Workbook for Biostatistics

On

Concepts of Statistical Inference

Prepared by:

Bandit Thinkhamrop, Ph.D. (Statistics)

Associate Professor of Biostatistics

Department of Biostatistics and Demography, Faculty of Public Health

Khon Kaen University, THAILAND

E-mail: bandit@.kku.ac.th

INTRODUCTION:

A good research needs to have involved an important issue, had useful objectives, used sensible design, used adequate sample size, performed appropriate analysis, and drawn reasonable inferences from the findings. Statistics plays a very important role not only on analysis but also on the other components.

Statistics is a curious amalgam of mathematics, logic and judgement. It is logical process that cause more difficult than mathematics- the principles of good design, and the concepts underlying data analysis and interpretation (Altman, 1991; page 9).

This workbook is designed for participants who have a limited background in mathematics and statistics. It is believed that if participants can be convinced that statistics is a very important tool and useful for their professional, they will then open themselves for this difficult subject. Once they understood the key concept behind basic statistics, they will find their own way in trying to understand a more complicated statistical methods. An example of the evidence of success, reported by a participant of a previous a course in which this workbook had been used, is as quoted - "The class has been finished long time ago but I found many of my classmates keep on reading statistics books. I bought several books of this kind for myself in which I have never even taken a glance on it prior to the course." However, participants who gained a little from this are not abnormal. But this little gain is hopefully a great starting point of the participants.

OBJECTIVES:

Upon completion of this workbook, participants should be able to:

- 1. describe the underlying "core" concepts of statistical methods,
- 2. outline the principle of choosing appropriate statistical methods,
- 3. outline important steps in data analysis including examining the data, describing the study sample, and answering the research questions,
- 4. describe the "core" concepts underlying statistical inference,
- 5. interpret correctly the confidence intervals and the p-value, and
- 6. describe how to apply probability theory in research practice

CONTENTS:

PART 1: PRETEST	2
PART 2: STATISTICAL INFERENCE	3
PART 3: CONFIDENCE INTERVAL VS. P-VALUE	17
PART 4: POST-TEST	18
PART 5: PROBABILITY THEORY AND	Error! Bookmark not defined.
PART 6: THE PROBABILITY DISTRIBUTIONS	Error! Bookmark not defined.
1. Probability theory	Error! Bookmark not defined.
2. Binomial distribution	Error! Bookmark not defined.
3. Poisson distribution	Error! Bookmark not defined.
4. Mathematical Calculations	Error! Bookmark not defined.
5. Excercise	Error! Bookmark not defined.
APPENDIX 1 : Statistical Tables	20
APPENDIX 1 · Summary	24

PART 1: PRETEST

such results.

	controlled trial of a new treatment led to the conclusion that it is significantly better an placebo (p-value < 0.05).
W	hich of the following statement do you prefer?
[]1. It has been proved that treatment is better than placebo.
Г	12. If the treatment is not effective, there is less than a 5 percent chance of obtaining

[]3. The observed effect of the treatment is so large that there is less than a 5 percent chance that the treatment is no better than placebo.

[]4. I do not really know what a p-value is and do not want to guess.

Source: Wulff, H.R., Andersen, B., Brandenhoff, P., and Guttler, F. (1987) What do doctors know about statistics?. Statistics in Medicine, 6, 3-10.

	Justifications of the answer:
L	

PART 2: STATISTICAL INFERENCE

1. Followings are parts of unlimited item of data. Let we call these the <u>target population</u>. The data represent the number of cigarettes smoked per day reported by each member of a community. Assuming these data are located at random in this long piece of paper, lists of items within the magnifying glass are what we can clearly see, i.e. what we only have at hand. Let we call these the <u>sampling frame</u>. Now please randomly selected your study sample from the sampling frame with the sample size of 10.

2	α . List all of your samples (n = 10)

3. Construct frequency table for weight of the student of n = 10

Number of cigarettes per day	Frequency	Percent	Cumulative percentage
S 1 V			
Total			

Question: For how many percents of the sample smoke 3 or more cigarettes per day?.....%

4. Construct a histogram and then superimpose by a curve covering the same size of area, i.e., n blocks or 10 blocks for this example.

Question: For how many percents of the area under the curve corresponds to smoking of 3 or more extreme?.....%

If we can validly assume that the distribution in anywhere in Thailand is similar to what was found by this study, how many people smoking 3 or more cigarette per day within a community of 400,000 population?

5. Describe type of the distribution of weight
[] Symmetry
[] Left skew (negative skew)
[] Right skew (positive skew)
Others
6. Followings are hypothetical data "A study of annual income per capita among Thai people found that 80% were poor (poor is classified as those whose income of less than 20000 bahts per year). The range is as small as 500 bahts to several thousand million bahts"
6.1 Construct the approximate the frequency curve to reflect the findings
Number of population
- Trainion of population
Annual income (Baht
Timear meome (Bank
6.2 What are the income which make the area under the curve covering 80% of total Thai
population.
How did you get that:
(Note that this is similar to the question for parameter estimation, i.e. it is to obtain the
lower and upper limit of a quantity that cover a specified magnitude of proportion or
probability)
6.2. What is the machability of having found morals who have the annual income of 20,000
6.3 What is the probability of having found people who have the annual income of 20,000 Bahts or higher:
How did you get that:
How did you get that.
(Note that this is similar to the question for testing hypothesis i.e. it is to obtain the
(Note that this is similar to the question for testing hypothesis, i.e., it is to obtain the probability from a quantity which is calculated from comparing the observed estimate
probability from a quantity which is calculated from comparing the observed estimate

7. Examine the frequency curve reflecting the marks of biostatistics examination for three classrooms bellow and then answer the questions:

Class A . Class B .	be the types of							
7.2 What is the main different of Class B and C								
Class A . Class B .	s the most ap						 	
	marize about						are	
9. Write on your own word regarding the important of examining the distribution of data								
10. Sampli 10.1 Write	ing variation e down the ng survey. T	mean numb	er of cigare	ttes per day	you have		om your	

10.2	If	some	eone	conclud	e their	findings	based	solely	on	the	statistic,	what	kind	of
	con	nment	s you	a will ma	ke									
			2											
														• •

10.3 Construct a histogram of the mean number of cigarettes per day superimposed by a frequency curve

10.4 LSt	imate the m	lean of the	sampie mea	n number	of cigarette	s per aa	ay irom	ıne	grapn
shown	above =		•						

Describe how did you guess that amount

- 10.5 The mean number of cigarettes per day obtained from all 115 subjects was
- 10.6 Let's summarize:
- 10.6.1 From the data of "n" of 10, we get the sample mean. The mean here is called the "statistics" denoted by \overline{X} , pronounced x-bar.
- 10.6.2 From the data of "N" of 115, we get the population mean. The mean here is called the "parameter" denoted by μ, pronounced mu.
- 10.6.3 From the repeated sample, we get the mean of the sample mean which is equivalent to the population mean.
- 10.6.4 What we aim to estimate is the *parameter*, i.e., the population mean in this example. In reality, we cannot do like #10.6.2 for several reasons and thus, almost all situations, the parameter is unknown. The repeated sample (in #10.6.3) told us that there is the way to get the parameter without having been collected the data from all members of the population. But how? No body did like #10.6.3 too. We did a study only once. What we have at hand now is only the *statistic*, i.e., the sample mean (in #10.6.1) which we are *not sure* at all whether or not it closes to the parameter. Thus we need to quantify the "*not sure*" so that we can tell about the parameter using the statistic in terms of "*how many percent sure*". The *percentage* and *probability* in this sense are closely related.

