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The linear regression model

In the last session we saw that a multivariable linear regression
is a linear model of the form:

Yi = β0 + β1Xi ,1 + β2Xi ,2 + . . . + βk−1Xi ,k−1 + εi

Linear regression model can be articulated using matrix
algebra:

y = Xβ + ε

Where
y is vector of observations of our outcome variable;
X is a matrix containing a constant and at least one
explanatory variable; and
β is a vector of parameters relating X to Y
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Matrix formulation of linear regression

The matrix formulation:

y = Xβ + ε

Can be expanded out....
y1

y2
...

yn

 =


1 x1,1 · · · x1,k−1

1 x2,1 · · · x2,k−1
...

...
. . .

...
1 xn,1 · · · xn,k−1



β0

β1
...

βk−1

+


ε1

ε2
...
εn


The first column of X is associated with the y-intercept
(constant), β0, and the rest of the columns (representing the
individual covariates) are associated with the individual slopes,
β1, β2, · · · , βk−1.
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Interpretation of coefficients, β

β0 is y-intercept (b0 is the sample estimate)
Value of Y when X = 0

β1 is the slope associated with x1(b1 is sample estimate)
The change in y for each unit change in x1

All the remaining βs (through to k − 1) are also slopes and
can be interpreted in the same way as β1.
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Linear regression and least squares estimation

In the linear regression model we use the Principle of Least
Squares to estimate β

Specifically, the model (e.g. line) is fit such that error
sums of squares is minimized:

SSE = min
(
Σn

i=1ε
2
)

For this reason the the values of β̂ (i.e. b) are called least
squares estimates.

This use of Least Square estimates becomes important in the
other models we will cover (next session onwards), which
don’t.
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Geometric interpretation of least squares estimation

We want a line of best fit (Red line) that minimizes the sums
of squares of the error (total of areas in yellow)
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Hypothesis testing in Linear Regression

Overall model:
H0 : β1 = β2 = · · · = βk−1 = 0
Interpretation: No covariates (X s) explain variation in the
outcome, y
HA : At least one βj differs from zero (for j = 1, 2, · · · , k − 1)
Interpretation: At least one of the covariates (X s) explains y

Individual covariates:
If we reject the global H0 above, then for each covariate:
H0 : βj = 0
Interpretation: The covariate, xj , does not explain y
HA : βj 6= 0
Interpretation: The covariate, xj , does explains y
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Analysis of Variance

The expression, Analysis of Variance (ANOVA) can mean two
things:

1 A statistical method (which uses a particular and
outdated model); and

2 A type of hypothesis: Testing the equality of a continuous
outcome across 2 or more groups

Next we will cover Analysis of Variance (in the first sense)

In other words, we will review the traditional ANOVA
model only so I can show its redundancy (The General
Linear Model is superior)

We will also review ANOVA’s hypothesis testing process
(which carries through to the General Linear Models)
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Analysis of Variance (ANOVA)

One-way Analysis of Variance (ANOVA)

Natural extension of the independent

t-test to >2 groups
Same assumptions as the independent
t-test

Normally distributed dependent variable(within groups)
Equal variances
Independence between groups
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ANOVA hypotheses

Null and alternative hypotheses are:

ANOVA hypotheses:

H0: µ1 = µ2 = · · · = µk (All group means are the same)

HA: At least one group mean is different

We are comparing means, so why call it an analysis of
variance?

Because we are going to analyse (partition) the ’spread’
of the data

What follows is an illustration of separating this spread
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Analysis of Variance: ANOVA

Consider a illustration of the overall (total)
variation in an outcome variable (Quality of

Life ∼ QoL)
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Analysis of Variance: ANOVA

Some variation in QoL might be explained by (1) Disease
status (Mild, Moderate, Severe) and some by (2) the natural

variation we would expect between patients.

