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What we will cover....

1 Introduction
Biostatistics vs. clinical biostatistics
Methods specific to clinical biostatistics

2 Measures of agreement: continuous
Continuous measures: Bland-Altman plots
Continuous measures: Intra-class correlation

3 Measures of agreement: categorical
Nominal outcomes
Ordinal measures

4 Assessing diagnostic tests
Sensitivity, specificity and predictive values
Likelihood ratio tests
Reciever Operator Characteristic (ROC) curves
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Biostatistics vs. clinical biostatistics

In this session and the next, I will cover the biostatistical
methods that are used solely in clinical epidemiology

The main reason for this, is that they don’t really have a
purpose outside the clinical setting (at least in the health
sciences)

Theoretically, they also don’t really tie in that strongly
with the ’modelling’ approaches we will have covered in
this lecture series
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Clinical Biostatistical Methods

The Clinical Biostatistical methods we will cover today fall
under the two closely related areas:

1 Assessing reliability \ agreement (this session) for

Continuous measures
Categorical measures

2 Assessing diagnostic tests (next session)
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Assessing agreement

In clinical research, we often want to answer questions like:

Is a new method (of measurement) good enough to
replace an old one?

Do measurements made by clinician A agree with those
made by clinician B?

Analysis involving these agreement issues is called
reliability, repeatability, reproducibility and/or
consistency (depending on the exact setting in which the
questions is asked)
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Assessing agreement

The most common situation in which we want to assess
agreement are as follows:

1 A few raters measure the same characteristic (on a group
of subjects) with each rater measuring all subjects. In this
case we want to see how much the different raters agree
in terms of their measurements.

2 One rater successively measures a characteristic while the
subjects’ characteristic stay constant (Known as
intra-rater reliability, repeatability or reproducibility)

Aside:

We should note that rater or method can refer to a person, a
machine or a technical method
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Assessing agreement

The are two main features we need to consider in any of the
above situations:

1 Bias: The degree to which two methods systematic
disagree (i.e. consistently over- or under-estimation

2 Variation: How much ’random’ noise there is

We will consider methods to assess continuous, nominal and
ordinal measures.
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Methods for agreement of continuous measures

First we will consider measures of reliability on continuous
measures. We will focus on two different approaches:

1 The graphical method: Bland-Altman plots; and

2 The statistic: The Intra-class correlation (ICC) coefficient

There is a lot of disagreement among users of these methods
about which is the better approach. However, both methods
have their advantages and limitations.
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Pearson’s correlation coefficient: A traditional but

inappropriate measure of agreement

In the past many studies used Pearson correlation
coefficient, r , to assess the agreement between two raters

The problem with this approach is two raters can be
highly correlated, but have low agreement

This happens when one rater consistently over- or
underestimates the other

That is, when there is bias
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Problems with Pearson’s correlation coefficient

Measures from 2 raters with perfect correlation (r=1)
We can see that Rater 1 consistently underestimates the
measurements taken by Rater 2. This is example of Bias
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Bland-Altman plots: 2 raters only

1 Calculate the difference between each rater’s measure for
each subject

2 Calculate the average scores (of 2 raters) for each subject
3 Generate plot of differences(3) against average score(2)
4 Include line representing the overall average difference
5 Plot the limits of agreement around the average

difference

Interpretation:
Values within limits of agreement ⇒ ’agreement’
Values outside ⇒ lack of agreement
A overall average difference substantially different
from zero indicate bias
Wide limits of agreement ⇒ high noise (random
variation)
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Bland-Altman plots: Calculating the limits of

agreement

The limits of agreement is very similar to a 95% confidence
interval, except the Standard deviation of the differences
rather than the standard error is used:

δ̄ ± 1.96Sδ

where:
δ̄ is the average difference between the raters’ scores
Sδ is the standard deviation of the difference between the
raters’ scores
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Example or Bland-Altman plot: Heart rate

Here we will consider the measurement of heart rates of 16 patients
taken by the same clinician, on two successive visits. Since we have
a single clinician taking measurements on two occasions this is a
reproducibility (or repeatability,or intra-rater agreement) study:

Patient ID Visit 1 Visit 2 Patient ID Visit 1 Visit 2

1 90 75 9 85 72
2 100 95 10 108 100
3 80 72 11 75 85
4 56 70 12 74 70
5 76 75 13 70 78
6 80 100 14 80 78
7 90 95 15 68 62
8 96 100 16 102 68