- 11. Try to understand the Central Limit Theorem
- 11.1 Compare the distribution of the three types of data from the smoking survey.

Fig. 1. Distribution of the data from all members of the population (N = 115).

Fig. 2. Distribution of the data from a sample of size n = 10

Fig. 3. Distribution of the data from repeated sample of size n = 10

Comments:		 	 	 	 	
	• • • • • •	 	 	 	 	
	• • • • • •	 	 	 	 	

11.2 From the information in Part 3, Number 4.1, regarding the hypothetical data that "A study of annual income per capita among Thai people found that 80% were poor (poor is classified as those whose income of less than 20000 bahts per year). The range is as small as 500 bahts to several thousand million bahts". If several researchers doing the same study. The mean income they obtained from their study can be used to construct a frequency curve as the bellow figure.

Num	lber of samples
	Annual income (Baht
	ibe in the probability words about a guy who earn 50,000 Bahts annually:
11.3	Back to the smoking survey, what shape of the distribution would be if all esearchers increase the sample size to 50?
	The middle of the curve, i.e. the mean, is (the same / smaller / larger).
	The base of the curve is (the same / narrower / wider).

11.4 We have seen from #11.3 that the width of the base of the curve is affected by sample size. Such width quantify the spread or the deviation of the data. Let's calculate the standard deviation of your smoking survey data. Firstly calculate the mean. Secondly subtract each data from the mean, then square this amount. Thirdly sum all the square of the difference between the data and its mean. Fourthly divided the sum by the sample size. This amount is called "variance". Square root of this amount is the standard deviation. We can write in formula as:

$$SD = \sqrt{\frac{\sum (X - \overline{X})^2}{(n-1)}}$$

Therefore, your SD is

This is the SD of your sample size of 10.

11.5 Do the same for SD of sample mean

Therefore, the SD of the sample mean is

This is called the standard error, denoting SE.

- 11.6 Let's divided SD obtained in #11.4 by square root (n), you get
- 11.7 Thus SE is approximately equal to SD divided by square root (n).

11.9 Let's summarize:

We have known that we can estimate the population mean without having been collected the data from all members of the population, by estimating it from the sampling distribution obtained from the repeated samples. But we still no hope since nobody does the repeated sample. Then the central limit theorem told us that whatever the distribution of the population data, the sampling distribution always become symmetry. It became the "normal distribution" if the sample size is sufficiently large. (This is always true for the infinite population or a very large population, but for the definite or small population such as the present example it is not so. That is why we need to adjust for the definite population in making an inference.) Knowing the distribution is normal, we can make use of its properties regarding the area under the curve and the score as we have done previously. We have known that the curve can be fully describe if we know its mean and SD. Since the SD of the repeated samples, i.e. the SE can be estimated from the SD that we only have at hand as if we did the repeated sample. Playing around the distribution of the sampling distribution can lead to knowing the population parameter.

12. Make use of the property of the normal distribution.

Area under the Normal Distribution Curve and other related parameters

Number 12.1 to 12.5 uses the example at the last line of the diagram

- 12.1 A study yields a mean score of 52. The SD of this data is
- 12.2 The SE for this study is
- 12.3 If the distribution of 'raw' data from some observations of a population, i.e., the sample data, is found to be normal, the scores that *most likely* to include 95.45% of the observations in this sample is between and

Note that this has nothing to do with the statistical inference, just illustrate its use.

Note that this is a 95.45% confidence interval. It is the magnitude of the parameter of interest. In comparative studies, we called it the magnitude of effect.

> Note that this is the p-value. Comparing this with a pre-specified cut point α , such as 0.05, leads to making decision of reject or not reject that the true mean is 55. If the p-value is less than the α , then we reject that the true mean is 55. That is, it is unlikely that a study yields a mean of 52 or more extreme if the true mean score is 55. We say that 52 is statistically **significantly** different from 55. On the other hand, if the p-value is greater than the α , then we do not reject that the true mean is 55. That is, the chance to obtain a mean of 52 or more extreme even if the true mean score is 55 is still high. In other words, the difference between 52 and 55 is due to the role of chance. We say that 52 is **not** statistically **significantly** different from 55. But we can neither conclude that they are equal or they are from the same population, nor that they are from the different population. The finding stills inconclusive. We have insufficient evident to conclude that they are different. Thus, the p-value provides only the strength of the evidence.

- 12.7 Appendix 1 presents the three statistical tables for the normal distribution, the t-distribution, and the Chi-square distribution, respectively. The effective way to understand and be able to use them is by noticing their values corresponding a fixed probability such as 0.05. In the tables, they are highlighted by the ovals.
- 12.8 Relationship between Z-distribution, t-distribution, and χ^2 -distribution

Example: An example showing the relationship using two-tailed probability from the tables in Appendix 1 can be shown below.

$$\chi^2_{\alpha=0.05;df=1} = Z^2_{\alpha=0.05/2} = t_{\alpha=0.05/2;df=\infty} = 1.96^2 = 3.84$$

Question : The three graph shown below are the distribution of the three statistics. The shaded area correspond the probability of 0.05.

The vertical axis represent

The horizontal axis represent

Write down a curve of t-distribution given df = 29 (Write on the graph below.)

Write down a curve of χ^2 -distribution given df = 100 (Write on the graph below.)

- 13. Understand statistical inference: the estimation
- 13. 1 Estimate the 95% Confidence interval of the mean number of cigarette per day in the population.

10 12 14 16 18 20 22 24 26 28 30

Formula: $\overline{X} \pm t_{0.025} \left(S / \sqrt{n-1} \right)$

13.2 Draw a horizontal line showing the 95% confidence intervals for mean weight from your study as well as your class mates'.

There are a total of intervals in the graph, intervals did not cover the population mean. Thus, there are % of the intervals that cover the population parameter.

