
Case study: The DMHT dataset
Naive methods for testing hypotheses about continuous outcomes

A review of Linear Regression and ANOVA
ANCOVA: Mixing continuous and categorical predictors

The General Linear Model

Linear Models:
The General Linear Model

Dr Cameron Hurst
cphurst@gmail.com

Faculties of Public Health and Medicine, Khon Kaen University

24th June 2013

1/90



Case study: The DMHT dataset
Naive methods for testing hypotheses about continuous outcomes

A review of Linear Regression and ANOVA
ANCOVA: Mixing continuous and categorical predictors

The General Linear Model

What we will cover....
1 Case study: The DMHT dataset
2 Naive methods for testing hypotheses about continuous

outcomes
Correlation analysis
t-tests

3 A review of Linear Regression and ANOVA
Linear Regression
Analysis of Variance

4 ANCOVA: Mixing continuous and categorical predictors
ANCOVA
Limitations of ANCOVA and ANOVA

5 The General Linear Model
ANOVA as a linear regression model
General Linear Models with categorical and continuous
predictors
Interpreting General Linear Model Coefficients: Advanced
models

2/90



Case study: The DMHT dataset
Naive methods for testing hypotheses about continuous outcomes

A review of Linear Regression and ANOVA
ANCOVA: Mixing continuous and categorical predictors

The General Linear Model

Before getting to the methods we will cover today, I will
(re-)introduce you to the DMHT data

We will use this data for the next few session (except survival
analysis)

I will also use this data to demonstrate the use of Stata for
the methods I cover
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DMHT: Study background

Collaborative clinical study supported by the Thailand
National Health Security Office (NHSO) and the Thailand
Medical Research Network (MedResNet)

Official title: An Assessment on Quality of Care among
Patients Diagnosed with Type 2 Diabetes and Hypertension
Visiting Ministry of Public Health and Bangkok Metropolitan
Administration Hospitals in Thailand (Thailand DM/HT)

In short, main research objective is to assess quality of care of
(Type 2) Diabetic and Hypertensive patients in Thailand

At present, about 150,000 patients from about 600 across
Thailand, sampled from 2553-5

Three main groups: (1) Patients with T2DM (alone), (2)
Those with HT (alone), and (3) Those with both (DMHT)
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(Our) research questions

For the purpose of our excerises today, our research questions are:

1 Among diabetics, does the hypertension comorbidity represent
an additional burden for achieving clinical (quality of care)
goals?

2 What other (diabetic) patient characteristics (e.g.
demographic/lifestyle) might influence achievement of the
clinical goals?
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Data we will consider

To keep things simple:

We will consider a random sample of 5000 patients (sampled
in 2554), and only the diabetics [T2DMs and DMHTs]

Of the hundreds of variables, we will only consider a subset:

Outcomes Study effect Other covariates
a1cyn ht sex
bpyn age
ldlcyn religion

all3yn duradm
any3yn smoke

bmigroup
Detailed description of variables next few slides...
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Variable description: Outcomes

The outcomes in our ’subset’ of the dataset are the ”ABC” clincal
goals often used to assess the quaility of diabetes care. These are:

(a) a1cyn→Hemoglobin A1C: yes: < 7%; no: ≥ 7%

(b) bpyn→Blood pressure: yes: < 130
80 mmHg; no: ≥ 130

80 mmHg;

(c) ldlcyn→Low density lipid-Cholesterol: yes: LDL-C < 100
mg/dL; no: LDL-C≥ 100 mg/dL

We will also consider the collective quality performance outcomes:

all3yn: All three (ABC) clinical goals are met: yes; no

any3yn: Any of the three (ABC) goals are met: yes; no

Question: What type of measurement scale do all of these 5
variables have?
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Study effect

We are interested in whether there is any difference in the
achievement of treatment goals between those with diabetes alone
(T2DM) and those diabetics who ALSO have hypertension; Does a
hypertention comorbidity represent an additonal burden specifically
in terms of diabetes care.