Testing: H0: µmild = µmod = µsevere

We would expect to reject H0 if between group differences
(grey) was large relative to the natural variation (yellow).
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Analysis of Variance: ANOVA

That is reject H0: µmild = µmod = µsevere if clear difference
between (disease severity) groups:

Note: Two group case easier to illustrate.
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Analysis of Variance: ANOVA

However, it would be much more difficult to reject
H0 (Groups are equal) if the difference between (disease
severity) groups was not clear due to high within group
variation:
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Analysis of Variance: ANOVA

Nor could we reject H0:(Groups are equal) if there was little
difference between (disease severity) groups:
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Purpose of ANOVA

To recap, ANOVA is used to test for differences (in a

continuous variable) between classes of categorical variables

(Factors) and their interactions

For example, Systolic Blood Pressure between different racial

groups:

H0: µAfrican = µAsian = µCaucasion

17/63



A brief review of Linear Regression
Analysis of Variance

The General Linear Model

Background
Test statistic: DIfferences between groups
ANCOVA: Mixing continuous and categorical predictors
Limitations of ANCOVA and ANOVA

ANOVA and Sums of Squares

(Traditional) ANOVA is based on the Sums of Squares of
certain differences (that relate to the variance formula)

SStotal =
N∑
i=1

[yi − y ]2 = SSbetween + SSwithin

where:
SSbetween represents variation between groups (’explained
variation’)
SSwithin represents variation within groups (’error’)

So ANOVA is about partitioning the sums of squares (∼=
variation) hence, ANALYSIS OF VARIANCE
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Sums of Squares formulae for ANOVA:SStotal

The total ’variation’ (in Y) is represented by:

SStotal =
N∑
i=1

[yi − y ]2

where y is the grand (overall) mean.
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Sums of Squares formulae for ANOVA:SSbetween

The between-groups variation SS will be:

SSbetween =
k∑

i=1

[y i − y ]2

where y i is the i th group mean (for i = 1, 2, · · · , k groups)
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Sums of Squares formulae for ANOVA:SSwithin

What is left over is the error SS:

SSerror = SSTotal − SSbetween =
k∑

i=1

ni∑
j=1

[yij − y i ]
2

=
n1∑
j=1

[y1,j − y 1]2 +
n2∑
j=1

[y2,j − y 2]2 + · · ·+
nk∑
j=1

[yk,j − y k ]2
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Sums of Squares → Mean squares

Now we have an idea of how much difference there is between
groups (which relates to our hypothesis) relative to how
much variation there is within groups (the noise that can
prevent us from demonstrating a difference), can we now
directly compare these these two quantities??

Answer: NO!!!!

If we look closely at the graphs on the previous slides, we
should note that different numbers of values were used to
calculate SStotal , SSbetween and SSwithin. These three values are
totals (the greater the number of values used to calculate
them, the higher they will be).
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Sums of Squares → Mean squares

We need a way of offsetting this ’sample size’ difference.
This is where Mean Squares come in.

Mean squares take into account the number of values
used to calculate SStotal , SSbetween and SSwithin

For SSbetween and SSwithin we calculate the corresponding
mean squares MSbetween and MSwithin

Note we don’t bother with MStotal as it is not used in the
hypothesis test (see later), but if we did we would note
that:

MStotal =
SStotal

N − 1
=

∑N
i=1[yi − y ]2

N − 1
= S2

where S2 is the (overall) sample variance
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MSbetween and MSwithin

Now,

MSbetween =
SSbetween

k − 1
=

∑k
i=1[y i − y ]2

k − 1
and,

MSerror =
SSerror

N − k
=

∑k
i=1

∑ni
j=1[yij − y i ]

2

N − k

Each SS is divided by it’s corresponding degrees of
freedom, which accounts for the number of values used
to construct each sums of square.
Now we have two standardized quantities that can tell us
how different the groups are, relative to the variation
within groups.