We will assume that there hasn’t been any disease progression (or

other relevant patient changes) between visits
13/66



Introduction
Measures of agreement: continuous
Measures of agreement: categorical

Assessing diagnostic tests

Continuous measures: Bland-Altman plots
Continuous measures: Intra-class correlation

A preliminary perusal

Scatter plot of rater measures for two different visits of 16

patients 14/66
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The Bland-Altman plot
Interpretation:

Average difference close to
zero suggests low bias

Level of disagreement
independent of level

All values fall within limits of
agreement (suggest low
variation/noise)

No outliers (to investigate)

Conclusion:

This rater demonstrated a high

level of reproducibility
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Pros and Cons of the Bland-Altman approach

BA-plots have some major advantages, but this method has
also come under a lot of criticism.

Strengths:

BA-plot easy and intuitive to understand
Able to peruse all observations (not just get a measure
of the ’average level of agreement’)
Can visualize both Bias and Noise from the plot

Limitations:
As a graph, we don’t have any ’magic cutoff boundry’ as
to what constitutes agreement and disagreement

i.e. Subjective: What one researcher might think of as
agreement, might represent disagreement for another

Does not provide a single ’quotable’ statistic (measure)
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R code for Bland-Altman plot
None of the R libraries generates a Bland-Altman plot. I have
written the following function to generate one (provided in R
script file for this session)

BA.plot<-function(rater1, rater2)
{
BA.diff<-rater1-rater2
BA.ave<-(rater1 + rater2)/2
ave.diff<-mean(BA.diff)
sd.diff<-sd(BA.diff)
upper.lim<-ave.diff + 1.96* sd.diff
lower.lim<-ave.diff - 1.96* sd.diff
y.lim<-c((1.5*lower.lim), (1.5*upper.lim))
plot(BA.ave, BA.diff, main="Bland-Altman plot", ylim=y.lim)
abline(a=ave.diff, b=0)
abline(a=upper.lim, b=0, lty=2)
abline(a=lower.lim, b=0, lty=2)
}
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R output

Now running it on our data, we generate the Bland-Altman
plot from a few slides back:

#Read in data
setwd("c:\\myworkingdirectory")
Heart.df<-read.csv("HeartRateAgreement.csv")

#Use BA.plot function on the Heart rate data
BA.plot(Heart.df$Visit1, Heart.df$Visit2)

17/66



Introduction
Measures of agreement: continuous
Measures of agreement: categorical

Assessing diagnostic tests

Continuous measures: Bland-Altman plots
Continuous measures: Intra-class correlation

Intra-Class Correlation (ICC)

An alternative way of assessing agreement is the Intra-class
correlation coefficient (ICC).

Statistic representing the ’average’ level of agreement
Flexible: allows for greater than 2 raters and other
reliability study designs
However, this flexibility comes with a price: we have to
think about and choose the right model
ICC is not as intuitive as Bland-Altman plots
There are a number of different models for ICC. EG:

1 Simple m raters (random) problem
2 m raters (random) by p methods (random)
3 m raters (random) by p methods (fixed)

We will only cover the first (simplest) case. See Armitage
and Berry(1994) and Chinn(1990) for other models
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The Intra-Class Coefficient (ICC)

ICCs are essentially a statistic representing the proportion
of variation of an observation due to subject-to-subject
variability in error free scores
For the above reason, ICCs can be calculated using
various Analysis of Variance (ANOVA) models.
We will consider the first case from the previous slide (m
raters) which can be calculated using a Components of
Variance model; A one way ANOVA model with a
Random effect (Raters are considered a random sample
from the population of raters)

Aside:

ICCs are also used in a totally different area of biostatistics:
To represent (or measure) the level of within cluster
association in multi-centre studies. 18/66
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Analysis of components model for m-rater ICC

n subjects are rated by m raters (i.e. n ×m observations).
The Analysis of components (aka One-way random effects
model) is given by:

Yij = µ + si + εij

where i = 1, 2, · · · , n (number of patients); j = 1, 2, · · · ,m
(number of raters), µ is an unknown constant (mean of all
observations), si ∼ N(0, σ2

s ) (random variation due to the
subject) and εi ∼ N(0, σ2

ε )

The components of variance ANOVA table:
Source of variation df MS E(MS)
Between subjects n − 1 Ms σ2

