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Linear Mixed Models

Recall (last session) that you were introduced to the Linear
Mixed Model. This model:

Deals with continuous correlated outcomes;

Is conditional (subject-specific) in that the subject effect
is modeled EXPLICITLY in the model

We covered two examples of LMMs:

The random Intercepts model: Where subjects were
allowed their own intercept; and
The random Coefficients model: Where subjects were
allow their own (entire) regression model (i.e. Intercepts
and slopes)

Now we are going to cover another approach to modelling
continuous outcomes: the Linear Marginal Model
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Differences between MIXED and MARGINAL

model approach

Last session we note that in modeling continuous correlated
data we just want to ’deal with’ the correlated nature of the
data. This is, we extend the standard general linear model:

yij = β0 + β1X1 + β2X2 + · · ·+ εij

To deal with the correlated data, the linear mixed model and
linear marginal models...

yij = β0 + β1X1 + β2X2 + · · ·+ Put something here

The ’something’ is quite different between the mixed model
approach (which is a ’subject-specific’ model), and the
marginal model approach (a population averaged approach)
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Differences between MIXED and MARGINAL

model approach

In the mixed model approach, we EXPLICITLY state the random
effects in the model (i.e. Mixed model has both FIXED and
RANDOM effects → ’MIXED’ (effect) model). So for example the
coefficients model we covered last session:

Reactionij = β0 + βDayDay + Subjecti0 + SubjectDays,iDays + εij

In other words we have a SUBJECT-SPECIFIC component of the
model. We can say the value of Reactionij is CONDITIONAL on
the subject (in addition to the Day effect). For this reason MIXED
models are often called CONDITIONAL models

In contrast, a MARGINAL model just wants to ’average-out’ the

effect for the entire sample
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The marginal model approach

The basic idea of a marginal model is to ’throw
everything into the error’
This allows marginal models to deal with problem of
correlated data
BUT not all data are the same, the patterns of variance
(at each time) and covariance (correlation between
observations at different times) may vary among studies
There are several patterns (called Residual (or Error)
covariance structures) available. We consider four:

1 Independence residual covariance structure
2 Exchangeable (Compound symmetry) residual covariance

structure
3 Autoregressive 1 (AR1) residual covariance structure
4 Unstructured residual covariance structure
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The Independent residual covariance structure

Equal variances along main diagonal (homogeneous)
Zero covariances for off diagonal elements (i.e. repeated
values are uncorrelated) ⇒ Variances constant and
residuals independent over time
The standard General Linear Model (linear regression)
Single parameter estimated: the pooled variance (MSE)

2yr 3yr 5yr 9yr 13yr
2yr σ2 0 0 0 0
3yr 0 σ2 0 0 0
5yr 0 0 σ2 0 0
9yr 0 0 0 σ2 0

13yr 0 0 0 0 σ2

*using Autism data for example

In matrix form:

Rindep. =


σ2 0 0 0 0
0 σ2 0 0 0
0 0 σ2 0 0
0 0 0 σ2 0
0 0 0 0 σ2


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Covariance Structures: Standard cross-sectional

general linear model

For longitudinal data:
The assumption that variance between observation for
each time is equal (after accounting for treatment
differences) is often OK.
Assumption that repeated observations on a given
individual are uncorrelated is VERY unlikely to be valid.
Therefore, the Independent residual covariance
structure is probably not a realistic choice

Residual covariance structure → Statistical models

Assuming patterns in residuals can be approximated using an
independant error covariance structure is the same as
assuming the data are cross-sectional (i.e. Independant)
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Covariance Structures: Unstructured

We can now go to the other extreme and consider a error
covariance structure that allows each time to have:

1 a different variance at each time; and
2 every between-time correlation (1 vs 2, 1 vs 3, 1 vs 4, 2

vs 3, 2 vs 4 and 3 vs 4 etc) allowed to differ
This is the same covariance structure used by the
RM-MANOVA and is generally expensive (lots of
parameters)

For example, if we consider 5 time points, so there are 5
(variances) and 10 covariances = 15 parameters being
estimated

However, running an unstructured residual covariance
matrix gives us a sample estimate of the ’true’
residual covariance matrix (so can be informative
regarding the best choice of covariance structure) 9/49
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Covariance Structures: Unstructured ≈
RM-MANOVA model

Difference variances on
diagonal

Difference covariances off
diagonal

Variance estimated for each
time, covariance for each
pair of times

Most complex structure

E.g. 5 times→need to
estimate 15 parameters

Runstr =


σ2

1 σ12 σ13 σ14 σ15

σ21 σ2
2 σ23 σ24 σ25

σ31 σ32 σ2
3 σ34 σ35

σ41 σ42 σ43 σ2
4 σ45

σ51 σ52 σ53 σ54 σ2
5


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Covariance Structures: Compound symmetry

Compound symmetric (aka Exchangeable) residual
covariance structure can be thought as a compromise.