Note: k : number of groups; and N : overall sample size
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The variance ratio

Now, how do we guage whether there is a significant
difference between groups?
The variance ratio represents the ratio of the between-group
variance (represented by MSbetween) to the within-group
variance (represented by MSwithin). That is:

VR = F =
MSbetween

MSwithin
=
σ̂2
between

σ̂2
within

=
S2
between

S2
within

The VR is the ratio between two variances, hence the name
Variance Ratio
The variance ratio is also often represented by F. This is
because (under H0):

F ∼ Fdf1=k−1,df2=N−k,α

25/63



A brief review of Linear Regression
Analysis of Variance

The General Linear Model

Background
Test statistic: DIfferences between groups
ANCOVA: Mixing continuous and categorical predictors
Limitations of ANCOVA and ANOVA

The ANOVA table

With so many values floating around (SSs, MSs, degrees of
freedom and the VR) it is more convenient to put them in a
table, the ANOVA table:

Source SS df MS F

Groups SSGroups k − 1 MSGroups =
SSGroups
k−1

VR =
MSGroups
MSError

Error SSError N − k MSError = SSError
N−k

Total SSTotal N − 1
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ANOVA vs. Linear Regression

Both Linear regression and ANOVA model quantitative
outcome (response) variables

Widely held view that regression for covariates (i.e.
continuous explanatory variables) and ANOVA for
factors (i.e. categorical explanatory variables)

But traditional ANOVA can be extended to also
incorporate covariates (quantitative explanatory variables)

This extention is called Analysis of Covariance (ANCOVA)

Won’t cover in detail (General linear model a better
approach)
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Example of ANCOVA

We want to examine the effect of Gender on Systolic Blood
Pressure (SBP) but we know that Age has a large effect on
SBP (although we aren’t interested in the age effect)

For example, in an observational study we may find that
there are more older females than males and we don’t
want the age effect CONFOUNDING the gender effect, so
we need to adjust for age

In this example, we can think of partialling out (adjusting
for) age as effectively (and artificially) making every
subject the same (average) age
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ANCOVA example

So for our example....

SBPij = µ + Genderi + βAgeij + εij

or (equivalently),

SBPij − βAgeij = µ + Genderi + εij

Where,
SBPij is the j th replicate of the i th gender group
µ represents the grand (overall) mean
β is the slope for Age; and
Ageij and εij are the corresponding values of Age and the
residual associated with SBPij

Genderi represents the difference (from the grand mean) due
to being in the i th gender group
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Problems with ANCOVA and traditional ANOVA

I will not even run through a formal example for ANOVA
and ANCOVA
Both of these methods have issues based on there use of
sums of squares formulae
In particular, these methods are susceptable to differences
in group sample sizes (unbalanced designs)
Where there are even moderate differences in sample
sizes, the larger group is disproportionally weighted

Pitfall: What is in a name?

I will avoid the names ANOVA and ANCOVA because the
confusion between the hypotheses they test (which are fine),
and the mathematical approach they use (which is outdated
and can lead to problems)
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Solution: Linear Regression (Life, the universe and

everything)

Fortunately, everything that is done using an ANOVA or
an ANCOVA can be formulated using a plain old garden
variety linear regression model

Regression models of this type deal with unequal sample
sizes (i.e. every observation is appropriately weighted)

The only cost: AT FIRST, seem trickier to interpret
coefficients
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Linear Regression and the General Linear Model

Linear Regression models used to perform analysis of variance
type analyses or even those including categorical predictor
variables somewhere in the model are given the name:

General (or Normal) Linear Models

Do NOT confuse with Generalized Linear Models
(e.g. Logistic and Poisson regression)
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A general linear model example(over-parametrized)

Consider the model:

SBPi = β0 + βageAgei + βMMi + βFFi + εi

Noting:

Unlike ANOVA/ANCOVA models, the indicies have been
restricted to i , for i = 1, 2, · · · ,N
Instead of Gender, we have M and F where:

If the patient is male M = 1 (and F = 0); and
If the patient is male F = 1 (and M = 0)

This model is incorrect:
CAN YOU SEE THE PROBLEM????
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A General Linear Model Example

M and F are co-linear (in fact, perfectly)

If M=1 then F=0 and Vice Versa (perfectly
correlated)

To be a little bit mathematical about it the X
matrix (matrix containing covariates) is not of
full rank (there is redundancy).

We only need one variable to indicate two
states of GENDER (and get an estimate of
difference)
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A General Linear Model Example (Correct)

SBPi = β0 + βAgei + βGenderGenderi + εi

Where Gender = 0 for males and Gender = 1 for females.