ε + mσ2
s

Residual n(m − 1) Mr σ2
ε

Total nm − 1
19/66
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Analysis of components model for m-rater ICC

The quantity we are trying the estimate:

ρICC =
σ2
S

σ2
S + σ2

ε

Using the quantities given in the ANOVA table:

ICC = ρ̂ICC =
Ms −Mr

Ms + (m − 1)Mr

For two raters (i.e. m = 2)

ICC = ρ̂ICC =
Ms −Mr

Ms + Mr
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R code for ICC (nice and simple)
library(psychometric) #Contains ICC function
#Have to stack data in long format
#Combine values from visit1 and visit2 into a single column
heart.rate<-c(Heart.df$Visit1, Heart.df$Visit3)
#Generate a patient ID variable
patient <- rep(c(1:16), times=2)
#Combine into a data frame
hold.df<-data.frame(heart.rate, patient )
#Caluclate one way random effects ICC
ICC1.CI(dv=heart.rate, iv=patient, data=hold.df, level = 0.95)

R Output
This results in:

heart.rate, patient
LCL ICC1 UCL

1 0.2507445 0.6462212 0.8591235
21/66
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Interpretation

With an ICC of 0.65 we would conclude that the ICC (and
therefore reproducibility) is moderately strong. Generally:

ICC < 0.4⇒ weak

0.4 ≤ ICC < 0.7⇒ moderate

ICC ≥ 0.7⇒ strong

The 95 % confidence intervals [0.25, 0.85] give us an idea of
the certainty of our estimate. Narrower confidence intervals
give a higher degree of certainty.

However, to test the hypothesis H0 : ρICC = 0 is not really
meaningful. Although a 95%CI containing zero would give us
cause for alarm.
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Bland-Altman or ICC???

As I mentioned previously, there is a lot of contention
about whether the Bland-Altman or ICC approach is best
My advice is to use both, only presenting the full
Bland-Altman plot if it adds something to the story (i.e.
Demonstrates the nature of bias or noise)

In terms of writing up the results I would use something like:

Both the Bland-Altman plot and Intraclass
correlation coefficient(ICC) were used to evaluate the
reliability of the XXX measure. The ICC showed
moderately strong agreement between the measurements
(ICC=0.65, 95%CI: 0.25, 0.86). The Bland-Altman plot
supported this by showing a low degree of bias (average
difference=-0.312) and no values falling outside the 95%
lower and upper limits of agreement (-21.05, 20.43)...
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Assessing agreement for categorical measures

Now let’s consider how to assess the reliability of
categorical measures
We will consider two cases

Nominal measures (no basis for ordering responses)
Ordinal measures (is a basis for ordering responses)

Fortunately there is a standard approach for doing this:
Cohens’ Kappa (κ).
There are two variants of Cohens’ Kappa. One to deal
with the nominal case (Cohens’ Kappa) and one for
the ordinal case (Cohens’ Weighted Kappa)

However, before we use these methods for assessing agreement
for categorical measures, let’s consider a naive (and
inappropriate) approach for this purpose: the χ2 test of
independence
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χ2 test of independence based on cross-tabulation

Consider two situations (Table 1 and Table 2) where two
raters are asked to diagnose a disease:

Table 1:
Rater B
+ -

Rater A + 75 25
- 25 75

Table 2:
Rater B
+ -

Rater A + 50 50
- 50 50

Here there seems to be reasonable agreement. If we
(inadvisedly) used χ2 tes we might conclude that there is
some agreement(χ2 = 48.02, df = 1, p < 0.0001)
Problem: Isn’t it possible that a large proportion of the
classifications could have been correct just by chance??

If we just got the two raters to ’flip of the coin’ (as in Table
2) we would expect 50% agreement just by chance
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Agreement by chance

This problem is exacerbated when we have diseases of very low
(or high) prevalence. Consider a disease that has a prevalence
of 0.01:

Table 3:

Rater B
+ -

Rater A + 0 1
- 1 98

In this case, both raters failed to agree on any patients with
the disease, but they still managed to agree on 98/100 cases.

We need a method that accounts for the agreement just by
chance
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Cohens’ Kappa: Binary case

Consider a general table (similar to those above) representing the
agreements and disagreements between raters on a two-point
(Binary) scale:

Rater B
+ -

Rater A + a b a + b
- c d c + d

a + c b + d n

One way of representing agreement would be to calculate:

Io =
a + d

n
Io would be 0.75, 0.5 and 0.98 in Tables 1, 2 and 3 respectively.