We will use the variable, ht to measure this: no (T2DM alone);
yes (DM+HT)

Note: Study Effects

Remember a study effect is the explanatory variable (X) that is of
primary interest (in terms of our research hypothesis)
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Covariates

In observational studies (such as the DMHT study), many other
explanatory (X) variables need to be considered. I will make a
dinstiction between two different types of covariates here:

1 Independant risk factors: Other important independant
explanatory variables of the outcome

2 Confounders: Variables that are associated with BOTH the
outcome AND the study effect which, if ignored, can
misleadingly enhance/diminish (bias) the true relationship
between the outcome (Y) and the study effect (X)

Example of a confounder: RCT

What would happen if randomiation (in an RCT) failed and we put
the more sick people in the control group, and less sick people in
the treatment group?
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Covariates

In our case study, I have included 6 covariates which can be split
into two different groups:

Demographic variables

sex: Patient gender (binary)
age: Age in years (continuous)
religion: Buddhist/Non-buddhist (binary)

Lifestyle/patient history variables:

duradm: Duration of T2DM; How long (years) since patient
was diagnosed with T2DM (continuous)
smoke: Smoking history: Current, Previous, Never, Unknown
(Nominal/Ordinal)
bmigroup: Underweight, Normal, Overweight, Obese
(Ordinal)

10/90



Case study: The DMHT dataset
Naive methods for testing hypotheses about continuous outcomes

A review of Linear Regression and ANOVA
ANCOVA: Mixing continuous and categorical predictors

The General Linear Model

Correlation analysis
t-tests

Introduction

We will cover alot of ground today. First I want to cover a few
’classical’ methods (that you are probably already familar with),
that will not be appropriate for a large majority of studies.
However, they are still widely used (and misused). They are:

1 Correlation coefficients (Pearson’s and Spearman’s)

2 The test for two independant groups using the independant
samples t-test

3 The test for paired data (Paired t-test)

From there we will go into statistical ’models’. A much more useful
set of methods that are much more appropriate for the type of
analysis you are likely to do.
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Which test should I use

After a while, you will notice a pattern in which test should be
used where

The main factor that drives this decision is: Which type
(measurement scale) of OUTCOME variable do I
have????

Note: This table only holds for cross-sectional data.

12/90



Case study: The DMHT dataset
Naive methods for testing hypotheses about continuous outcomes

A review of Linear Regression and ANOVA
ANCOVA: Mixing continuous and categorical predictors

The General Linear Model

Correlation analysis
t-tests

Correlation analysis

If we want to investigate the relationship between two
continuous (quantitative) variables, we can use correlation
analysis.

If we believe the relationship is a linear (straight line)
relationship we can use Pearson’s correlation coefficient

If we believe the relationship might depart from linearity, but
is still monotonic (more later), we can use the nonparametric
(distribution-free) Spearman’s correlation coeffcient
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Linear, Monotic and Non-monotonic relationships

For linear relationships, use Pearson’s correlation coeffcient.

Defn of linear relationship: No matter where we are on the line, a
single unit step in one variable (X), will always result in in the

same level of change (increase/decrease) in the other variable (Y)
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Linear, Monotic and Non-monotonic relationships

For monotonic relationships, use Spearman’s correlation
coeffcient.

Both figures above are Monotonically increasing...uphill

Defn of monotic relationship: If we move (e.g. walk) from left to
right (on the X axis), we are always going up (or down) hill.
However, the steepness of the slope doesn’t need to be constant.
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Linear, Monotic and Non-monotonic relationships

For non-linear AND non-monotonic relationships, we need to
use more sophisticated methods (where we can assume the
functional form of relationship). E.g. Non-linear regression
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Is there a correlation between Age and the Duration of
diabetes

Let’s use the DMHT data to examine whether there is (1) a linear
relationship between Age and Duration of diabetes; and (2) a
monotonic relationship between these two variables. These give us
the following sets of hyptoheses:

H0: There is no LINEAR relationship between age and duration
HA: There is a LINEAR relationship between age and duration

and:

H0: There is no MONOTONIC r’ship between age and duration
HA: There is a MONOTONIC r’ship between age and duration
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Stata syntax: Correlation analysis

Note: ALWAYS visualize the data before analysis

Stata: Correlation analysis

* Scatter plot (note y before x)
twoway (scatter duradm age)

* Pearson’s
pwcorr duradm age, sig

*Spearmans
spearman duradm age
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Visualizing relationship

Too much data to see what is going on (clearly)
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Stata output: Correlation analysis
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InterpretationCorrelation analysis

We can see that both the Pearson’s and Spearman’s
correlation coeffcient are highly (statistically significant)

BUT the relatively low value of the coefficients suggests that
it may not be a clinically important association
(rpearsons = 0.199 and rpearsons = 0.2)

However, the similarity between the values of Pearson’s and
SPearman’s coefficients suggests that the Pearson’s coeffcient
is fine

Conclusion: Although the association between Age and Duration
of DM can be shown to be statitsically significant, this may be an
artefact of the large sample size as neither the Pearson’s or
SPearman’s correlation coefficient could be shown to be higher
than 0.2
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Associtions between continuous outcomes and categorical
predictors