Like the ’independence’ covariance structure, variances
are assumed to be same at different times

Unlike Independent residual covariance structure,
observations (over-time) allowed to be correlated.

BUT level of between-time correlations same regardless of
how many time points (amount of time) separate them

Advantage: Only two parameters in the error covariance
structure (one for variances and one for covariance)

Compound symmetric is the error covariance structure
underlies the RM-ANOVA model
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Covariance Structures: Compound symmetry ≈
RM-ANOVA

Equal variances-on
diagonal

Equal covariances-off
diagonal (equal correlation)

Simplest structure for
repeated measures

Used for past 50
years(RM-ANOVA)

Requires estimation of 2
parameters

RCS =


σ1 + σ2 σ1 σ1 σ1 σ1

σ1 σ1 + σ2 σ1 σ1 σ1

σ1 σ1 σ1 + σ2 σ1 σ1

σ1 σ1 σ1 σ1 + σ2 σ1

σ1 σ1 σ1 σ1 σ1 + σ2


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Covariance Structures: First order Autoregressive,

AR(1)

This is also a 2-parameter residual covariance structure

It differs from compound symmetry in that allows
between time correlations to decay as time points get
further apart (which seems sensible)

However, assumes decay rate in correlation follows a
particular pattern

This structure is sensible when time points are
equally-spaced (e.g. Baseline, 1 week, 2 weeks, 3 weeks
etc)
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Covariance Structures: Autoregressive(1)

Equal variances on diagonal

Off diagonal represents sd
times correlation coefficient
raised to increasing powers as
the observations become
increasingly separated in time.

Increasing power ⇒ decreasing
correlation (as ρ < 1).

Times points should be
equidistant

Estimates 2 parameters
(regardless of number of time
points)

RAR(1) =


σ2 ρσ ρ2σ ρ3σ ρ4σ
ρσ σ2 ρσ ρ2σ ρ3σ
ρ2σ ρσ σ2 ρσ ρ2σ
ρ3σ ρ2σ ρσ σ2 ρσ
ρ4σ ρ3σ ρ2σ ρσ σ2


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Choice of Residual covariance structure

Many different covariance structures available and we
have only covered three viable ones ( independence model
is not realistic)
In ideal situations, we can be guided by the study design.
For example, are the repeated measures taken at equally
spaced times (so AR(1) might be best).
However, if it is not clear from study design, we have to
resort to ’empirical’ approaches to gauge the best error
covariance structure
Perhaps the best way to gauge the nature of the TRUE
residual covariance structure is to look at the
unstructured residual covariance structure, as this
provides a PICTURE of the real correlation between the
observations
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Empirical strategies for finding suitable covariance

structures

Two aspect in selecting best covariance structure:
1 Model fit
2 Number of parameters (how ’expensive’ is it)

Information criterion (IC) statistics commonly used to
assess both model fit AND complexity

Unfortunately, AIC can’t be used on models that don’t
use maximum likelihood (like GEEs), but we can use an
alternative measure, QIC

16/49



Linear Marginal Models
Modelling other longitudinal outcomes

Exercises LMMs and GLMMs

Revision of models for continuous correlated outcomes
Residual covariance structures
Choice of residual covariance structure
Worked example: Linear Marginal Model

Empirical strategies for finding suitable covariance

structures

Approach I use for choosing best (Marginal) model is:

1 Run the model with the unstructured error pattern matrix
to get an idea of the ’true’ error covariance structure

2 Use the above to try different (other) residisidual
covariance structures and gauge their fit (and parsimony)
using AIC (for mixed models) or QIC (for GEEs)