But as we have seen already, we need to account for the agreement

by chance 26/66
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Cohens’ Kappa

Cohens’ kappa allows us to calculate the agreement we would
expect just by chance. As before observed agreement is given by:

Io =
a + d

n

and chance agreement can be calculated:

Ie =
E (a) + E (d)

n

where E (a) = (a+c)(a+b)
n and E (d) = (c+d)(b+d)

n (as in a χ2 test of

independence: rowtotal×coltotal
overalltotal

)

Note:

Only expected frequencies of agreement cells are used to calculate
Ie
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Cohens’ Kappa

Now Cohens’ Kappa represents the difference between the
observed and expected frequencies as a fraction of the
maximal difference. This maximal difference also accounts
for the agreement just by chance.

κ =
Io − Ie

1− Ie
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Example: tardive dyskinesia

Two raters are asked to administer a new test to diagnose tardive
dyskinesia, with the following results:

Rater B
+ -

Rater A + 123 10 133
- 6 29 35

129 39 168
Now:

Io =
152

168
= 0.905

Ie =
(129)(133)

168 + (39)(35)
168

168
= 0.656

κ =
0.905− 0.656

1− 0.656
= 0.72
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How high should Cohens’ κ be?

A value of 0.72 suggests a reasonably high degree of reliability.
We would conclude that the raters generally agree.

So what represents a high ’enough’ level of
Cohens’ κ?

Fleiss(1999) suggests the following guidelines:

κ ≤ 0.4⇒ Poor

0.4 < κ ≤ 0.75⇒ Fair to Good

κ > 0.75⇒ Excellent
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Cohens’ Kappa for nominal outcomes

It is quite simple to extend the binary form of Cohens’ Kappa
to the nominal (>2 class) problem

Rater B
absent typeR typeQ

Rater A absent a b c
typeR d e f
typeQ h i j

Gives: Io = a+e+j
n

and Ie = E(a)+E(e)+E(j)
n

and as before: κ = Io−Ie
1−Ie

Note:

Again note that only the frequencies of the ’agreement cells’
are used in both Io and Ie
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Ordinal outcomes and Cohens’ weighted Kappa

Often we are presented with the case where our
measurement scale is ordinal:

Mild, Moderate, Severe
Absent, Benign, Suspect, Cancer

Cohens’ Kappa can be simply extended to account for
this ordering
Basic idea: Increase the amount of penalty with higher
levels of disagreement

For example, we might penalize disagreements in
diagnoses two categories apart (e.g. Mild vs Severe)
twice as highly as those adjacent (Mild vs Moderate and
Moderate vs Severe) which we might term partial
agreement

This idea is implemented in the method: Cohens’
Weighted Kappa 32/66
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Calculation of Cohens’ Weighted Kappa

I wont go into too much details about how the statistic is
calculated (those interested are directed to Armitage and
Berry, 1994)
The main innovation in this method is that both the
observed and expected agreements are calculated using
weights that reflect the level of agreement (i.e. full
agreement, partial agreement and full disagreement)
Higher levels of disagreement are penalized higher
(weighed lower) than lower levels of disagreement (partial
agreement)
The main decision to make is how much to penalize for
different levels of (dis)agreement
A number of ways to do this. A common approach used
is the equally spaced penalty (see below)
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Agreement, partial agreement and disagreement

I will illustrate how the Weighted κ statistic works using a
number of examples. Consider a 2 rater by 3 point ordinal
scale of disease severity:

Rater B
mild intermediate severe

Rater A mild a b c
intermediate d e f

severe h i j

34/66



Introduction
Measures of agreement: continuous
Measures of agreement: categorical

Assessing diagnostic tests

Nominal outcomes
Ordinal measures

The ’standard’ Cohens’ Kappa

We might decide to use a ’standard’ κ statistic (and assume
all disagreement is equally bad). That is:

Weight table: unweighted κ
Rater B

mild intermediate severe
Rater A mild 1 0 0

intermediate 0 1 0
severe 0 0 1

That is, in this ’weight table’ (the unweighted case) there
is either ’full agreement’ (with weight of 1), or ’disagreement’
(weight of 0).