In this case we are using Males as the referent, and
βGender tells us the difference (in SBP) from males if you
are female (It is not a ’slope’ in the traditional sense).

Important point: Referents

This will be the first time you have been given the formal
(mathematical) definition of the referent. An important
concept that carries through to almost all statistical modeling

Let’s look at this from the point of view of the X matrix
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A General Linear Model Example

The additional (redundant) variable is removed to give us a
matrix of full rank (no redundancy)

1 23 1 0
1 46 1 0
1 38 1 0
...

...
...

...
1 64 0 1
1 36 0 1
1 27 0 1


−→



1 23 0
1 46 0
1 38 0
...

...
...

1 64 1
1 36 1
1 27 1


Note the columns of ones on the left hand side is associated
with the constant, β0
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A fictitious example

β0 = 100 (p<0.05); βAge = 0.333 (p<0.05); and
βGender = −25 (p<0.05)

Interpretation:

I β0 = 100: Expected SBP of someone who is 0 years old
and gender of 0 (Males). p<0.05 ⇒ Baby male SBP (on
average) is significantly different from 0 (So what???)

I βAge = 0.333: As we age one year, on average our SBP
should rise by 0.333. p<0.05 ⇒ Age does explain SBP

I βGender = −25: When Gender is 1(i.e. female) we expect
our SBP to be lower (relative to males) by 25 units.
p<0.05 ⇒ On average Female SBP differs from Males
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β for categorical variables

Since:

p<0.05 there is significant difference between males and
females (i.e. βGender 6= 0).

Males are the referent, βGender = −25 represents the
difference due to being a female (i.e. The mean SBP for
females is 25 units less than males).

We can use this information to work out the estimated
marginal means:
µ̂Males = 100 i.e. 100 + βGender(0)
µ̂Females = 75 i.e. 100 + βGender(1)

Actually µ̂Males and µ̂Females not yet right, I still need to
account for age (see next slide)
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Estimated marginal means

Technically,
µ̂Males = 100 i.e. 100− βGender(0)
µ̂Females = 75 i.e. 100− βGender(1)
gives us the the SBP of new born babies (i.e. Age=0). This is
clearly not appropriate in this population (which is an adult
population)
We should use the average age in our calculations.
Remembering βAge = 0.33, if the average age (age) in our
sample is 30 years old, then

µ̂Males = 110 i.e. 100 + βGender(0) + βAge(30)
µ̂Females = 85 i.e. 100 + βGender(1) + βAge(30)
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Estimated marginal means Vs. sample means, x̄

This seems like a very complicated process to go through
to get an estimate of the group means!!!

Why didn’t we just calculate the sample means (x̄s)

Has anybody got an answer????

Hint: Confounding

Important point: Adjusted estimates

Adjusting estimates is one of the main advantages (among
others) of using a multi-variable ’modelling’ approach over the
classical bivariate tests (i.e. t-test, χ2 tests etc)

40/63



A brief review of Linear Regression
Analysis of Variance

The General Linear Model

ANOVA as a linear regression model
General Linear Models with categorical and continuous predictors
Interpreting General Linear Model Coefficients: Advanced models

Estimated marginal means Vs. sample means, x̄

Confounding:
Let’s say our study is observational and we note that (on
average) females are older than our males.

In this case the difference between our sample means (x̄Males

and x̄Females) represents:
The difference in SBP between males and females; AND
the differences in SBP among males and females due
purely to the age differences between these groups

In other words, the Age effect is CONFOUNDING the
Gender effect.
As Estimated marginal means adjust for confounders (in
the model), the resulting means represent the difference
purely due to the effect of interest(study effect)
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A graphical interpretation
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Variables with more than two categories

(Polytomous categoricals)

Interpretation becomes a little trickier

when there are more than two groups.

Let’s try a three group problem.

Same problem as before (SBP), but what

about ethnicity (African, Asian,

Caucasian)?
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What about the multicollinearity problem?