Interpret the confidence intervals in your own words:

- 13.3. The Ministry of Public Health reported that the average number of cigarette per day is 3. Perform hypothesis testing to provide evidence against that claim.
- i) State the hypothesis:

ii) Set the significant level:
iii) Calculate the statistical test: Formula: $t = \frac{\overline{x} - k}{\frac{s}{\sqrt{n-1}}}$
iv) Find the p-value
v) Make decision regarding the hypothesis and conclude the findings:
13.4 Compare the 95% confidence intervals obtained in #4.1 with your conclusion from hypothesis testing obtained in #4.3 and describe your implications.
13.5 Report results of the smoking survey in your own word as complete as possible so that this paragraph could be put in the section of Results in the research report.

14. Summary of general formula for statistical inference

 $Confidence\ interval = Statistic\ calculated\ from\ the\ study\ sample \pm [(Coefficient \times (SE\ of\ the\ statistic)]$

Statistical test = $\frac{\text{Statistic calculated from the study sample - Null value specified under } H_O}{\text{SE of the statistic}}$

- 15. The main difference between the two components of statistical inference
- 15.1The confidence interval provides:
 - []the magnitude of the effect / []the strength of evidence.
- 15.2The p-value provides:
 - []the magnitude of the effect / []the strength of evidence.
- 16. The value of α and the coefficient frequently used for Normal distribution

Values that frequently used								
Level of significance (α)	Level of confidence $(1-\alpha)$	Coefficient (Z)						
0.10	0.90	1.64						
0.05	0.95	1.96						
0.01	0.99	2.58						

See Appendix 1 for other values. Those in ovals correspond to the values in the box shown above. Such values from other distributions, t and chi-square, are also provided.

PART 3: CONFIDENCE INTERVAL VS. P-VALUE

Confidence intervals showing eight possible interpretations in terms of statistical significance and practical importance.

(Adapted from: Armitage, P. and Berry, G. Statistical methods in medical research. 3rd edition. Blackwell Scientific Publications, Oxford. 1994.page 99)

Discuss:			

PART 4: POST-TEST

A controlled trial of a new treatment led to the conclusion that it is significantly better than placebo (p-value < 0.05).

Which of the following statement do you prefer?
[]1. It has been proved that treatment is better than placebo.
[]2. If the treatment is not effective, there is less than a 5 percent chance of obtaining such results.
[]3. The observed effect of the treatment is so large that there is less than a 5 percent chance that the treatment is no better than placebo.
[]4. I do not really know what a p-value is and do not want to guess.
Source: Wulff, H.R., Andersen, B., Brandenhoff, P., and Guttler, F. (1987) What do doctors know about statistics?. Statistics in Medicine, 6, 3-10.
Justifications of the answer:
Report the findings of such controlled trial in your own word (<i>Hints: make up any numbers you need for the report</i>):

ANNOTATED BLIBLIOGRAPHIES

- Armitage, P., and Berry, G. (1994). *Statistical methods in medical research*. Oxford: Blackwell Scientific Publications.
- Bland, M. (1998). An introduction of medical statistics. Oxford: Oxford University Press.
- Daniel, W.W. (1991). *Biostatistics: A foundation for analysis in the health sciences*. 5th ed. New York: John Wiley & Sons.
- Dawson-Sounder, B., and Trapp, R.G. (1990). *Basic and clinical biostatistics*. Norwalk, Connecticut: Appleton & Lange.
- Diggle, P.J., Liang, K-Y, and Zeger, S.L. (1994). *Analysis of longitudinal data*. New York: Oxford University Press.
- Everitt. B.S. (1994). *Statistical methods for medical investigations*. 3rd edition. London: Edward Arnold.
- Fleiss, J.L. (1981). *Statistical methods for rates and proportions*. 2nd edition. New York: John Willey & Sons.
- Guyatt, G., Jaeschke, R., Heddle, N., Cook, D., Shannon, H., and Walter S. (1995). Interpreting study results: confidence intervals. *Canadian Medical Association Journal*. 152:169-173.
- Hosme, D.W. Lemeshow, S. (1989). *Applied Logistic Regression*. New York: John Wiley & Sons.
- Kleinbaum, D.G. (1994). *Logistic Regression: A self-learning text*. New York Springer-Verlag.
- Kleinbaum, D.G., Kupper, L.L., and Morgenstern, H. (1982). *Epidemiologic research:* principles and qualitative methods. London: Lifetime Learning Publications.
- Kleinbaum, D.G., Kupper, L.L., Muller, K.E, and Nizam, A. (1998). *Applied regression analysis and other multivariable methods*. Pacific Grove: Duxbury Press.
- Lang, TA., Secic, M. (1997). How to report statistics in medicine: annotated guidelines for authors, editors, and reviewers. Philadelphia: American College of Physician.
- Liang, K-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. *Biometrika* 73(1):13-22.
- Meinert, C.L. and Tonascia, S. (1986). *Clinical trials, design, conduct, and analysis*. New York: Oxford University Press.
- Rosner, Bernard. (1995). *Fundamentals of Biostatistics*. 4th ed. Belmont, California: Duxbury Press.
- StataCorp. (1999). *Stata statistical software: Release 6.0*. College Station. TX: Stata Corporation.
- Wonnacott TH., Wonnacott RJ. (1990). *Introductory statistics*. 5th Edition. New York: John Willey & Sons .
- Wulff, H.R., Andersen, B., Brandenhoff, P., and Guttler, F. (1987). What do doctors know about statistics? Statistics in Medicine, 6, 3-10.