35/66



Introduction
Measures of agreement: continuous
Measures of agreement: categorical

Assessing diagnostic tests

Nominal outcomes
Ordinal measures

Equally-spaced Cohens’ weighted kappa

Or we might use an ’equally spaced’ approach where closer
disagreements (partial agreement) is weighted more highly
(penalized less) than full disagreements:
Weight table: equally spaced κ for 3 x 3 problem

Rater B
mild intermediate severe

Rater A mild 1 0.5 0
intermediate 0.5 1 0.5

severe 0 0.5 1

Aside:

Weights can be worked out for the k point ordinal scale
problem using:wi = 1− i

k−1
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Asymmetric weight tables

We may also want to penalize more highly particular
types of disagreements

For example, consider a situation where patients classified
as moderate or severe are triaged to further testing,
whereas those classified as mild aren’t

In this case we would want to highly penalize a
disagreement involving a mild classification:

Weight table: Example of asymmetric weighting
Rater B

mild intermediate severe
Rater A mild 1 0.3 0

intermediate 0.3 1 0.8
severe 0 0.8 1
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Example: Patient vs Nurse rating of cholesterol

levels

In this example, 40 patients self-rated themselves as having
low (chol < 3.8), high (chol ε(3.8, 42] or very high ((chol
≥ 4.2) cholesterol levels. Nurses were then asked to classify
these patients cholesterol levels (using the same method) with
the following results: Patient vs nurse cholesterol

Patients
low high very high

Nurses low 17 0 0
high 4 6 1

very high 1 7 4

Eyeball:

Summarize what you think is happening here
Nurses are overestimating (and\or patients are
underestimating) cholesterol levels. 38/66
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Now let’s use R to calculate:
1 The standard (unweighted) κ
2 The equally-spaced Weighted κ
3 An example of a asymmetric weighted κ

I will use the epicalc library developed by Prof Virasakdi
Chongsuvivatwong at PSU
Unweighted (nominal) case

#Assume data set with ratings read in
library(epicalc)

#Cross tabulate patient and nurse ratings
my.tab<-table(Chol.df$nurse.rate,
+ Chol.df$patient.rate, dnn=c("Nurses","Patients"))

#Run unweighted Kappa
kap(my.tab)
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Results (Unweighted Kappa):
Patients

Nurses 0 1 2
0 17 0 0
1 4 6 1
2 1 7 4

Observed agreement = 67.5 %
Expected agreement = 36.06 %
Kappa = 0.492
Standard error=0.109, Z=4.523, P value<0.001

We would say the agreement was on the lower end to
moderate

Note that here all types of disagreement are just as bad

The hypothesis test (H0 : κ = 0) is rather meaningless
38/66
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Equally-spaced Kappa:
R code:

#wttable="w" means use equally-spaced weight table
kap(my.tab, wttable = "w")

Results:

Patients
Nurses 0 1 2

0 17 0 0
1 4 6 1
2 1 7 4

Observed agreement = 82.5 %
Expected agreement = 57.12 %
Kappa = 0.592
Standard error = 0.117, Z = 5.05, P value < 0.001

38/66
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By accounting for ordinality, we can see an improvement
(κ = 0.592), which comfortably falls in the ’good range’

In this case disagreements in close proximity are penalized
less than those further apart
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Asymmetric weighted Kappa:

my.wts <-as.table(rbind(c(1,0.8,0), c(0.3,1,0.8), c(0, 0.3, 1)))
my.wts

A B C
A 1.0 0.8 0.0
B 0.3 1.0 0.8
C 0.0 0.3 1.0
kap(my.tab, wttable = my.wts)

Patients
Nurses 0 1 2

0 17 0 0
1 4 6 1
2 1 7 4

Observed agreement = 77.75 %
Expected agreement = 57.32 %
Kappa = 0.479
Standard error = 0.115, Z = 4.178, P value < 0.001
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Disagreements involving mild levels are penalized more highly

Not as successful, but maybe a better measure of agreement
39/66
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A last word on Cohens’ κ

The choice of, and if and how we should weight our
disagreements, is one that should be governed by ’design’

We should not just choose the result that sells our idea
better

Cohens’ Kappa is a widely used and standard measure of
gauging agreement between raters using categorical
instruments

It is quite robust, but we should note that it is susceptible
to the very low (very high) prevalence problem (that I
mentioned before)

