Medical consultation at regular intervals for different
characteristics among women can be suggested based on this knowledge.

The transition rates from abovementioned models may vary with time.
Heish et al. proposed non-homogeneous models to consider age-dependent
incidence rate of preclinical disease, and to incorporate covariates of interest
to the multi-state model (Hsieh et al, 2002).
(State 0) Ay, (1) (State 1) A,(1) (State 2)

 ——  ——
Normal PCDP Clinical phase
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The model specification was similar to previous ones, expect that the
transition rates was function of time and covariates. Taking three-state Markov

process as an example, the transition intensities for the process are

o P{X(@+dt) =X () =i}
O

Zit)y=->2;  for i=0,1.2

i#]

for i,j=0,1,2 and i# ]

They also used the exponential regression models to take account of
covariate effects on intensities to model the different characteristics of random

process between individuals. Let W denote a vector which contains the values
of all p covariates of an individual, i.e.,W:[Wl,WZ,---Wp]T, and 4jjo (t) denotes

the baseline intensity at W=0. The intensity for an individual with covariate W is
then modeled as

A (W)= 2, ()x exp (B;W)
where B; is a regression coefficient vector with components (5;, B Bip)
corresponding to Wy, W,
To apply a Weibull distribution with scale parameter x and shape

parameter k;, the intensity formula is:

201 (tX)= Zgg0(t)xexp (B W), where A, (t) = pak,t

Similar to transition from the PCDP (state 1) to clinical phase (state 2),

A (tX)= Ay (DxeXp (BL2W), Where Gy (t) = skt
In their study, we also developed a SAS program using PROC IML to

estimate the parameters. The relative computer program was developed in

2004 by Wu et al. (2004)
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Model selection: Likelihood ratio test can be used for selecting the
parsimonious model among a series of nested models, not only include the
addition of significant covariates or the deletion of superfluous covariates but
also compare the models with covariates affecting both types of transitions
(state O to state 1 and state 1 to state 2) with those that only include the

transition from state O to state 1 or from state 1 to state 2.

Model diagnosis: We may compare the observed number of transitions
between particular states with the expected, and a Pearson y? test statistics

can be used to judge whether there is a good fit for the model.

4.7.2 Individually tailored screening or breast cancer with genes, tumour
phenotypes, clinical attributes, and conventional risk factors (Wu et al,

Brit J Cancer 2013)

(1) Health policy makers are concerned that the harm (false negative and false
positive cases) and cost of screening should be minimized and the benefits,
mainly measured by the reduction of mortality from breast cancer,
maximized. This may be relieved by using an individually tailored screening
with emphasis on

B optimal age of screening
B inter-screening interval and
B the expedient use of alternative image technique.
These subsidiary issues are related to individual variation on the
temporal natural history of breast cancer from free of breast cancer,

through the pre-clinical detectable phase (PCDP) and finally to clinical
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phase (CP). Screen-detected breast cancer represents the PCDP whereas

clinically-detected one (such as interval cancer) stands for the CP.

(2) With the advent of genetic and biological markers for breast cancer,
individually tailored screening for breast cancer can now be achieved by
making use of information on genes, conventional risk factors, clinical

attributes, and relevant tumor phenotypes such as HER-2/neu.
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Table 4-10 The recommend age to start screening and inter-screening interval
at different percentiles of risk score

Percentile Age to begin Inter-screening Alternative imaging tool
screening interval (year)’ (Threshold/Study) ¥
90-100 29 0.4 (4.8 months) M+MRI (94 / Kuhl’s Study)
80-90 34 1 M+U (85™ / Berg’s study)
70-80 39 1.5=> Relduce M+U (76™ / Kuhl'study)
False - _
60-70 44 2 Negative
50-60 50 3
40-50 57 4
N Reduce
30-40 60 8
False
20-30 60 10 Positive
10-20 60 10
0-10 60 10

M: Mammography

U: Ultrasound
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