APPENDIX 1 Statistical Tables

Normal distribution

0.01 0.0040 0.4960 0.36 0.1406 0.3594 0.71 0.2611 0.02 0.0080 0.4920 0.37 0.1443 0.3557 0.72 0.2642 0.03 0.0120 0.4880 0.38 0.1480 0.3520 0.73 0.2673 0.04 0.0160 0.4840 0.39 0.1517 0.3483 0.74 0.2704 0.05 0.0199 0.4801 0.40 0.1554 0.3446 0.75 0.2734 0.06 0.0239 0.4761 0.41 0.1591 0.3409 0.76 0.2764 0.07 0.0279 0.4721 0.42 0.1628 0.3372 0.77 0.2794 0.08 0.0319 0.4681 0.43 0.1664 0.3336 0.78 0.2823 0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881	(C) ARED CYOND Z
0.01 0.0040 0.4960 0.36 0.1406 0.3594 0.71 0.2611 0.02 0.0080 0.4920 0.37 0.1443 0.3557 0.72 0.2642 0.03 0.0120 0.4880 0.38 0.1480 0.3520 0.73 0.2673 0.04 0.0160 0.4840 0.39 0.1517 0.3483 0.74 0.2704 0.05 0.0199 0.4801 0.40 0.1554 0.3446 0.75 0.2734 0.06 0.0239 0.4761 0.41 0.1591 0.3409 0.76 0.2764 0.07 0.0279 0.4721 0.42 0.1628 0.3372 0.77 0.2794 0.08 0.0319 0.4681 0.43 0.1664 0.3336 0.78 0.2823 0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881	0.2420
0.03 0.0120 0.4880 0.38 0.1480 0.3520 0.73 0.2673 0.04 0.0160 0.4840 0.39 0.1517 0.3483 0.74 0.2704 0.05 0.0199 0.4801 0.40 0.1554 0.3446 0.75 0.2734 0.06 0.0239 0.4761 0.41 0.1591 0.3409 0.76 0.2764 0.07 0.0279 0.4721 0.42 0.1628 0.3372 0.77 0.2794 0.08 0.0319 0.4681 0.43 0.1664 0.3336 0.78 0.2823 0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881 0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1880 0.3192 0.82 0.2939	0.2389
0.04 0.0160 0.4840 0.39 0.1517 0.3483 0.74 0.2704 0.05 0.0199 0.4801 0.40 0.1554 0.3446 0.75 0.2734 0.06 0.0239 0.4761 0.41 0.1591 0.3409 0.76 0.2764 0.07 0.0279 0.4721 0.42 0.1628 0.3372 0.77 0.2794 0.08 0.0319 0.4681 0.43 0.1664 0.3336 0.78 0.2823 0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881 0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4443 0.49 0.1879 0.3121 0.84 0.2995	0.2358
0.05 0.0199 0.4801 0.40 0.1554 0.3446 0.75 0.2734 0.06 0.0239 0.4761 0.41 0.1591 0.3409 0.76 0.2764 0.07 0.0279 0.4721 0.42 0.1628 0.3372 0.77 0.2794 0.08 0.0319 0.4681 0.43 0.1664 0.3336 0.78 0.2823 0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881 0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995	0.2327
0.06 0.0239 0.4761 0.41 0.1591 0.3409 0.76 0.2764 0.07 0.0279 0.4721 0.42 0.1628 0.3372 0.77 0.2794 0.08 0.0319 0.4681 0.43 0.1664 0.3336 0.78 0.2823 0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881 0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023	0.2296
0.06 0.0239 0.4761 0.41 0.1591 0.3409 0.76 0.2764 0.07 0.0279 0.4721 0.42 0.1628 0.3372 0.77 0.2794 0.08 0.0319 0.4681 0.43 0.1664 0.3336 0.78 0.2823 0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881 0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023	0.2266
0.07 0.0279 0.4721 0.42 0.1628 0.3372 0.77 0.2794 0.08 0.0319 0.4681 0.43 0.1664 0.3336 0.78 0.2823 0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881 0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023 0.16 0.0636 0.4325 0.52 0.1985 0.3015 0.87 0.3078	0.2236
0.08 0.0319 0.4681 0.43 0.1664 0.3336 0.78 0.2823 0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881 0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023 0.16 0.0636 0.4364 0.51 0.1950 0.3650 0.86 0.3051 0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078	0.2206
0.09 0.0359 0.4641 0.44 0.1700 0.3300 0.79 0.2852 0.10 0.0398 0.4602 0.45 0.1736 0.3264 0.80 0.2881 0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023 0.16 0.0636 0.4364 0.51 0.1950 0.3050 0.86 0.3051 0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078 0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106	0.2177
0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023 0.16 0.0636 0.4364 0.51 0.1950 0.3050 0.86 0.3051 0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078 0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106 0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159	0.2148
0.11 0.0438 0.4562 0.46 0.1772 0.3228 0.81 0.2910 0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023 0.16 0.0636 0.4364 0.51 0.1950 0.3050 0.86 0.3051 0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078 0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106 0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159	0.2119
0.12 0.0478 0.4522 0.47 0.1808 0.3192 0.82 0.2939 0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023 0.16 0.0636 0.4364 0.51 0.1950 0.3050 0.86 0.3051 0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078 0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106 0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159 0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186	0.2090
0.13 0.0517 0.4483 0.48 0.1844 0.3156 0.83 0.2967 0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023 0.16 0.0636 0.4364 0.51 0.1950 0.3050 0.86 0.3051 0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078 0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106 0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159 0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186 0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212	0.2061
0.14 0.0557 0.4443 0.49 0.1879 0.3121 0.84 0.2995 0.15 0.0596 0.4404 0.50 0.1915 0.3085 0.85 0.3023 0.16 0.0636 0.4364 0.51 0.1950 0.3050 0.86 0.3051 0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078 0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106 0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159 0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186 0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212 0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238	0.2033
0.16 0.0636 0.4364 0.51 0.1950 0.3050 0.86 0.3051 0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078 0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106 0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159 0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186 0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212 0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238 0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3315	0.2005
0.16 0.0636 0.4364 0.51 0.1950 0.3050 0.86 0.3051 0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078 0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106 0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159 0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186 0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212 0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238 0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3315	0.1977
0.17 0.0675 0.4325 0.52 0.1985 0.3015 0.87 0.3078 0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106 0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159 0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186 0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212 0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238 0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3289 0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315	0.1949
0.18 0.0714 0.4286 0.53 0.2019 0.2981 0.88 0.3106 0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159 0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186 0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212 0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238 0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3289 0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340	0.1922
0.19 0.0753 0.4247 0.54 0.2054 0.2946 0.89 0.3133 0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159 0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186 0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212 0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238 0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3289 0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1922
0.20 0.0793 0.4207 0.55 0.2088 0.2912 0.90 0.3159 0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186 0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212 0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238 0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3289 0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1867
0.21 0.0832 0.4168 0.56 0.2123 0.2877 0.91 0.3186 0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212 0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238 0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3289 0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1607
0.22 0.0871 0.4129 0.57 0.2157 0.2843 0.92 0.3212 0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238 0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3289 0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1841
0.23 0.0910 0.4090 0.58 0.2190 0.2810 0.93 0.3238 0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3289 0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1814
0.24 0.0948 0.4052 0.59 0.2224 0.2776 0.94 0.3264 0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3289 0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1788
0.25 0.0987 0.4013 0.60 0.2257 0.2743 0.95 0.3289 0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1762
0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1736
0.26 0.1026 0.3974 0.61 0.2291 0.2709 0.96 0.3315 0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1711
0.27 0.1064 0.3936 0.62 0.2324 0.2676 0.97 0.3340 0.28 0.1103 0.3897 0.63 0.2357 0.2643 0.98 0.3365	0.1685
0.28	0.1660
	0.1635
	0.1611
0.30 0.1179 0.3821 0.65 0.2422 0.2578 1.00 0.3413	0.1587
	0.1562
	0.1539
	0.1515
	0.1313
0.35	0.1469
	0.1409
	0.0401