Some modifications have been proposed to the Kappa the
circumvent this problem (e.g See Byrt et al, 1993)
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Diagnostic tests

Now we will consider the situation where we want to
compare a new method for diagnosing disease (Present
Vs Absent) against some existing ’gold standard’

At first glance, this would appear to be the same as
considering agreement of a binary instrument for two
raters

BUT, there is a very important difference:

Key point:

Unlike inter-rater agreement problem, the source of error in
assessing diagnostic tests comes ONLY from the new test.
The existing method (gold standard) is assumed to be 100%
correct (infallible).
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Diagnostic test accuracy

Let’s start by looking at the elements of a new diagnostic test
assessment:

diagnostic test(new)
T + T−

Actual disease status D+ True Pos(TP) False Neg(FN)
(gold standard) D− False Pos(FP) True Neg(TN)

Where:

D+ is the event that the patient is actually diseased

D− is the event that the patient is actually non-diseased

T + is the event that the patient has a positive test result

T− is the event that the patient has a negative test result
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Test accuracy, Sensitivity and pecificity

After we have compared our new test with the gold standard
we will have numbers to populate the above table.

The numbers on the main diagonal represents the patients
classified correctly. Similar to agreement (in reliability studies)
the probabilities of these main diagonals jointly represent the
test accuracy:

Test accuracy = TP+TN
n
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Sensitivity and Specificity

There are two main quantities that we are interested in when
we first evaluate a new diagnostic test: The Sensitivity and
the Specificity

Sensitivity is the probability that the test correctly
classifies a diseased patient, P(T +|D+)

Specificity is the probability that the test correctly
classifies a non-diseased patient, P(T−|D−)

Sensitivity and Specificity tell us how well a diagnostic test
discriminates between patients with and the without a disease
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Example: Sensitivity and Specificity

We have 100 patients known to have a disease and 1000 to
be disease-free(from gold standard). These patients are tested
using a new diagnostic procedure

diagnostic test(new)
T + T− Total

Actual disease status D+ 90(TP) 10(FN) 100
(gold standard) D− 200(FP) 800(TN) 1000

Total 290 810 1100

Now:

Sensitivity = P(T +|D+) = 90
100

= 0.9

Specificity = P(T−|D−) = 800
1000

= 0.8
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Predictive value of a test

Another set of quantities can also be calculated in this
situation: The predictive values of the test

Theses values have a positive test version (PV +) and a
negative test version (PV −) and are often called the
posterior probabilities

1 (PV +) represents the probability of having the disease
GIVEN (conditional on) a positive test result: P(D+|T +)

2 (PV −) represents the probability of being disease-free
GIVEN (conditional on) a negative test result: P(D−|T−)
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Calculation of (PV +) and (PV−)

Using Bayes’ theorem:

PV + = P(D+|T +) =
P(D+)P(T +|D+)

P(D+)P(T +|D+) + P(D−)P(T +|D−)

PV + = P(D+|T +) =
TP

TP + FP
(1)

and

PV − = P(D−|T−) =
P(D−)P(T−|D−)

P(D−)P(T−|D−) + P(D+)P(T−|D+)

PV − = P(D−|T−) =
TN

TN + FN
(2)
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Prevalence and study design

Perusal of the above equations show that sensitivity and
specificity are directly related to (PV +) and (PV −)
We should also note that the disease prevalence, P(D+)
(and indirectly via P(D−) = 1− P(D+)) is present in the
calculations. This leads to a number of implications:

1 If we want to use our sample to estimate P(D+) using
D+

n our sample should be representative (i.e.
cross-sectional) of the target population.

2 If this isn’t the case, equations (1) and (2) (the quick
way of calculating PV + and PV −) aren’t valid.

3 If so, we need to estimate prevalence from other sources
and use the long form to calculate PV + and PV −

4 Finally, this also implies that PV + and PV − (as good
estimates) are susceptible to levels of disease
prevalence
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Example: (PV +) and (PV−)

Recall our example:
diagnostic test(new)

T + T− Total
Actual disease status D+ 90(TP) 10(FN) 100

(gold standard) D− 200(FP) 800(TN) 1000
Total 290 810 1100

Now assuming our sample is representative of the population:

PV + = P(D+|T +) =
TP

TP + FP
=

90

90 + 200
= 0.310

PV − = P(D−|T−) =
TN

TN + FN
=

800

800 + 10
= 0.988

Also note:

Prevalence = P̂(D+) =
100

1100
= 0.09091
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Interpretation of results

1 The test was quite sensitive (P(T +|D+) = 0.9) with 90%
of individuals with the disease being identified as positive

2 The test was also quite specific (P(T−|D−) = 0.8). 80%
of individuals without the disease were correctly identified

3 The positive predictive value was not very high
(PV + = 0.31) meaning that the probability of a patient
with a positive test actually having the disease is only 0.31

4 The probability of an individual with a negative test not
having the disease (PV − = 0.988) was very high.

Note:

The major difference between PV + = 0.31 and PV − = 0.988

relates to the low prevalence (P(D+) = 0.09091). A smaller

prevalence (holding sensitivity and specificity constant) would have

resulted in even a more pronounced difference 49/66
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Likelihood ratios

Likelihood ratios are an alternative way of gauging the
success (or otherwise) of a diagnostic tests

Like the predictive values (PV+ and PV−) they have a
positive and negativeversion(LR+ and LR−)

Basic idea: Use the pre-test odds and the likelihood
ratio to get the post-test odds

Anadvantage of the likelihood ratios is that we can use it
for different ’cut-offs’
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Why use Likelihood ratios?

Why master the concept of likelihood ratios when they
are more complicated than prevlaence, sensitivity,
specificity and the predicitve values?

ANS: They go beyond the ’less informative’ measures of
sensitivity and specificity to account for the ’acutal value’
rather than just ’above’ or ’below’ the cutoff

For example, somebody with a VERY abnormal value is
more likely to have a disease than someone JUST
ABOVE the cutoff

So with the LR is is possible to summarize information for
test results at different values
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Using likelihood ratios

One of the best ways of present the information contained in a
LR is through the nomogram

1 Given a pre-test probability
(prevalence) of 0.2 and
LR+ = 5, the pro-test
probablility would be 0.6

2 Given a pre-test probability
(prevalence) of 0.2 and
LR+ = 50, the pro-test
probablility would be 0.93
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Relative importance of Sensitivity and Specificity

Often the clinical measure(s) used for diagnostic tests are
measured on a continuous (or close to continuous) scale
A threshold can then be chosen where we decide a subject
is diseased or disease free
Usually choices of threshold value can be weighed in how
we choose the cut off noting:

(Usually) increasing test sensitivity implies a cost in
terms of test specificity
(Usually) increasing test specificity occurs at the expense
of sensitivity

How we balance these two aspects should depend
(mainly) on our research objectives. For example:

For population surveillance of serious infectious diseases
we may want higher sensitivity at the cost of lower
specificity
For an invasive treatment of a non-life threatening
condition, we may think it more important to correctly
identify those without the disease
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Back to the 2 x 2 table

So let’s go back to our 2 x 2 table. We have a continuous
clinical measure and we want to choose a cut-off, that best
suits our research objective

Diagnostic test(new)
’High’ test result(T +) ’Low’ test result(T−)

Disease status D+ True Pos(TP) False Neg(FN)
(gold standard) D− False Pos(FP) True Neg(TN)

We can imagine that:
If we lower the threshold (value of cut-off), we might
capture some more true positives (↑ sensitivity) but we
are likely to let in some false positive (↓ specificity)
Conversely, if we increase the threshold, we would be able
exclude people without the disease (↑ specificity), but
may also miss some diseased individuals (↓ sensitivity)
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Receiver-Operator Characteristic (ROC) curves

We need a way to assess this balance of sensitivity and
specificity

Receiver-Operator Characteristic (ROC) curves do exactly
this

The horrible (and seemingly irrelevant) name of the ROC
comes from their first area of application (early radio
technology)

Note:

All ROC curves do is explore what happens to sensitivity
(fraction of true positives) and specificity (usually via
1-specificity = fraction of false positives) when we move the
clinical measure threshold (cut-off) up or down
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Example: Fever in children

Fever in children in a majority of cases is a result of
self-limiting viral infections, but a minority of these children
will be bacteraemic which can progress to quite serious
conditions
Despite many studies having been done, the management of
febrile children still presents problems to treating physicians.
For example:

1 The consequences of not treating a child with
bacteraemia are potentially life-threatening; but also

2 Over-use of antibiotics also presents a problem
A number of clinical measures were trialled to distinguish
between bacteraemic and ’non- bacteraemic’ febrile children.
We will consider two: (1) White blood cell count; and (2)
Temperature
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White blood cell count

White blood cell count

1 wbcc: 17.9

2 Sensitivity: 74.4

3 Specificity: 75

4 PV +: 7.8

5 PV −: 99

6 AUC: 0.755
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Interpretation

If we use a white blood cell cut-off of 17.9 109L−1 (1:wbcc)
we would expect to (correctly) identify 74.4% of bacteraemia
children (2:sensitivity) and correctly exclude (negative test)
75% of non-bacteraemic children (3: specificity)

The probability of a child testing positive for bacteraemia and
really being bacteraemic is only 0.078 (4: PV +)

and the probability of a child testing negative for bacteraemia
actually not having the condition is 0.99 (5: PV +)

The Area under the ROC curve (6: AUC) of 0.755 shows
that white blood cell count is quite an effective measure to
discriminate between children with and without bacteraemia

Also note the convex shape of the ROC (bulge towards
upper left quadrant) suggesting a good diagnostic test. 58/66
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AUC: Area under (ROC) curve

As indicated above, AUC tells us about a clinical
measure’s ability (independent of cut-off) to discriminate
between those with a disease and those disease free.

So AUC represents an ’overall’ measure of test accuracy

The closer an AUC is to 1, the better the test

A diagnostic test whose ROC curve has a pronounced
convex bulge towards the upper right, will have a higher
AUC

The closer the AUC to 0.5, the worse the test

Test’s without the pronounced bulge will have an AUC
close to 0.5, and will have low test accuracy
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Temperature

Now let’s look at a not so successful diagnostic test:

Temperature

1 Temp: 38.2

2 Sensitivity: 89.7

3 Specificity: 25.5

4 PV +: 3.3

5 PV −: 98.9

6 AUC: 0.56
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Interpretation

Straight away from the shape of the ROC curve we can
see temperature is not a good diagnostic test. This is
supported by the very low AUC (6:AUC=0.56)

Using a cut-off of 38.2oC (1:temp), we can see the test is
quite sensitive (2:sensitivity) with 89.7% of bacteraemic
children testing postive

In sharp contrast, only 25.5% of bacteraemia-free children
tested negative (3:specificity)

Of those that tested positive, 3.3% were actually
bacteraemic (4:PV −)

But of those that tested negative (98.9%) were not
bacteraemic
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Question for you to consider

1 For both the White blood cell count and
Temperature diagnostic tests, PV + was very low, and
PV − very high, what might explain this?

2 If you take WBCC to be the better test, are you happy
with the ’optimal’ threshold (17.9 109L−1)?

When answering this question: think about the two
major considerations in developing this tool:(1)
identifying febrile children at risk of the serious
conditions that arise from bacteraemia; and (2) Overuse
of antibiotics?
What type of test(s) best satisfies these two objectives
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Finding an appropriate cut-off

If we consider both sensitivity and specificity as equally
important, the point (on the ROC) closest to the top left
corner, usually represents the optimal threshold.
But if we have a stronger desire for higher sensitivity (or
higher specificity) we may choose another cut-off
This is where the SHAPE of the ROC curve is important

1 A strongly convex ROC curve (one with a high AUC that
bulges towards the top left hand corner) is one where a
gain in sensitivity can be expected without too much
cost in terms of specificity (or conversely, we can gain in
specificity, without losing too much sensitivity)

2 An ROC curve with AUC close to 0.5 (and has no
convexity), more or less has an equivalent cost in
specificity (sensitivity) for an equal gain in sensitivity
(specificity)

Let’s look at this in terms of our two tests:
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Shape of ROC curve and AUC

White blood cell count Temperature

What would you do??? 64/66
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R code for generating ROC curves:

library(Epi)

setwd("D:\\mydirectory")
bac.df<-read.csv("bacteremia.csv")

#Define disease status
bac.df$bac.logical<-(bac.df$bacteremia==1)

#White blood cell count
ROC.wbcc<-ROC(test=bac.df$wbcc, stat=bac.df$bac.logical, plot="ROC")
ROC.wbcc

#Temperature
ROC.temp<-ROC(test=bac.df$temp, stat=bac.df$bac.logical, plot="ROC")
ROC.temp
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THANK-YOU

Questions?????
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