As with gender, we can’t use as many variables as there
are classes (collinearity)

We only need two indicator(dummy) variables to
represent the three states (ethnicity).

1 D1 = 1, D2 = 0 implies African
2 D1 = 0, D2 = 1 implies Asian
3 D1 = 0, D2 = 0 implies Caucasian

There are a number of ways of doing this (varies from
package to package) which changes interpretation

In this case, which is the referent??

ANS:????
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Number of classes vs. number of dummy variables

For two classes (e.g. Gender) we only needed one
indicator variable.

For three classes (e.g. Race), two indicator variables.

Generalizing: for k classes we need k-1 indicator
variables

WHERE HAVE YOU SEEN THIS BEFORE?

ANS: Degrees of freedom
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Fictitious Example 2:SBP by race

SBPi = β0 + β1D1i + β2D2i + εi

β0 = 100 (p<0.05); β1 = 23 (p=0.12); β2 = −35 (p<0.05)⇒
µ̂Caucasian = β0 + β1(0) + β2(0) = 100
µ̂African = β0 + β1(1) + β2(0) = 123
µ̂Asian = β0 + β1(0) + β2(1) = 65

No sign. diff between African and Caucasians (p=0.12)
Asians lower SBP than Caucasian (p<0.05)
Incidently, the diff between Africans and Asians is:
β1 − β2 = 58

Aside:

Comparisons not involving the referent (e.g. Asian vs.
African) need to be tested post-hoc
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Interactions: Effect modification

So far we have considered the case where we can interpret
risk factors independently of each other

For instance in our model:
SBPi = β0 + βAgei + βGenderGenderi + εi

Gender effect (on SBP) was interpreted independently of
age; and
Age effect (on SBP) was interpreted without reference
to gender.

However, what if gender modifies the
effect of Age on SBP??
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Effect modification

What about if we came across the situation:

Here the effect of Age (on SBP) is more profound for
males, than for females
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Interactions in GLMs: Interpretation

From previous slide:

It appears that the nature of the SBP-Age relationship is
modified by (interacts with) the gender effect

Gender (in this case) represents an effect modifier

Now how would we represent (and test for)
effect modification in a General Linear
Model??

49/63



A brief review of Linear Regression
Analysis of Variance

The General Linear Model

ANOVA as a linear regression model
General Linear Models with categorical and continuous predictors
Interpreting General Linear Model Coefficients: Advanced models

Interaction term in General Linear Models

Effect modification is often called an Interaction and it
represent a multiplicative effect of two factors (or
covariates, or some combination thereof) in the model

Where A (e.g. Age) and B (e.g. Gender) are main
effects, A*B is an interaction effect

Now, to implement these in the General Linear Model....
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Example: General Linear Model with interaction

effect

SBPi = β0+βageAgei+βGendGendi+βAge×Gend(Agei×Gendi)+εi

Males (Referent)

SBPi = β0 + βageAgei + βGend(0) + βAge×Gend(Agei × (0)) + εi

SBPi = β0 + βageAgei + εi

Females (A little messier)

SBPi = β0 + βageAgei + βGend(1) + βAge×Gend(Agei × (1)) + εi

with a little manipulation

SBPi = (β0 + βGend) + (βage + βAge×Gend)Agei + εi
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Interaction effects in General Linear Models

Now we have a ’model’ for Males and one for Females
Males (Referent)

SBPi = β0 + βageAgei + εi

and
µ̂Males = β0 + βage ¯Age

Females

SBPi = (β0 + βGend) + (βage + βAge×Gend)Agei + εi

µ̂Females = (β0 + βGend) + (βage + βAge×Gend) ¯Age

Interpreting the coefficients βGend and βAge×Gend ...
βGend is the difference in average SBP due to being female
βAge×Gend is the difference in age effect due to being female
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Effect modification for a multilevel factor

Now let’s see how smart you are.....
Considering Ethnicity: Caucasian, African and Asian groups

SBPi = β0 + βAgeAgei + βD1D1i + βD2D2i

+ βAge×D1(Agei × D1i) + βAge×D2(Agei × D2i) + εi (1)