1.07	(A) Z	(B) AREA BETWEEN MEAN AND Z	(C) AREA BEYOND Z	(A) Z	(B) AREA BETWEEN MEAN AND Z	(C) AREA BEYOND Z	(A) Z	(B) AREA BETWEEN MEAN AND Z	(C) ARED BEYOND Z
1.08	1.07			1.42			1 77		
1.09									
1.10									
1.11									
1.12									
1.13									
1.14									
1.15	1.13	0.3708	0.1292	1.48	0.4306	0.0694	1.83	0.4664	0.0336
1.15	1.14	0.3729	0.1271	1.49	0.4319	0.0681	1.84	0.4671	0.0329
1.16									
1.17									
1.18									
1.19									
1.21									
1.21	4.20	0.0040	0.44.74		0.4204	0.0505	1.00	0.4542	0.000
1.22									
1.23									
1.24 0.3925 0.1075 1.59 0.4441 0.0559 1.94 0.4738 0.0262 1.25 0.3944 0.1056 1.60 0.4452 0.0548 1.95 0.4744 0.0256 1.26 0.3962 0.1038 1.61 0.4463 0.0537 1.96 0.4750 0.0250 1.27 0.3980 0.1020 1.62 0.4474 0.0526 1.97 0.4756 0.0244 1.28 0.3997 0.1003 1.63 0.4484 0.0516 1.98 0.4761 0.0239 1.29 0.4015 0.0985 1.66 0.4505 0.0495 1.99 0.4761 0.0233 1.30 0.4032 0.0968 1.66 0.4515 0.0495 2.00 0.4772 0.0228 1.31 0.4049 0.0951 1.66 0.4515 0.0485 2.01 0.4778 0.0222 1.32 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4783 0.021									
1.25 0.3944 0.1056 1.60 0.4452 0.0548 1.95 0.4744 0.0256 1.26 0.3962 0.1038 1.61 0.4463 0.0537 1.96 0.4750 0.0250 1.27 0.3980 0.1020 1.62 0.4474 0.0526 1.97 0.4756 0.0244 1.28 0.3997 0.1003 1.63 0.4484 0.0516 1.98 0.4761 0.0239 1.29 0.4015 0.0968 1.65 0.4505 0.0495 1.99 0.4767 0.0233 1.30 0.4032 0.0968 1.65 0.4505 0.0495 2.00 0.4772 0.0228 1.31 0.4049 0.0951 1.666 0.4515 0.0485 2.01 0.4778 0.0221 1.33 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4783 0.0217 1.33 0.4082 0.0918 1.68 0.4535 0.0455 2.04 0.4793 0.02									
1.26 0.3962 0.1038 1.61 0.4463 0.0537 1.96 0.4750 0.0250 1.27 0.3980 0.1020 1.62 0.4474 0.0526 1.97 0.4756 0.0244 1.28 0.3997 0.1003 1.63 0.4484 0.0516 1.98 0.4761 0.0233 1.29 0.4015 0.0985 1.64 0.4495 0.0505 1.99 0.4767 0.0233 1.30 0.4032 0.0968 1.65 0.4505 0.0495 2.00 0.4772 0.0228 1.31 0.4049 0.0951 1.66 0.4515 0.0485 2.01 0.4778 0.0222 1.32 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4783 0.0217 1.33 0.4082 0.0918 1.68 0.4535 0.0465 2.03 0.4788 0.0212 1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.020	1.24	0.3925	0.1075	1.59	0.4441	0.0559	1.94	0.4738	0.0262
1.26 0.3962 0.1038 1.61 0.4463 0.0537 1.96 0.4750 0.0250 1.27 0.3980 0.1020 1.62 0.4474 0.0526 1.97 0.4756 0.0244 1.28 0.3997 0.1003 1.63 0.4484 0.0516 1.98 0.4761 0.0233 1.29 0.4015 0.0985 1.64 0.4495 0.0505 1.99 0.4767 0.0233 1.30 0.4032 0.0968 1.65 0.4505 0.0495 2.00 0.4772 0.0228 1.31 0.4049 0.0951 1.66 0.4515 0.0485 2.01 0.4778 0.0222 1.32 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4783 0.0217 1.33 0.4082 0.0918 1.68 0.4535 0.0465 2.03 0.4788 0.0212 1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.020	1.25	0.3944	0.1056	1.60	0.4452	0.0548	1.95	0.4744	0.0256
1.27 0.3980 0.1020 1.62 0.4474 0.0526 1.97 0.4756 0.0244 1.28 0.3997 0.1003 1.63 0.4484 0.0516 1.98 0.4761 0.0239 1.29 0.4015 0.0985 1.64 0.4495 0.0505 1.99 0.4767 0.0233 1.30 0.4032 0.0968 1.65 0.4505 0.0495 2.00 0.4772 0.0228 1.31 0.4049 0.0951 1.66 0.4515 0.0485 2.01 0.4778 0.0222 1.32 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4788 0.0212 1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.0207 1.35 0.4115 0.0885 1.70 0.4554 0.0446 2.05 0.4798 0.0202 1.36 0.4131 0.0869 1.71 0.4564 0.0446 2.05 0.4798 0.020							1.96		
1.28 0.3997 0.1003 1.63 0.4484 0.0516 1.98 0.4761 0.0239 1.29 0.4015 0.0985 1.64 0.4495 0.0505 1.99 0.4767 0.0233 1.30 0.4032 0.0968 1.65 0.4505 0.0495 2.00 0.4772 0.0228 1.31 0.4049 0.0951 1.66 0.4515 0.0485 2.01 0.4778 0.0222 1.32 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4783 0.0217 1.33 0.4082 0.0901 1.69 0.4545 0.0465 2.03 0.4788 0.0212 1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.0207 1.35 0.4115 0.0885 1.70 0.4554 0.0446 2.05 0.4798 0.0202 1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.019									
1.29 0.4015 0.0985 1.64 0.4495 0.0505 1.99 0.4767 0.0233 1.30 0.4032 0.0968 1.65 0.4505 0.0495 2.00 0.4772 0.0228 1.31 0.4049 0.0951 1.66 0.4515 0.0485 2.01 0.4778 0.0222 1.32 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4783 0.0217 1.33 0.4082 0.0918 1.68 0.4535 0.0465 2.03 0.4788 0.0212 1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.0207 1.35 0.4115 0.0885 1.70 0.4554 0.0446 2.05 0.4798 0.0202 1.36 0.4131 0.0869 1.71 0.4564 0.0436 2.06 0.4803 0.0197 1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.019							1.98		
1.31 0.4049 0.0951 1.66 0.4515 0.0485 2.01 0.4778 0.0222 1.32 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4783 0.0217 1.33 0.4082 0.0918 1.68 0.4535 0.0465 2.03 0.4788 0.0212 1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.0207 1.35 0.4115 0.0885 1.70 0.4554 0.0446 2.05 0.4798 0.0202 1.36 0.4131 0.0869 1.71 0.4564 0.0436 2.06 0.4803 0.0197 1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.0192 1.38 0.4162 0.0838 1.73 0.4582 0.0418 2.08 0.4812 0.0188 1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.018									
1.31 0.4049 0.0951 1.66 0.4515 0.0485 2.01 0.4778 0.0222 1.32 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4783 0.0217 1.33 0.4082 0.0918 1.68 0.4535 0.0465 2.03 0.4788 0.0212 1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.0207 1.35 0.4115 0.0885 1.70 0.4554 0.0446 2.05 0.4798 0.0202 1.36 0.4131 0.0869 1.71 0.4564 0.0436 2.06 0.4803 0.0197 1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.0192 1.38 0.4162 0.0838 1.73 0.4582 0.0418 2.08 0.4812 0.0188 1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.018	1.20	0.4022	0.0069	1.65	0.4505	0.0405	2.00	0.4772	0.0228
1.32 0.4066 0.0934 1.67 0.4525 0.0475 2.02 0.4783 0.0217 1.33 0.4082 0.0918 1.68 0.4535 0.0465 2.03 0.4788 0.0212 1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.0207 1.35 0.4115 0.0885 1.70 0.4554 0.0446 2.05 0.4798 0.0202 1.36 0.4131 0.0869 1.71 0.4564 0.0436 2.06 0.4803 0.0197 1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.0192 1.38 0.4162 0.0838 1.73 0.4582 0.0418 2.08 0.4812 0.0188 1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.0183 1.40 0.4192 0.0808 1.75 0.4599 0.0401 2.10 0.4821 0.017									
1.33 0.4082 0.0918 1.68 0.4535 0.0465 2.03 0.4788 0.0212 1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.0207 1.35 0.4115 0.0885 1.70 0.4554 0.0446 2.05 0.4798 0.0202 1.36 0.4131 0.0869 1.71 0.4564 0.0436 2.06 0.4803 0.0197 1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.0192 1.38 0.4162 0.0838 1.73 0.4582 0.0418 2.08 0.4812 0.0188 1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.0183 1.40 0.4192 0.0808 1.75 0.4599 0.0401 2.10 0.4821 0.0179 2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.001									
1.34 0.4099 0.0901 1.69 0.4545 0.0455 2.04 0.4793 0.0207 1.35 0.4115 0.0885 1.70 0.4554 0.0446 2.05 0.4798 0.0202 1.36 0.4131 0.0869 1.71 0.4564 0.0436 2.06 0.4803 0.0197 1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.0192 1.38 0.4162 0.0838 1.73 0.4582 0.0418 2.08 0.4812 0.0188 1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.0183 1.40 0.4192 0.0808 1.75 0.4599 0.0401 2.10 0.4821 0.0179 2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.0019 2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.001									
1.35 0.4115 0.0885 1.70 0.4554 0.0446 2.05 0.4798 0.0202 1.36 0.4131 0.0869 1.71 0.4564 0.0436 2.06 0.4803 0.0197 1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.0192 1.38 0.4162 0.0838 1.73 0.4582 0.0418 2.08 0.4812 0.0188 1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.0183 1.40 0.4192 0.0808 1.75 0.4599 0.0401 2.10 0.4821 0.0179 2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.0019 2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.0018 2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.001									
1.36 0.4131 0.0869 1.71 0.4564 0.0436 2.06 0.4803 0.0197 1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.0192 1.38 0.4162 0.0838 1.73 0.4582 0.0418 2.08 0.4812 0.0188 1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.0183 1.40 0.4192 0.0808 1.75 0.4599 0.0401 2.10 0.4821 0.0179 2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.0019 2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.0018 2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.0016 2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.001	1.54	0.4099	0.0901	1.09	0.4343	0.0433	2.04	0.4793	0.0207
1.37 0.4147 0.0853 1.72 0.4573 0.0427 2.07 0.4808 0.0192 1.38 0.4162 0.0838 1.73 0.4582 0.0418 2.08 0.4812 0.0188 1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.0183 1.40 0.4192 0.0808 1.75 0.4599 0.0401 2.10 0.4821 0.0179 2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.0019 2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.0018 2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.0016 2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.0015 2.14 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.001	1.35	0.4115	0.0885	1.70	0.4554	0.0446	2.05	0.4798	0.0202
1.38 0.4162 0.0838 1.73 0.4582 0.0418 2.08 0.4812 0.0188 1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.0183 1.40 0.4192 0.0808 1.75 0.4599 0.0401 2.10 0.4821 0.0179 2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.0019 2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.0018 2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.0016 2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.0015 2.14 0.4838 0.0162 2.44 0.4927 0.0073 2.98 0.4986 0.0014 2.15 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.001	1.36	0.4131	0.0869	1.71	0.4564	0.0436	2.06	0.4803	0.0197
1.39 0.4177 0.0823 1.74 0.4591 0.0409 2.09 0.4817 0.0183 1.40 0.4192 0.0808 1.75 0.4599 0.0401 2.10 0.4821 0.0179 2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.0019 2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.0018 2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.0016 2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.0015 2.14 0.4838 0.0162 2.44 0.4927 0.0073 2.98 0.4986 0.0014 2.15 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.0013 2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.001	1.37	0.4147	0.0853	1.72	0.4573	0.0427	2.07	0.4808	0.0192
1.40 0.4192 0.0808 1.75 0.4599 0.0401 2.10 0.4821 0.0179 2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.0019 2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.0018 2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.0016 2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.0015 2.14 0.4838 0.0162 2.44 0.4927 0.0073 2.98 0.4986 0.0014 2.15 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.0013 2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.0013 2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.001	1.38	0.4162	0.0838	1.73	0.4582	0.0418	2.08	0.4812	0.0188
2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.0019 2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.0018 2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.0016 2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.0015 2.14 0.4838 0.0162 2.44 0.4927 0.0073 2.98 0.4986 0.0014 2.15 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.0013 2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.0013 2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.0012 2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.001	1.39	0.4177	0.0823	1.74	0.4591	0.0409	2.09	0.4817	0.0183
2.10 0.4821 0.0179 2.40 0.4918 0.0082 2.90 0.4981 0.0019 2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.0018 2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.0016 2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.0015 2.14 0.4838 0.0162 2.44 0.4927 0.0073 2.98 0.4986 0.0014 2.15 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.0013 2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.0013 2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.0012 2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.001	1.40	0.4192	0.0808	1.75	0.4599	0.0401	2.10	0.4821	0.0179
2.11 0.4826 0.0174 2.41 0.4920 0.0080 2.92 0.4982 0.0018 2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.0016 2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.0015 2.14 0.4838 0.0162 2.44 0.4927 0.0073 2.98 0.4986 0.0014 2.15 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.0013 2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.0013 2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.0012 2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.0011 2.19 0.4857 0.0143 2.49 0.4936 0.0064 3.08 0.4990 0.0010 2.20 0.4861 0.0136 2.52 0.4941 0.0059 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0019</td>									0.0019
2.12 0.4830 0.0170 2.42 0.4922 0.0078 2.94 0.4984 0.0016 2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.0015 2.14 0.4838 0.0162 2.44 0.4927 0.0073 2.98 0.4986 0.0014 2.15 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.0013 2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.0013 2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.0012 2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.0011 2.19 0.4857 0.0143 2.49 0.4936 0.0064 3.08 0.4990 0.0010 2.20 0.4861 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009									
2.13 0.4834 0.0166 2.43 0.4925 0.0075 2.96 0.4985 0.0015 2.14 0.4838 0.0162 2.44 0.4927 0.0073 2.98 0.4986 0.0014 2.15 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.0013 2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.0013 2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.0012 2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.0011 2.19 0.4857 0.0143 2.49 0.4936 0.0064 3.08 0.4990 0.0010 2.20 0.4861 0.0139 2.50 0.4938 0.0062 3.10 0.4990 0.0009 2.21 0.4864 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009									
2.14 0.4838 0.0162 2.44 0.4927 0.0073 2.98 0.4986 0.0014 2.15 0.4842 0.0158 2.45 0.4929 0.0071 3.00 0.4987 0.0013 2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.0013 2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.0012 2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.0011 2.19 0.4857 0.0143 2.49 0.4936 0.0064 3.08 0.4990 0.0010 2.20 0.4861 0.0139 2.50 0.4938 0.0062 3.10 0.4990 0.0010 2.21 0.4864 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009									
2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.0013 2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.0012 2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.0011 2.19 0.4857 0.0143 2.49 0.4936 0.0064 3.08 0.4990 0.0010 2.20 0.4861 0.0139 2.50 0.4938 0.0062 3.10 0.4990 0.0010 2.21 0.4864 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009									
2.16 0.4846 0.0154 2.46 0.4931 0.0069 3.02 0.4987 0.0013 2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.0012 2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.0011 2.19 0.4857 0.0143 2.49 0.4936 0.0064 3.08 0.4990 0.0010 2.20 0.4861 0.0139 2.50 0.4938 0.0062 3.10 0.4990 0.0010 2.21 0.4864 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009	2.15	0.4842	0.0158	2.45	0.4929	0.0071	3.00	0.4987	0.0013
2.17 0.4850 0.0150 2.47 0.4932 0.0068 3.04 0.4988 0.0012 2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.0011 2.19 0.4857 0.0143 2.49 0.4936 0.0064 3.08 0.4990 0.0010 2.20 0.4861 0.0139 2.50 0.4938 0.0062 3.10 0.4990 0.0010 2.21 0.4864 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009									
2.18 0.4854 0.0146 2.48 0.4934 0.0066 3.06 0.4989 0.0011 2.19 0.4857 0.0143 2.49 0.4936 0.0064 3.08 0.4990 0.0010 2.20 0.4861 0.0139 2.50 0.4938 0.0062 3.10 0.4990 0.0010 2.21 0.4864 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009									
2.19 0.4857 0.0143 2.49 0.4936 0.0064 3.08 0.4990 0.0010 2.20 0.4861 0.0139 2.50 0.4938 0.0062 3.10 0.4990 0.0010 2.21 0.4864 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009									
2.21 0.4864 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009									
2.21 0.4864 0.0136 2.52 0.4941 0.0059 3.12 0.4991 0.0009	2.20	0.4861	0.0139	2.50	0.4938	0.0062	3.10	0.4990	0.0010
	2.22	0.4868	0.0132	2.54	0.4945	0.0055	3.14	0.4992	0.0008