The importance of the unstructured error covariance matrix

Fitting a marginal model with the Unstructured error
covariance matrix gives a pretty good idea of the true pattern
of the residual covariance
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Comparing models: Unstructured covariance

structure

Won’t go into any detail about Linear Mariginal Models(I
avoid marginal models) and we’ll see them in GEEs
But, I would like you to better understand how
unstructured cov. matrices can be used to gauge ’reality’
Below is the unstructured covariance matrix(Autism data)

Estimated (true) residual covariance structure:

2yr 3yr 5yr 9yr 13yr

2yr 1.000 0.088 0.021 -0.038 -0.012
3yr 0.088 1.000 0.222 0.135 0.030
5yr 0.021 0.222 1.000 0.643 0.143
9yr -0.038 0.135 0.643 1.000 0.431

13yr -0.012 0.030 0.143 0.431 1.000
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Comparison of models: Independence

RIndepedant =


1.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000 0.000
0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.000 0.000 1.000


Treating the Unstructured matrix (last slide as reality).....

Do you think the Independant error covariance structure
is realistic
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Comparison of models: Compound symmetry

What about the compound symmetric???

RCS =


1.000 0.267 0.267 0.267 0.267
0.267 1.000 0.267 0.267 0.267
0.267 0.267 1.000 0.267 0.267
0.267 0.267 0.267 1.000 0.267
0.267 0.267 0.267 0.267 1.000


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Comparison of models: Autoregressive order 1

The Autoregressive(1)

RAR(1) =


1.000 0.429 0.184 0.079 0.034
0.429 1.000 0.429 0.184 0.079
0.184 0.429 1.000 0.429 0.184
0.079 0.184 0.429 1.000 0.429
0.034 0.079 0.184 0.429 1.000


Out of the four Error covariance structures which would
you pick: 1. Unstructured, 2. Independnant, 3.
Compound symetric, 4. AR(1)??????

Is there anything else you would consider?????
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Final step: Interpretation of model

After choosing ’best’ error covariance structure, we intepret
our fixed effects (as with any other model)

Table: Coefficients table from Linear marginal model(AR1)

Estimate Std.err Wald p-value
(Intercept) -21.74 3.77 33.30 < 0.001

sicdegp 11.27 1.75 41.30 < 0.001
age 4.55 0.41 125.83 < 0.001

Highly significant and positive association between
sicdegp and VSAE (Those with ↑ expressive language at 2
years old, ended up having ↑ socialization scores)
Age highly associated with socialization. Each successive
observation ⇒ 4.55 point ↑ socialization score
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Mixed vs Marginal models

Why have I wasted so much time on linear marginal
model when they aren’t often used (esp for continuous
longitudinal data)

Main point: Unlike the Linear Mixed model (last session),
I did not present a ’subject-specific’ regression lines (recall
plots from random coefficients LMM)

Why not? Because Marginal models assume effect of
correlation is same for everyone; the ’average’
within-subject correlation is applied to every subject
(hence the name Population averaged models)

In contrast, for Mixed Models, within-subject correlation
is conditional on (specific to) each individual patient: so
aka Conditional or Subject-specific models
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Where now: Other longitudinal outcomes

This difference between Marginal (population-averaged) and Mixed

(conditional) represents the fundamental difference between the

last two methods we will cover: Generalized Estimating Equations

(GEEs) and Generalized Linear Mixed Models (GLMMs)

GEEs can be used for categorical longitudinal outcomes
(e.g. Binary, Ordinal etc) and represent a Marginal
model approach (i.e. Population averaging)
GLMMs can be used for categorical longitudinal
outcomes (e.g. Binary, Ordinal etc) and represent a
Mixed model approach (i.e. Conditional, or
subject-specific)

There are other subtle differences between GEEs and GLMMs

(mathematics used to estimate βs), but I won’t go into too much

detail about this
24/49
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Life, the universe and everything

So where do GEEs and GLMMs fit into the universe of (most)
biostatistical modelling

Obviously other models out there (e.g. Cox regression), but
this far and away accounts for most models used in health and
medical research 25/49
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Coverage of GEEs and GLMMs

As promised, I am not going too much into the
mathematics of GEEs and GLMMs

I will just present a couple of slides on each, and then we
will get to running them in R, and interpreting the results

Also, I will only focus on binary outcomes (binary logistic
regression), but GEEs and GLMMs work on other
categorical outcome types too (e.g. Multicatergory,
Counts etc.)