Now let’s move onto the situation where we want to see
whether the level of a continuous outcome, differs between
two groups

For this we can use the independant samples t-test (aka
Student’s t-test)

This test examines whether there is a difference (on average)
between two groups. This is:

H0 : µa = µb (On average groups do not differ) vs
HA : µa 6= µb (Yes the do)
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t-tests
Test statistic

The test statistic for the two sample t-test is:

t =
x̄1 − x̄2

S2
x̄1−x̄2

Where

S2
x̄1−x̄2

=

√
S1

2

n1
+

S2
2

n2
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DMHT data for t-test

Let’s use the DMHT data to test the hypothesis that the duration
of T2DM is the same between those with DM alone, and those
with both DM and HT:
H0 : µT2DM = µDMHT (Duration, on average, the same)
HA : µT2DM = µDMHT (Duration, on average, differs)

Stata: Independant t-test

*Independant t-test ttest duradm, by(ht)
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Results

Although we can reject H0 and conclude a statistical difference
(t = −5.11, p < 0.001), is 0.751 of a year, a clinically important
difference????
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Correlation analysis
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Nonparametric test for two independant samples

If are data are not normally distributed AND we have small
samples (n1, n2 < 30), we should use the nonparametric tests,
Mann-Whitney (aka Wilcoxon SUM OF RANKS test). In Stata
(and using our data):

Stata: Mann-Whitney test

*Perform Mann-Whitney
ranksum duradm, by(ht)

26/90



Case study: The DMHT dataset
Naive methods for testing hypotheses about continuous outcomes

A review of Linear Regression and ANOVA
ANCOVA: Mixing continuous and categorical predictors

The General Linear Model

Correlation analysis
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Paired data

If we have a natural basis for pairing in our data (e.g. Pre-post
study), we need tests that account for this type of design

The approporate Parametric test is the Paired t-test

The approriate nonparametric test (small sample and
non-normal) is the Wilcoxon SIGNED RANK test (Don’t
confuse with the Wilcoxon SUM OF RANK test)

I won’t go through an example for this, but just give you the
stata syntax
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Correlation analysis
t-tests

Stata: Paired t-test and Wilcoxon signed rank test

Stata: Paired t-test and Wilcoxon signed rank test

*Paired t-test
ttest preval == postval

*Wilcoxon signed rank test
signrank preval = postval

Note: You dataset will be set up differently here. The First set of
values (e.g. Pre) need to sit side-by-side with the second set of
values (e.g. Post). In other words your data has to be unstacked
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Classical (Naive) vs model based statistical analysis

Now we will move away from these classical tests (which I
hope you will never use), to a much more useful family of
methods: The Linear Models

Although we need a little bit more knowledge to use linear
models, they have a MAJOR advantage over the classical
’bivariate’ methods.

They can consider the MULTIVARIABLE situation

We are used to the idea of an Outcome and a Study effect,
but in observational studies we also need to consider
covariates (other X variables that may impact the analysis)
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The possible effect of covariates

There are three ways a covariate can impact the analysis. As an:

1 Independant risk factor: a risk factor that
(INDEPENDANTLY) explaines variation in our outcome

2 A Confounder: A covariable that will bias our study effect if
we don’t account for it (in the model)

3 An effect modifier: A covariate that MODIFIES the effect of
the study effect on the outcome

People will often get confused about these (especially the
differences between confounders and effect modifiers), but this is
something I will go into a lot of detail about in the next few
sessions.

Now, let’s consider our first Multivariable model
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The linear regression model

In the past, you will have used Multivariable Linear Regression.
The model for MLR takes the form:

Yi = β0 + β1Xi ,1 + β2Xi ,2 + . . .+ βk−1Xi ,k−1 + εi

Linear regression model can be articulated using matrix algebra:

y = Xβ + ε

Where
Y is vector of observation of our outcome variable;
X is a matrix containing a constant and at least one explanatory
variable; and
β is a vector of parameters linearly relating X to Y
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Matrix formulation of linear regression

The matrix formulation:

y = Xβ + ε

Can be expanded out....
y1

y2
...

yn

 =


1 x1,1 · · · x1,k−1

1 x2,1 · · · x2,k−1
...

...
. . .

...
1 xn,1 · · · xn,k−1



β0

β1
...

βk−1

+


ε1

ε2
...
εn


The first column of X is associated with the y-intercept, β0, and
the rest of the columns (representing the individual covariates) are
associated with the individual slopes, β1, β2, · · · , βk−1.