(A) Z	(B) AREA BETWEEN MEAN AND Z	(C) AREA BEYOND Z	(A) Z	(B) AREA BETWEEN MEAN AND Z	(C) AREA BEYOND Z	(A) Z	(B) AREA BETWEEN MEAN AND Z	(C) ARED BEYOND Z
2.23	0.4871	0.0129	2.56	0.4948	0.0052	3.16	0.4992	0.0008
2.24	0.4875	0.0125	2.58	0.4951	0.0049	3.20	0.4993	0.0007
2.25	0.4878	0.0122	2.60	0.4953	0.0047	3.25	0.4994	0.0006
2.26	0.4881	0.0119	2.62	0.4956	0.0044	3.30	0.4995	0.0005
2.27	0.4884	0.0116	2.64	0.4959	0.0041	3.35	0.4996	0.0004
2.28	0.4887	0.0113	2.66	0.4961	0.0039	3.40	0.4997	0.0003
2.29	0.4890	0.0110	2.68	0.4963	0.0037	3.45	0.4997	0.0003
2.30	0.4893	0.0107	2.70	0.4965	0.0035	3.50	0.4998	0.0002
2.31	0.4896	0.0104	2.72	0.4967	0.0033	3.55	0.4998	0.0002
2.32	0.4898	0.0102	2.74	0.4969	0.0031	3.60	0.4998	0.0002
2.33	0.4901	0.0099	2.76	0.4971	0.0029	3.65	0.4999	0.0001
2.34	0.4904	0.0096	2.78	0.4973	0.0027	3.70	0.4999	0.0001
2.35	0.4906	0.0094	2.80	0.4974	0.0026	3.75	0.4999	0.0001
2.36	0.4909	0.0091	2.82	0.4976	0.0024	3.80	0.4999	0.0001
2.37	0.4911	0.0089	2.84	0.4977	0.0023	3.85	0.4999	0.0001
2.38	0.4913	0.0087	2.86	0.4979	0.0021	3.90	0.4999	0.00005
2.39	0.4916	0.0084	2.88	0.4980	0.0020	3.95	0.4999	0.00004
2.40	0.4918	0.0082	2.90	0.4981	0.0019	4.00	0.4999	0.00003