1 Using Model (1) find a ’model’ for each group

2 From step 1, provide estimated marginal means

3 Interpret all of the coefficients

I have provided the answer at the end (No peeking)
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Space for working: Caucasians

I
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Space for working: African

I

55/63



A brief review of Linear Regression
Analysis of Variance

The General Linear Model

ANOVA as a linear regression model
General Linear Models with categorical and continuous predictors
Interpreting General Linear Model Coefficients: Advanced models

Space for working: Asians

I
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Race group models

Caucasian (’Referent model’)

SBPi = β0 + βAgeAgei + βD10 + βD20

+ βAge×D1(Agei × 0) + βAge×D2(Agei × 0) + εi (2)

SBPi = β0 + βAgeAgei + εi

African

SBPi = β0 + βAgeAgei + βD1(1) + βD20

+ βAge×D1(Agei × 1) + βAge×D2(Agei × 0) + εi (3)

SBPi = β0 + βAgeAgei + βD1 + βAge×D1Agei + εi

SBPi = (β0 + βD1) + (βAge + βAge×D1)Agei + εi
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Race group models

Asian

SBPi = β0 + βAgeAgei + βD1(0) + βD21

+ βAge×D1(Agei × 0) + βAge×D2(Agei × 1) + εi (4)

SBPi = β0 + βAgeAgei + βD2 + βAge×D2Agei + εi

SBPi = (β0 + βD2) + (βAge + βAge×D2)Agei + εi

Now for the estimated marginal means
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Step 2: Estimated Marginal Means

Caucasian: from (2)

µ̂Caucasians = β0 + βAge ¯Age

African: from (3)

µ̂Africans = (β0 + βD1) + (βAge + βAge×D1) ¯Age

Asian: from (4)

µ̂Africans = (β0 + βD2) + (βAge + βAge×D2) ¯Age
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Interpretation of coefficients

β0 → SBP for (new born) Caucasians(referent)
βage → Age slope for caucasians (expected change in SBP for
every year older)
βD1 → Difference in SBP (from referent) due to being African
(Note: only appropriate if no interaction i.e. βAge×D1 = 0)
βD2 → Difference in SBP (from referent) due to being Asian
(Note: only appropriate if no interaction i.e. βAge×D2 = 0)
βAge×D1 → Age effect modification: Difference in Age slope
(from referent) due to being African
βAge×D2 → Age effect modification: Difference in Age slope
(from referent) due to being Asian
All of these βs should be tested against zero (except β0,
this hypothesis test is generally meaningless)
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Linear Regression and General Linear Models in R

As Linear regression and General Linear Linear models are
really the same model, R uses the lm() method for both.
Assuming the data has already been read into R...
Gender only
my.model1<-lm(sbp∼as.factor(gender), data=mydata.df)

Note: we have to tell R that Gender is categorical
Main effects only: Gender and Age
my.model1<-lm(sbp∼as.factor(gender) + age, data=mydata.df)

Now with interaction effect: Gender and Age
my.model1<-lm(sbp∼as.factor(gender )+ age +

as.factor(gender):age , data=mydata.df)

It is very important to note the form of these models,
because the same basic convention is used for all R modelling
(e.g. Generalized linear models)
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Concluding remarks

I At first glance, the General Linear Model looks nasty
I But an understanding of them is vital to truly understand
the common extentions to the General Linear Model used in
biostatistics including:

1 Generalized Linear Models (e.g. Logistic regression,
Poisson regression etc..)

2 Linear Mixed Models (continuous outcomes in
longitudinal and other ’correlated data’ studies)

3 Survival analysis methods e.g. Cox proportional hazards
regression

4 Generalized Estimating Equations and Generalized Linear
Mixed Models (categorical outcomes from longitudinal
and other ’correlated data’ studies); a ’theoretical’ mix of
1 and 2
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Final word

Biostatistics is not ’Book-learnt’

Rarely do we understand biostatistical methods as we are
introduced to them (I didn’t)

My advice is to review these notes when you get home
tonight...slowly

Put them aside for a few days and review them again
(believe me it works)

Thank You!!!!
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