32/90



Case study: The DMHT dataset
Naive methods for testing hypotheses about continuous outcomes

A review of Linear Regression and ANOVA
ANCOVA: Mixing continuous and categorical predictors

The General Linear Model

Linear Regression
Analysis of Variance

Interpretation of coefficients, β

β0 is y-intercept (b0 is the sample estimate)
Value of Y when X = 0

β1 is the slope associated with x1(b1 is sample estimate)
The change in y for each unit change in x1

All the remaining βs (through to k − 1) are also slopes and can be
interpreted in the same way as β1.
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Linear regression and least squares estimation

In the linear regression model we use the Principle of Least
Squares to estimate β

Specifically, the model (e.g. line) is fit such that error sums of
squares is minimized:

SSE = min
(
Σn
i=1ε

2
)

For this reason the the values of β̂ (i.e. b) are called least squares
estimates.
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Hypothesis testing in Linear Regression

Overall model:
H0 : β1 = β2 = · · · = βk−1 = 0
Interpretation: No covariates (X s) explain variation in the
outcome, y
HA : At least one βj differs from zero (for j = 1, 2, · · · , k − 1)
Interpretation: At least one of the covariates (X s) explains y

Individual covariates:
If we reject the global H0 above, then for each covariate:
H0 : βj = 0
Interpretation: The covariate, xj , does not explain y
HA : βj 6= 0
Interpretation: The covariate, xj , does explains y
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The central role of linear regression in biostatistics

Linear regression underpins the General (Normal) Linear
Model (later this session)

It is also fundamental to the more advanced methods:

Generalized Linear Models: Analysis of other outcomes (e.g.
Binary) arising from cross sectional studies (Next session)
Cox Proportional Hazards regerssion (Survival analysis)
Linear Mixed Models: Analysis of continuous outcomes from
longitudinal studies
Generalized Linear Mixed Models and Generalized
Estimating Equations: Analysis of other outcomes (e.g.
Binary) arising from longitudinal studies

In other words, Linear regression is the most important and
fundamental method for a strong understanding of
biostatistical modelling

36/90



Case study: The DMHT dataset
Naive methods for testing hypotheses about continuous outcomes

A review of Linear Regression and ANOVA
ANCOVA: Mixing continuous and categorical predictors

The General Linear Model

Linear Regression
Analysis of Variance

Analysis of Variance

The expression, Analysis of Variance (ANOVA) can mean two
things:

1 A statistical method (which uses a particular and outdated
model); and

2 A type of hypothesis: Testing the equality of a continuous
outcome across 2 or more groups

Next we will cover Analysis of Variance (in the first sense)

In other words, we will review the traditional ANOVA model
only so I can show its redundancy (The General Linear Model
is superior)

We will also review ANOVA’s hypothesis testing process
(which carries through to the General Linear Models)
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Analysis of Variance (ANOVA)

One-way Analysis of Variance (ANOVA)

Natural extension of the independent t-test to
>2 groups
Same assumptions as the independent t-test

Normally distributed dependent variable(within groups)
Equal variances
Independence between groups
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ANOVA hypotheses

Null and alternative hypotheses are:

ANOVA hypotheses:

H0: µ1 = µ2 = · · · = µk (All group means are the same)
HA: At least one group mean is different

We are comparing means, so why call it an analysis of
variance?

Because we are going to analyse (partition) the ’spread’ of the
data

What follows is an illustration of separating this spread
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Analysis of Variance: ANOVA

Consider a illustration of the overall (total) variation
in an outcome variable (e.g. Quality of Life ∼ QoL)
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Analysis of Variance: ANOVA

Some of the variation in QoL might be explained by (1) Disease
status (Mild, Moderate, Severe) and some is the (2) natural

variation we would expect between individuals in this population

Testing: H0: µmild = µmod = µsevere
We would expect to reject H0 if between group differences (grey)
was large relative to the natural variation (yellow). 41/90
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Analysis of Variance: ANOVA

That is reject H0: µmild = µmod = µsevere if clear difference
between (disease severity) groups:

Note: Two group case easier to illustrate.
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Analysis of Variance: ANOVA

However, it would be much more difficult to reject
H0 (Groups are equal) if the difference between (disease severity)
groups was not clear due to high within group variation:
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Analysis of Variance: ANOVA

Nor could we reject H0:(Groups are equal) if there was little
difference between (disease severity) groups:
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Purpose of ANOVA

To recap, ANOVA is used to test for differences (in a quantitative

variable) between classes of categorical variables (and their

interactions)

For example, Systolic Blood Pressure between different racial

groups:

H0: µAfrican = µAsian = µCaucasion
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ANOVA and Sums of Squares

(Traditional) ANOVA is based on the Sums of Squares of
certain differences (that relate to with the variance formula)

SStotal =
N∑
i=1

[yi − y ]2 = SSbetween + SSwithin

where:
SSbetween represents variation between groups (’explained
variation’)
SSwithin represents variation within groups (’error’)

So ANOVA is about partitioning the sums of squares (∼=
variation) hence, ANALYSIS OF VARIANCE
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Sums of Squares formulae for ANOVA:SStotal

The total ’variation’ (in Y) is represented by:

SStotal =
N∑
i=1

[yi − y ]2

where y is the grand (overall) mean.
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Sums of Squares formulae for ANOVA:SSbetween

The between-groups variation SS will be:

SSbetween =
k∑

i=1

[y i − y ]2

where y i is the i th group mean (for i = 1, 2, · · · , k groups)
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Sums of Squares formulae for ANOVA:SSwithin

What is left over is the error SS:

SSerror = SSTotal − SSbetween =
k∑

i=1

ni∑
j=1

[yij − y i ]
2

=

n1∑
j=1

[y1,j − y 1]2 +

n2∑
j=1

[y2,j − y 2]2 + · · ·+
nk∑
j=1

[yk,j − yk ]2

49/90



Case study: The DMHT dataset
Naive methods for testing hypotheses about continuous outcomes

A review of Linear Regression and ANOVA
ANCOVA: Mixing continuous and categorical predictors

The General Linear Model

Linear Regression
Analysis of Variance

Sums of Squares → Mean squares

Now we have an idea of how much difference there is between
groups (which relates to our hypothesis) relative to how much
variation there is within groups (the noise that can prevent us
from demonstrating a difference), can we now directly compare
these these two quantities??

Answer: NO!!!!

If we look closely at the graphs on the previous slides, we should
note that different numbers of values were used to calculate
SStotal , SSbetween and SSwithin. These three values are totals (the
greater the number of values used to calculate them, the higher
they will be).
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Sums of Squares → Mean squares

We need a way of offsetting this ’sample size’ difference. This
is where Mean Squares come in.

Mean squares take into account the number of values used to
calculate SStotal , SSbetween and SSwithin

For SSbetween and SSwithin we calculate the corresponding
mean squares MSbetween and MSwithin

Note we don’t bother with MStotal as it is not used in the
hypothesis test (see later), but if we did we would note that:

MStotal =
SStotal

N − 1
=

∑N
i=1[yi − y ]2

N − 1
= S2

i.e. The Sample Variance, S2
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MSbetween and MSwithin

Now,

MSbetween =
SSbetween

k − 1
=

∑k
i=1[y i − y ]2

k − 1

and,

MSerror =
SSerror

N − k
=

∑k
i=1

∑ni
j=1[yij − y i ]

2

N − k

Each SS is divided by it’s corresponding degrees of freedom,
which accounts for the number of values used to construct
each sums of square.

Now we have two standardized quantities that can tell us how
different the groups are, relative to the variation within groups.
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The variance ratio

The variance ratio represents the ratio of the between-group
variance (represented by MSbetween) to the within-group
variance (represented by MSwithin). That is:

VR = F =
MSbetween

MSwithin
=
σ̂2
between

σ̂2
within

=
S2
between

S2
within

The VR is the ratio between two variances, hence the name
Variance Ratio

The variance ratio is also often represented by F. This is because
(under H0):

F ∼ Fdf1=k−1,df2=N−k,α
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The ANOVA table

With so many values floating around (SSs, MSs, degrees of
freedom and the VR) it is more convenient to put them in a table,
the ANOVA table:

Source SS df MS F

Groups SSGroups k − 1 MSGroups =
SSGroups
k−1 VR =

MSGroups
MSError

Error SSError N − k MSError = SSError
N−k

Total SSTotal N − 1
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ANOVA vs. Linear Regression

Both Linear regression and ANOVA model quantitative
outcome (response) variables

Widely held view that linear regression is for quantitative
explanatory variables and ANOVA is for categorical
explanatory variables

But traditional ANOVA can be extended to also incorporate
covariates (quantitative explanatory variables)

This extension is called Analysis of covariance (ANCOVA)
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Example of ANCOVA

We want to examine the effect of Gender on Systolic Blood
Pressure (SBP) but we know that Age has a large effect on SBP
(although we aren’t interested in the age effect)

For example, in an observational study we may find that there
are more older females than males and we don’t want the age
effect CONFOUNDING the gender effect, so we need to
adjust for age

In this example, we can think of partialling out age as
effectively making every subject the same (average) age
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ANCOVA example

So for our example....