t-Distribution

			Level of Si	gnificance		
DF	0.10	0.05	0.025	0.01	0.005	0.0005
1	3.078	6.314	12.706	31.821	63.657	63.619
2	1.886	2.920	4.303	6.965	9.925	31.598
2 3	1.638	2.353	3.182	4.541	5.841	12.941
4	1.533	2.132	2.776	3.747	4.604	8.610
5	1.476	2.015	2.571	3.365	4.032	6.859
6	1.440	1.943	2.447	3.143	3.707	5.959
7	1.415	1.895	2.365	2.998	3.499	5.405
8	1.397	1.860	2.306	2.896	3.355	5.041
9	1.383	1.833	2.262	2.821	3.250	4.781
10	1.372	1.812	2.228	2.764	3.169	4.587
11	1.363	1.796	2.201	2.718	3.106	4.437
12	1.356	1.782	2.179	2.681	3.055	4.318
13	1.350	1.771	2.160	2.650	3.012	4.221
14	1.345	1.761	2.145	2.624	2.977	4.140
15	1.341	1.753	2.131	2.602	2.947	4.073
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	1.740	2.110	2.567	2.898	3.965
18	1.330	1.734	2.101	2.552	2.878	3.992
19	1.328	1.729	2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2.528	2.845	3.850
21	1.323	1.721	2.080	2.518	2.831	3.819
22	1.321	1.717	2.074	2.508	2.819	3.792
23	1.319	1.714	2.069	2.500	2.807	3.767
24	1.318	1.711	2.064	2.492	2.797	3.745
25	1.316	1.708	2.060	2.485	2.787	3.725
26	1.315	1.706	2.056	2.479	2.779	3.707
27	1.314	1.703	2.052	2.473	2.771	3.690
28	1.313	1.701	2.048	2.467	2.763	3.674