We will use the Respiratory RCT data presented at the
beginning of last session for our example
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A brief description of Generalized Estimating

Equations (GEEs)

As already mentioned, we can use GEEs to model
longitudinal categorical data
GEEs use a marginal (population-averaging) approach
(i.e. Residual covariance structures) and βs are estimated
using a Quasi-MLE approach
In GEEs, the correlated nature of the data is considered a
nuisance and we just want to remove it from the data
Compared to other models, GEEs deal with the correlated
nature of data in a rather ’informal’ way.
In practice, there are only two steps:

1 Specify the distribution and link function (as in GLMs)
2 Specify the residual covariance structure: Exchangeable,

AR1, Unstructured, etc 27/49
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GEEs in R

I will use the r library, geepack, to run the GEEs.

R syntax: GEEs
library(geepack)

my.gee<-geeglm(my.y∼my.x1+my.x2, id=id, corstr =
"exchangeable", family = binomial(), data=mydata.df)
summary(my.gee)
anova(my.gee)

# functions included to get ORs and CIs, and QIC
print.ORCIs.gee(my.gee)
QIC(my.gee)

Note: I have provided an R workspace
(dmht2500_VERSION2.Rdata) that includes all the
longitudinal data and functions I use [inc. QIC() and
print.ORCIs.gee()] with these lecture notes. Just
load this workspace, and you will have access
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Generalized Linear Mixed Models

GLMMs are a direct generalization of Linear Mixed Models ⇒
they EXPLICITLY model individual patients

Like LMMs, we can specify Random Intercept and Random
coefficients models in GLMMs

Unlike GEEs (and all marginal models) we aren’t restricted to
simple simple (singl) clustered designs

So, Mixed Models (LMMs and GLMMs) allow hierarchical
levels-EG. Opthamology: Repeated measurement, of
TWO eyes, WITHIN patient, WITHIN clinics

Take home emssage:

Mixed Models can be used for multi-level analysis in a much more
sophisticated way than Marginal models
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GLMMs in R

I will use the R library, lme4, to run the GLMM

R syntax: GLMMs
library(lme4)

# GLMM: Random intercept
glmm.ri<-glmer(my.y∼myx1+myx2 + (1|pat.id), family =
binomial(), data=mydata.df)
summary(glmm.ri)

# functions included to get ORs and CIs
print.ORCIs.glmm(glmm.ri)

Note: The function print.ORCIs.glmm() is also
included in the R workspace,
dmht2500_VERSION2.Rdata.
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Respiratory data

A multi-centre, placebo-controlled RCT to investigate the
efficacy of a ’drug’ on respiratory illness. A group of 111
patients (from two centres) were randomized to either the
placebo or treatment arm. Respiratory illness (y/n) was
observed at baseline, and then again on three subsequent
visits. Variables:

Respiratory illness present (y/n);

Visit: 1 (baseline) and three follow-up visits (2,3 and 4);

Treat: P=Placebo or A=Active

Patient.id: Unique patient identifier

Centre.id: Centre ID (1 or 2)

Note: Centre.id is a potential clustering effect (another
source of correlation among observations)
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Clarification of research question

In this analysis (and many RCTs conducted over time), we are
not just interested in the main effect, Treatmnent, but also
the Treatment x Time effect. WHY?

If the treatment is first administered at baseline, we would
expect some lag time before the treatment starts to work
To consider the main effect, Treatment, we would
combining baseline and later values in the same sample
(reducing effect size)
Also the main effect, Time (or Visit) is going to combine
all subjects together (both control and treatment
subjects)
Only the Treatment x Time is going to give us an idea
of the two groups (treatment and control) differential
response over time
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Approach

I will keep our analysis pretty simple here and consider a single
Within-subject effect (VISIT), and a single
Between-subject effect (TREATMENT)

Unlike the previous analyses, I am going to treat visit
(time) as a factor

GEE for respiratory data
# Make life easier, convert visit to a factor before we start
respire.df$visit.f<-factor(respire.df$visit)

# Start with a GEE with exchangeable covariance structure
gee.exc<-geeglm(outcome∼treat+visit.f+treat:visit.f, id=id,
corstr = "exchangeable", family = binomial(), data=respire.df)
anova(gee.exc)
summary(gee.exc)

print.ORCIs.gee(gee.exc)