SBPij = µ+ Genderi + βAgeij + εij

or,
SBPij − βAgeij = µ+ Genderi + εij

Where,
SBPij is the j th replicate of the i th gender group
µ represents the grand (overall) mean
β is the slope for Age; and
Ageij and εij are the corresponding values of Age and the residual
associated with SBPij

Genderi represents the difference (from the grand mean) due to
being in the i th gender group
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Problems with ANCOVA and traditional ANOVA

I will not even run through a formal example for ANOVA and
ANCOVA

Both of these methods have issues based on their use of sums
of squares formulae

In particular, these methods are susceptable to differences in
group sample sizes (unbalanced designs)

Where there are even moderate differences in sample sizes,
the larger of the two samples is generally disproportionally
weighted
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Solution: Linear Regression (Life, the universe and
everything)

Fortunately, everything that is done using an ANOVA or an
ANCOVA can be formulated using a plain old garden variety
linear regression model

Regression models of this type deal with unequal sample sizes
(i.e. every observation is appropriately weighted)

The only cost: AT FIRST, trickier to interpret the coefficients
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Linear Regression and the General Linear Model

Linear Regression models used to perform analysis of variance type
analyses or even those including categorical predictor variables
somewhere in the model are given the name:

General (or Normal) Linear Models

Do NOT confuse with Generalized Linear Models (next
session)
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A general linear model example(over-parametrized)

Consider the model:

SBPi = β0 + βageAgei + βMMi + βFFi + εi

Noting:

Unlike ANOVA/ANCOVA models, the indicies have been
restricted to i , for i = 1, 2, · · · ,N
Instead of Gender, we have M and F where:

If the patient is male M = 1 (and F = 0); and
If the patient is female F = 1 (and M = 0)

CAN YOU SEE ANY PROBLEMS????
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A General Linear Model Example

M and F are co-linear (in fact perfectly)

If M=1 then F= 0 and Vice Versa (perfectly correlated)

To be a little bit mathematical about it the X matrix
(matrix containing covariates) is not of full rank (there is
redundancy).

We only need one variable to indicate two states of
GENDER (and get an estimate of difference)
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A General Linear Model Example

SBPi = β0 + βAgei + βGenderGenderi + εi

Where Gender = 0 for males and Gender = 1 for females.

In this case we are using Males as the REFERENT, and
βGender tells us the difference (in SBP) from males if you are
female.

Let’s look at this from the point of view of the X matrix

Aside:

This system of dummy coding by assigning the referent all zeros is
called Zero cell referencing
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A General Linear Model Example

The additional (redundant) variable is removed to give us a matrix
of full rank (no redundancy)

1 23 1 0
1 46 1 0
1 38 1 0
...

...
...

...
1 64 0 1
1 36 0 1
1 27 0 1


−→



1 23 0
1 46 0
1 38 0
...

...
...

1 64 1
1 36 1
1 27 1


Note the columns of ones on the left hand side is associated with
the constant, β0
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A fictitious example

Let’s say we run a model (in R or Stata) and get the following
parameter estimates:
β0 = 100 (p<0.05); βAge = 0.333 (p<0.05); and βGender = −25
(p<0.05)

Interpretation:

β0 = 100: The expected SBP of someone who is zero years
old and has a gender of zero (Males). p<0.05 ⇒ Baby male
SBP (on average) is significantly different from zero (So
what???)

βAge = 0.333: As we get one year older, on average our SBP
should rise by 0.333. p<0.05 ⇒ Age does explain SBP

βGender = −25: When Gender is one (i.e. we are female) we
would expect our SBP to decrease (relative to males) by 25
units. p<0.05⇒ On average Females’ SBP differs from males.
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β for categorical variables

Since:

p<0.05 there is significant difference between males and
females (i.e. βGender 6= 0).

Males are the referent, βGender = −25 represents the
difference due to being a female (i.e. The mean SBP for
females is 25 units less than males).

We can use this information to work out the estimated marginal
means:
µ̂Males = 100 i.e. 100 + βGender (0)
µ̂Females = 75 i.e. 100 + βGender (1)

Technically µ̂Males and µ̂Females not yet right, I still need to
account for age (see next slide)
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Estimated marginal means

Technically,
µ̂Males = 100 i.e. 100− βGender (0)
µ̂Females = 75 i.e. 100− βGender (1)
gives us the the SBP of new born babies (i.e. Age=0). This is
clearly not appropriate in this population (which is an adult
population)
We should use the average age in our calculations. Remembering
βAge = 0.33, if the average age (age) in our sample is 30 years old,
then

µ̂Males = 110 i.e. 100 + βGender (0) + βAge(30)
µ̂Females = 85 i.e. 100 + βGender (1) + βAge(30)
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Estimated marginal means Vs. sample means, x̄

This seems like a very complicated process to go through to
get an estimate of the group means!!!