	Level of Significance									
DF	0.10	0.05	0.025	0.01	0.005	0.0005				
29	1.311	1.699	2.045	2.462	2.756	3.659				
30	1.310	1.697	2.042	2.457	2.750	3.646				
40	1.303	1.684	2.021	2.423	2.704	3.551				
60	1.296	1.671	2.000	2.390	2.660	3.460				
120	1.289	1.658	1.980	2.358	2617	3.373				
∞	1.282	$\bigcirc 1.645)$	(1.960)	2.326	(2.576)	3.291				

Chi-square(χ^2) **Distribution**

	Probability $(lpha)$										
DF	0.995	0.990	0.975	0.950	0.900	0.500	0.100	0.050	0.025	0.010	0.005
1	0.00	0.00	0.00	0.00	0.02	0.45	2.71	(3.84)	5.02	6.63	7.88
2	0.01	0.02	0.05	0.10	0.21	1.39	4.61	5.99	7.38	19.21	10.60
3	0.07	0.11	0.22	0.35	0.58	2.37	6.25	7.81	9.35	11.34	12.84
4	0.21	0.30	0.48	0.71	1.06	3.36	7.78	9.49	11.14	13.28	14.86
5	0.41	0.55	0.83	1.15	1.61	4.35	9.24	11.07	12.83	15.09	16.75
6	0.68	0.87	1.24	1.64	2.20	5.35	10.65	12.59	14.45	16.81	18.55
7	0.99	1.24	1.69	2.17	2.83	6.35	12.02	14.07	16.01	18.48	20.28
8	1.34	1.65	2.18	2.73	3.49	7.34	13.36	15.51	17.53	20.09	21.96
9	1.73	2.09	2.70	3.33	4.17	8.34	14.68	16.92	19.02	21.67	23.59
10	2.16	2.56	3.25	3.94	4.87	9.34	15.99	18.31	20.48	23.21	25.19
11	2.60	3.05	3.82	4.57	5.58	10.34	17.28	19.68	21.92	24.72	26.76
12	3.07	3.57	4.40	5.23	6.30	11.34	18.55	21.03	23.34	26.22	28.30
13	3.57	4.11	5.01	5.89	7.04	12.34	19.81	22.36	24.74	27.69	29.82
14	4.07	4.66	5.63	6.57	7.79	13.34	21.06	23.68	26.12	29.14	31.32
15	4.60	5.23	6.27	7.26	8.55	14.34	22.31	25.00	27.49	30.58	32.80
16	5.14	5.81	6.91	7.96	9.31	15.34	23.54	26.30	28.85	32.00	34.27
17	5.70	6.41	7.56	8.67	10.09	16.34	24.77	27.59	30.19	33.41	35.72
18	6.26	7.01	8.23	9.39	10.87	17.34	25.99	28.87	31.53	34.81	37.16
19	6.84	7.63	8.91	10.12	11.65	18.34	27.20	30.14	32.85	36.19	38.58
20	7.43	8.26	9.59	10.85	12.44	19.38	28.41	31.41	34.17	37.57	40.00
21	8.03	8.90	10.28	11.50	13.24	20.38	29.62	32.67	35.48	38.93	41.40
22	8.64	9.54	10.98	12.34	14.04	21.34	30.81	33.92	36.78	40.29	42.80
23	9.26	10.20	11.69	13.09	14.85	22.34	32.01	35.17	38.08	41.64	44.18
24	9.89	10.86	12.40	13.85	15.66	23.34	33.20	36.42	39.36	42.98	45.56
25	10.52	11.52	13.12	14.61	16.47	24.34	34.38	37.65	40.65	44.31	46.93
26	11.16	12.20	13.84	15.38	17.29	25.34	35.56	38.89	41.92	45.64	48.29
27	11.81	12.88	14.57	16.15	18.11	26.34	36.74	40.11	43.19	46.96	49.65
28	12.46	13.57	15.31	16.93	18.94	27.34	37.92	41.34	44.46	48.28	50.99
29	13.12	14.26	16.05	17.71	19.77	28.34	39.09	42.56	45.72	49.59	52.34
30	13.79	14.95	16.79	18.49	20.60	29.34	40.26	43.77	46.98	50.89	53.67
40	20.71	22.16	24.43	26.51	29.05	39.34	51.80	55.76	59.34	63.69	66.77
50	27.99	29.71	32.36	34.76	37.69	49.33	63.17	67.50	71.42	76.15	79.49
70	43.28	45.44	48.76	51.74	55.33	69.33	85.53	90.53	95.02	100.42	104.22
100	67.33	70.06	74.22	77.93	82.36	99.33	118.50	124.34	129.56	135.81	140.17

APPENDIX 1 Summary Diagram 1

is the body of knowledge which is the goal of all research. We can take the Pretest as an example. What you have been trying to answer the pre-test question is really that you are trying to draw a conclusion from the study. It's the knowledge gain from reading the paper.

- are about the population to which the findings from the study will be applied.
- are about data collection. Then data processing which (always) use the computer followed by data analysis.

Diagram 2

ANALYSIS OF CONTINUOUS OUTCOME Inference on mean Determine an association Prediction Relationship One group Two groups Three groups or more Dependent Independent Dependent Independent $\mathbf{0} \, \bar{x}, (95\%CI)$ \bullet \bar{x}_{diff} , (95%CI)• Pearson correlation Repeated measure coefficient : r, (95%CI) **2** p-value **2** p-value using **ANOVA 2** p-value using t-test using t-test Paired t-test $\bar{x}_1 - \bar{x}_2$, (95% CI) $\bullet \bar{x}_1 - \bar{x}_2, (95\%CI)$ Simple linear regression Bivariate analysis 2 p-value using $\mathbf{0} \ \overline{x}_1 - \overline{x}_3, (95\% CI)$ (One Y and one X) Two sample t-test $\bar{x}_2 - \bar{x}_3$, (95% CI) 2 p-value using Multiple regression One-way ANOVA Multivariable analysis (One Y and many Xs) Wilcoxon Mann-Whitney Wilcoxon Kruskall-Spearman Rank Signed Rank Test Matched pairs Wallis Test Correlation Signed Ranks Test Test

Nonparametric statistics

Diagram 3 ANALYSIS OF CATEGORICAL OUTCOME