QIC(gee.exc)

33/49



Linear Marginal Models
Modelling other longitudinal outcomes

Exercises LMMs and GLMMs

Example of analysis using GEEs
Example using GLMMs

Output 1a) ANOVA (Note I have been lazy, I should have
compared the whole model with the null model)
> gee.exc<-geeglm(outcome~treat+visit.f+treat:visit.f, id=id, corstr = "exchangeable", family = binomial(), data=respire.df)
> anova(gee.exc)
Analysis of Wald statistic Table
Model: binomial, link: logit
Response: outcome
Terms added sequentially (first to last)

Df X2 P(>|Chi|)
treat 1 10.02 0.0016 **
visit.f 3 3.57 0.3117
treat:visit.f 3 3.13 0.3727
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
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Output 1b) Coefficients

> summary(gee.exc)

Call:
geeglm(formula = outcome ~ treat + visit.f + treat:visit.f, family = binomial(),

data = respire.df, id = id, corstr = "exchangeable")

Coefficients:
Estimate Std.err Wald Pr(>|W|)

(Intercept) 0.7777 0.2930 7.05 0.0079 **
treatP -0.8128 0.3950 4.23 0.0396 *
visit.f2 0.0873 0.3146 0.08 0.7814
visit.f3 0.1778 0.3074 0.33 0.5630
visit.f4 -0.3257 0.3028 1.16 0.2820
treatP:visit.f2 -0.5165 0.4104 1.58 0.2082
treatP:visit.f3 -0.3186 0.4284 0.55 0.4570
treatP:visit.f4 0.1140 0.3948 0.08 0.7729
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
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Output 1c) ORs, Confidence intervals and QIC

>print.ORCIs.gee(gee.exc)
OR OR.L95 OR.U95

(Intercept) 2.176 1.226 3.865
treatP 0.444 0.205 0.962
visit.f2 1.091 0.589 2.022
visit.f3 1.195 0.654 2.182
visit.f4 0.722 0.399 1.307
treatP:visit.f2 0.597 0.267 1.334
treatP:visit.f3 0.727 0.314 1.684
treatP:visit.f4 1.121 0.517 2.430
> QIC(gee.exc)

QIC Quasi Lik Trace px
597 -290 8 444
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Interpretation

We see that in this model, only the TREATMENT effect
is significant (output 1a)

i.e. Only partial evidence that treatment works-WHY?

Hint: Main effect vs interaction effect

The odds of better breathing for the placebo group is
considerable lower [(1-0.444)x100% =55.6%] relative to
the treatment group
We can see that the 95%CIs exclude 1

Note for later, QIC=597
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GEEs with other residual covariance structures

I won’t bother running through individual GEEs with different
covariance structures in R. I will just present you the results

Effect Exchangeable AR1 Unstructured
Treatment 10.02** 7.65** 10.11**

Visit 3.57 3.66 3.56
Treat x Visit 3.13 3.13 3.13

Overall p<0.05 p<0.05 p<0.05

The models are similar in terms of both their overall
significance and fit (QIC, not included).

The only difference we see is in the individual terms

In this situation I would be guided by study design alone.
I would choose AR1, or Unstructured (The compound
symmetry assumption is unrealistic)

35/49



Linear Marginal Models
Modelling other longitudinal outcomes

Exercises LMMs and GLMMs

Example of analysis using GEEs
Example using GLMMs

GLMM on the respiratory data

Now let’s try running GLMMs on the data. As with LMMs, I
will try both the Random intercept and Random
coefficients models. REMEMBER:

The Random INTERCEPT model allows different patients
to start with different levels (in this case of respiratory
status), but after accounting for treatment effect, they
are expected to ’progress’ in the same way
The Random COEFFICIENTS model does not restrict us
in this way

GLMMs for respiratory data: Null model
library(lme4)

# Start with a null model
glmm.null<-glmer(outcome∼1 +(1|id) family = binomial(),
data=respire.df)
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Assessing the random intercept GLMM

Now to assess the random intercept model we will:
1 Use ANOVA to compare null and fit random intercept

models
2 Compare the AIC of the null and fit random intercept

models
3 Assess the significance of individual terms

GLMMs for respiratory data: Random intercept fit
# Fit our model
glmm.rint<-glmer(outcome∼ treat + visit.f +treat:visit.f
+(1|id) family = binomial(), data=respire.df)