Why didn’t we just calculate the sample means (x̄s)

Has anybody got an answer????

Hint: Confounding

Key point:

THIS IS VERY IMPORTANT YOU UNDERSTAND THIS!!!!!!!!
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Estimated marginal means Vs. sample means, x̄

Confounding:
Let’s say our study is observational and we note that on average
females are (on average) older than our males.

In this case the difference between our sample means (x̄Males and
x̄Females) represents:

The difference in SBP between males and females; AND

the differences in SBP among males and females due purely to
the age differences between these groups

In other words, the Age effect is CONFOUNDING the Gender
effect.
As Estimated marginal means adjust for confounders (in the
model), the resulting means represent the difference purely
due to the effect of interest(Study effect)
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A graphical interpretation
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Variables with more than two categories (Polytomous
categoricals)

Interpretation becomes a little trickier when
there are more than two groups.

Let’s try a three group problem.

Same problem as before (SBP), but what about
ethnicity (African, Asian, Caucasian)?
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What about the multicollinearity problem?

As with gender, we can’t use as many variables as there are
classes (collinearity)

We only need two indicator(dummy) variables to represent the
three states (ethnicity).

1 D1 = 1, D2 = 0 implies African
2 D1 = 0, D2 = 1 implies Asian
3 D1 = 0, D2 = 0 implies Caucasian

There are a number of ways of doing this (varies from package
to package) which changes interpretation

In this case, which is the referent??

ANS:Caucasian
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Number of classes vs. number of dummy variables

For two classes (e.g. Gender) we only needed one indicator
variable.

For three classes (e.g. Race), two indicator variables.

Generalizing, for k classes we need k-1 indicator variables

WHERE HAVE YOU SEEN THIS BEFORE?

ANS: Degrees of freedom
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Fictitious Example 2: SBP by race

SBPi = β0 + β1D1i + β2D2i + εi

β0 = 100 (p<0.05); β1 = 23 (p=0.12); β2 = −35 (p<0.05) ⇒
µ̂Caucasian = β0 + β1(0) + β2(0) = 100
µ̂African = β0 + β1(1) + β2(0) = 123
µ̂Asian = β0 + β1(0) + β2(1) = 65
Interpretation:

No significant difference between African and Caucasians
(p=0.12)
Asians lower SBP than Caucasian (p<0.05)
Difference between Africans and Asians is: β1 − β2 = 58

Aside:

Important to note that comparisons not involving the referent (e.g.
African Vs Asian) need to be performed post hoc
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Interactions: Effect modification

So far we have considered the case where we can interpret risk
factors independently of each other

For instance in our model:
SBPi = β0 + βAgei + βGenderGenderi + εi

Gender effect (on SBP) was interpreted independently of age;
and
Age effect (on SBP) was interpreted without reference to
gender.

However, what if gender modifies the effect of
Age on SBP??
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Effect modification

What about if we came across the situation:

Here the effect of Age (on SBP) is more profound for males,
than for females
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Interactions in GLMs: Interpretation

From previous slide:

It appears that the nature of the SBP-Age relationship is
modified by (interacts with) the gender effect

Gender (in this case) represents an effect modifier

Now how would we represent (and test for) effect
modification in a General Linear Model??
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Interaction term in General Linear Models

Interactions represent a multiplicative effect of two factors (or
covariates, or some combination thereof)

Where A (e.g. Age) and B (e.g. Gender) are main effects,
A*B is an interaction effect

Now, to implement these in the General Linear Model....
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Example: General Linear Model with interaction effect

SBPi = β0 +βageAgei +βGendGendi +βAge×Gend(Agei×Gendi )+εi

Males (Referent)

SBPi = β0 + βageAgei + βGend(0) + βAge×Gend(Agei × (0)) + εi

SBPi = β0 + βageAgei + εi

Females (A little messier)

SBPi = β0 + βageAgei + βGend(1) + βAge×Gend(Agei × (1)) + εi

with a little manipulation

SBPi = (β0 + βGend) + (βage + βAge×Gend)Agei + εi
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Interaction effects in General Linear Models

Now we have a ’model’ for Males and one for Females
Males (Referent)