# Is the model (overall) significant
anova(glmm.null, glmm.rint)

# Get coefficients

summary(glmm.rint)
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Output 2) Model significance, AIC and βs

> anova(glmm.rint.null,glmm.rint)
Data: respire.df
Models:
glmm.rint.null: outcome ~ 1 + (1 | id)
glmm.rint: outcome ~ treat + visit.f + treat:visit.f + (1 | id)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
glmm.rint.null 2 566 574 -281
glmm.rint 9 551 588 -267 28.7 7 0.00016 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

####Coefficients
Fixed effects:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.060 0.378 2.80 0.0051 **
treatP -1.156 0.469 -2.47 0.0137 *
visit.f2 0.114 0.463 0.24 0.8063
visit.f3 0.231 0.468 0.49 0.6220
visit.f4 -0.428 0.448 -0.96 0.3393
treatP:visit.f2 -0.684 0.626 -1.09 0.2750
treatP:visit.f3 -0.419 0.627 -0.67 0.5041
treatP:visit.f4 0.145 0.612 0.24 0.8122
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Random intercept GLMM: Interpretation

Model significance: We can see that the fit model,
represents a significant improvement on the null model
(χ2

LR = 28.7, df = 7, p = 0.00016)

Model fit (AIC): We can see that the fit model is
somewhat of an improvement over the null model
(AICnull = 566, AICrand .int = 551)

Like the GEE, only the main effect of treatment was
identified as significant (βplacebo = −1.156, p = 0.0137)

I won’t get the odds ratios until I decide on a final model
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Random coefficients GLMM

Our final model will be the random coefficients model

Remember this model allows subjects to respond
differently over time

In the context of this study, we can expect patients to
improve or worsen of their own accord (above the effect
of the treatment), and also respond differently to
treatments.

What does this mean in a GLMM context? (Much
simpler for LMMs)

Patients are allowed to have their own departure from
the ’average’ LOG odds ratios between visits

OK let’s fit the model in R
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Random coefficients GLMM in R

GLMMs for respiratory data: Random coefficients fit
# Fit our model
glmm.rcoeff<-glmer(outcome∼treat + visit.f +treat:visit.f
+(visit.f|id) family = binomial(), data=respire.df)

# Is the model (overall) significant
anova(glmm.null, glmm.rcoeff)

# Is model improvement on random intercept model
anova(glmm.rint, glmm.rcoeff)

# Get coefficients
summary(glmm.rcoeff)
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Output 3) Model significance, AIC

> glmm.rcoeff<-glmer(outcome~treat+visit.f+treat:visit.f+ (visit.f|id), family = binomial(), data=respire.df)
> anova(glmm.rint.null, glmm.rcoeff)
Data: respire.df
Models:
glmm.rint.null: outcome ~ 1 + (1 | id)
glmm.rcoeff: outcome ~ treat + visit.f + treat:visit.f + (visit.f | id)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
glmm.rint.null 2 566 574 -281
glmm.rcoeff 18 569 642 -266 29.3 16 0.022 *
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

#Random intercept vs random coefficients model
> anova(glmm.rint, glmm.rcoeff)
Data: respire.df
Models:
glmm.rint: outcome ~ treat + visit.f + treat:visit.f + (1 | id)
glmm.rcoeff: outcome ~ treat + visit.f + treat:visit.f + (visit.f | id)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
glmm.rint 9 551 588 -267
glmm.rcoeff 18 569 642 -266 0.6 9 1
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Random coefficients GLMM: Interpretation

Random coefficients model Vs. null model
The first thing we should notice is that the Random
coefficients model fit the data significantly better than
the null model (χ2

LR = 29.3, df = 16, p = 0.022)
BUT the extra model complexity (having additional sets
of βs for every patient: OR1v2, OR1v3 and OR1v4) was
not worth it: The null AIC was actually lower than the
random coeff model AIC (AICnull = 566,
AICrand .coeff = 569)

Random coefficients Vs. random intercepts models
We see that the random coefficients model neither
represents a significant improvement (χ2

LR = 0.6, df = 9,
p = 1), and the AIC actually identified the model as
considerably worse (AICrand .int = 551, AICrand .coeff = 569)
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So which is the best model

We have first 5 models on this data:

1 GEE with exchangeable error covariance structure

2 GEE with AR1 error covariance structure

3 GEE with unstructured error covariance structure

4 A random intercept GLMM

5 A random coefficients GLMM

Which would you pick???
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So which is the best model

I would almost always pick a GLMM over a GEE (and
always a mixed model over a marginal model in general)

I personally have problems with the (population)
averaging approach (throwing everything into the error)

Also GEEs are limited to rather simple situations (e.g.
Single level clusters)

That Mixed models allow individual subjects to vary, (and
explicitly modelling this) appeals to me

BUT an argument against the mixed model approach is
they are expensive (often requiring a large number of
model parameters)

I will choose the Random intercept GLMM in this case

One last thing to do!!!!
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Now that I chosen my model, I want the ORs and their 95%CIs

Obtaining GLMM ORs and 95%CIs: Random intercept model

# Get ORs and their 95%CIs

print.ORCIs.glmm.wald(glmm.rint)
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Output 4) ORs and 95%CI from best model

> print.ORCIs.glmm.wald(glmm.rint)
OR L95 U95

(Intercept) 2.879 1.352 6.130
treatP 0.315 0.123 0.811
visit.f2 1.120 0.446 2.811
visit.f3 1.258 0.497 3.185
visit.f4 0.652 0.266 1.599
treatP:visit.f2 0.506 0.144 1.771
treatP:visit.f3 0.659 0.188 2.305
treatP:visit.f4 1.156 0.338 3.953

As with GEEs, the 95%CIs excludes 1. The odds of better
respiratory status in the placebo group is
(1-0.315)x100%=68.5% less than the treatment group.

BUT, we could not show the Treatment x Time interaction
was significant (the main objective of studies of this type)
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GLMMs and GEEs: Side-by-side

There are advantages and disadvantages to both GLMMs and
GEEs

Generalized Linear mixed models

Make fewer simplifying assumptions

More computationally intense (and often
don’t converge)

Estimates LOTS of parameters from the
data

Allow more complex designs (e.g.
Multilevel)

Genralized Estimating Equations

SImplistic (assume beyond covariates,
population clusters all the same)

Less computationally intense (converges
more often)

Estimates fewer parameters from the data

Only allows simple design (Only
two-level⇒Single ’clustering’ effect)
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THANK-YOU

Questions???
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Exercises for LMMs and GLMMs

The datasets we will use are all in chStuff.RData, and
includes the datasets outlined at the beginning of the LMM
lecture (repeated below).
Regardless of what type of model you are fitting (LMM,
GLMM, or even GEE) you should start with the simplest
model and then sequentially add complexity. Specifically:

1 A null model: Interecpt only model that contains the
random effects (no fixed effects should be included)

2 Main effects models (no interactions terms)
3 Interaction terms

My suggestion is to run these for (1) The random intercept
model, and then (2) the random coeffcients model

1 The model has ’significantly’ improved (χLRT test)
2 Is the extra complexity worth it (e.g. AIC)
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Continuous outcome: Autism data

This study (Oti et al, 2006) investigates the effect of the level
of communication development (as classified at age 2) on
social development in Autistic children. Cohort participants
are initially measured at 2 years old and then followed up until
age of 13:

VSAE: parent-reported Vineland Socialization Age
Equivalent

Age: Age in years (2, 3, 5, 9, 13)

Sicdegp: Expressive language score at 2yo:Low, Med,
High

Childid: Unique child identifier

We are interested in the effect of Expressive language and
Age on Socialization.
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Binary outcome: Respiratory data

A multi-centre, placebo-controlled RCT to investigate the
efficacy of a ’drug’ on respiratory illness. A group of 111
patients (from two centres) were randomized to the treatment
arms. Respiratory illness (y/n) was observed at baseline, and
then again on three subsequent visits. Variables:

Respiratory illness present (y/n);
Visit: 1 (baseline) and three follow-up visits (2,3 and 4);
Treat: P=Placebo or A=Active
Patient.id: Unique patient identifier
Centre.id: Centre ID (1 or 2)

Our analysis (in the lecture) was incomplete. Let’s rerun the
analysis, but this time, account for the age and gender
confounders. Suggestion: Only run GLMMs (don’t bother
about the GEE) plus Remember your cheat-sheet
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