SBPi = β0 + βageAgei + εi

and
µ̂Males = β0 + βage ¯Age

Females

SBPi = (β0 + βGend) + (βage + βAge×Gend)Agei + εi

µ̂Females = (β0 + βGend) + (βage + βAge×Gend) ¯Age

Interpreting the coefficients βGend and βAge×Gend ...
βGend is the difference in average SBP due to being female
βAge×Gend is the difference in age effect due to being female
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Effect modification for a multilevel factor

Now let’s see how smart you are.....
Considering Ethnicity: Caucasian, African and Asian groups

SBPi = β0 + βAgeAgei + βD1D1i + βD2D2i

+ βAge×D1(Agei × D1i ) + βAge×D2(Agei × D2i ) + εi (1)

1 Using Model (1) find a ’model’ for each group

2 From step 1, provide estimated marginal means

3 Interpret all of the coefficients

I have provided the answer at the end (No peeking)
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Space for working: Caucasians

I
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Space for working: African

I
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Space for working: Asians

I
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Race group models

Caucasian

SBPi = β0 + βAgeAgei + βD10 + βD20

+ βAge×D1(Agei × 0) + βAge×D2(Agei × 0) + εi (2)

SBPi = β0 + βAgeAgei + εi

African

SBPi = β0 + βAgeAgei + βD1(1) + βD20

+ βAge×D1(Agei × 1) + βAge×D2(Agei × 0) + εi (3)

SBPi = β0 + βAgeAgei + βD1 + βAge×D1Agei + εi

SBPi = (β0 + βD1) + (βAge + βAge×D1)Agei + εi
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Race group models

Asian

SBPi = β0 + βAgeAgei + βD1(0) + βD21

+ βAge×D1(Agei × 0) + βAge×D2(Agei × 1) + εi (4)

SBPi = β0 + βAgeAgei + βD2 + βAge×D2Agei + εi

SBPi = (β0 + βD2) + (βAge + βAge×D2)Agei + εi

Now for the estimated marginal means
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Step 2: Estimated Marginal Means

Caucasian: from (2)

µ̂Caucasians = β0 + βAge ¯Age

African: from (3)

µ̂Africans = (β0 + βD1) + (βAge + βAge×D1) ¯Age

Asian: from (4)

µ̂Africans = (β0 + βD2) + (βAge + βAge×D2) ¯Age
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Interpretation of coefficients

β0 → SBP for (new born) Caucasians(referent)
βage → Age slope for caucasians (expected change in SBP for
every year older)
βD1 → Difference in SBP (from referent) due to being African
(Note: only appropriate if no interaction i.e. βAge×D1 = 0)
βD2 → Difference in SBP (from referent) due to being Asian
(Note: only appropriate if no interaction i.e. βAge×D2 = 0)
βAge×D1 → Age effect modification: Difference in Age slope (from
referent) due to being African
βAge×D2 → Age effect modification: Difference in Age slope (from
referent) due to being Asian
All of these βs should be tested against zero (except β0, this
hypothesis test would be meaningless)
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Linear Regression and General Linear Models in R

As Linear regression and General Linear Linear models are really
the same model, R uses the lm() method for both. Assuming the
data has already been read into R...
Gender only
my.model1<-lm(sbp∼as.factor(gender), data=mydata.df)

Note: we have to tell R that Gender is categorical
Main effects only: Gender and Age
my.model1<-lm(sbp∼as.factor(gender) + age, data=mydata.df)

Now with interaction effect: Gender and Age
my.model1<-lm(sbp∼as.factor(gender )+ age +

as.factor(gender):age , data=mydata.df)

It is very important to note the form of these models, because
the same basic convention is used for all R modelling (e.g.
Generalized linear models)
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Concluding remarks

I At first glance the General Linear Model looks nasty
I But an understanding of them is vital to truly understand the
common extensions to the General Linear Model used in
biostatistics including:

1 Generalized Linear Models (e.g. Logistic regression, Poisson
regression etc..)

2 Survival analysis methods e.g. Cox proportional hazards
regression

3 Linear Mixed Models (continuous outcomes in longitudinal
studies)

4 Generalized Estimating Equations and Generalized Linear
Mixed Models (categorical outcomes from longitudinal
studies) a ’theoretical’ mix of 1 and 2
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Final word

Biostatistics is not ’Book-learnt’

Rarely do we understand biostatistical methods as we are
introduced to them (I didn’t)

My advice is to review these notes when you get home
tonight...slowly

Put them aside for a few days and review them again (believe
me it works)

Thank You!!!!
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