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Preamble

We will now move on from the most widely used Generalized
Linear Model (Binary Logistic regression), to those used a
little less, nonetheless these methods are very important

You will see that once you understand Binary Logistic
regression, the workings of these other Generalized Linear
models is very similar

Although we are now talking about specific models. I would
like you to remember the Unifying theory that ties them all
togther: The Generalized Linear Model
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What we will cover....

1 Introduction

2 Modelling ordinal outcomes

3 Poisson regression: Modelling counts and rates

3/34



Introduction
Modelling ordinal outcomes

Poisson regression: Modelling counts and rates

Modelling ordinal and count data

In this session we will cover methods that conisder a little
more information in the outcome variable (i.e. On at least an
ordinal measurement scale)

First, we will cover a method for Ordinal logistic regression:
used to model ordinal outcomes.

Second, Poisson regression which is used for modelling events
(especially rare events). These can be in the form of counts
(number of events), or rates (e.g. Incidence or mortality rates)
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Ordinal Logistic Regression

Has advantage (over multinomial [nominal] logistic regression)
of taking order in an outcome variable into account (when it
is present)

E.g. Grade of Cancer (progression/severity): Grd I; Grd II; Grd
III; Grd IV

Should be noted that nominal logistic regression is still valid
on ordinal outcomes, it is just unlikely to perform as well as
the ordinal model Why???

We will consider one of several possible ordinal logistic
regression models:

’Proportional odds’ ordinal logistic regression
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The proportion odds ordinal logistic regression model

The proportional odds model assumes differences can be
represented using the constant term alone (i.e. the other
explanatory variables do not depend the categories under
consideration). That is:

ln

[
π1 + π2 + · · ·+ πj

πj+1 + πj+2 + · · ·+ πJ

]
= β0+β1Xi ,1+β2Xi ,2+. . .+βk−1Xi ,k−1+εi

That is, the Xs effect the difference between categories in
exactly the same way (on a log scale): the effects are
proportional.

Proportional odds model is not the simplest ordinal logistic
regression model but it does seem to be the default approach
used by most software. Personally, I find it the most intuative
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Proportionality

The idea is: the odds ratio for two adjacent categories (odds
of grade I tumour relative to odds of grade II) is effected by
the covariates/factors in exactly the same way as OR(grade
II/grade III) and so on.

E.g. Effect of new drug treatment is the same regardless of
which two adjacent categories being considered in OR (←
Drug always helps).

This assumption of proportionality is something we will
discuss in more detail when we cover the survival analysis
model, Proportional Hazards (Cox) regression
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Ordinal Logistic Regression:Example

Motivating example - Factors influencing likelihood of
postgraduate education

400 first year undergraduate students were asked their
likelihood of applying for post graduate training: Apply:
Unlikely, Somewhat likely, Very likely - an ordinal outcome
variable.

Also recorded were:
1 the students’ parental postgraduate training [no, yes],
2 whether the university the students currently attended were

research intensive[no, yes], and
3 the students GPA [numerical]
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Results

Motivating example - Factors influencing likelihood of
postgraduate education
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Results

Motivating example - Factors influence likelihood of
postgraduate education
And cross-tabulations:

Watch out for low frequency cells
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Ordinal logistic regression: Result

Motivating example - Factors influence likelihood of
postgraduate education
Table 1: The overall model is significant (p<0.05)

Table 2: The model predictions do no deviate significantly from
the data (the model provides a good fit)
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Ordinal logistic regression: Result

Motivating example - Factors influence likelihood of
postgraduate education
Table 3: The Nagelkerke R2 is not very high (but how high should
it be ????)

Now for the Pointy End: Coeffcients interpretation
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Interpreting βs and ORs from Ordinal Logistic models

First, just ignore the threshold: these are just group specific
interecpts (i.e.β0s)

Second, we can only see the coeffcients (βs) not the odds
ratios, but:

Both GPA and Parents postgrad training are associated
with the students likelihood of applying for postgrad training
(both p < 0.05)
However, the research intensity of the university was not.
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Interpreting βs and ORs from Ordinal Logistic models

To get the ORs (and their 95%CIs) we need to expontiate the βs
(and their 95%CIs). For GPA:

ORGPA = eβGPA = exp(0.616) = 1.852

and the 95%CI:
]e0.101, e1.13] = [1.11, 3.1]

So the odss of being one category higher of ’likelihhod for future
application for posgraduate training’ increases by 85 % for every
extra additional GPA point.

We can do the same for all other coeffcients and their 95%CIs, but
I won’t bother.
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Performing Ordinal Logistic regression in R

Very similar to conducting a standard logistic regression, except we
use the polr function in the MASS R library:

Proportion odds logistic regression in R

library(MASS)

my.ordlr<-polr(my.y∼my.x1+my.x2, data=mydata.df)

summary(my.ordlr)
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Ordinal logistic regression

Ordinal logistic regression might seem a bit tricky at first, but
once you get used to them, they are pretty straight forward

If you don’t do them that often, you will find you forget how
they work

My suggestion is that the first time you run one, spend a little
time ’writing it up’, then for the next one you do, refer back
to your write up.

16/34



Introduction
Modelling ordinal outcomes

Poisson regression: Modelling counts and rates

Poisson regression

Personally, I find Poisson regression somewhat more accessible
than the logistic regression methods (then why didn?t I cover
it first?)

However, the use of this method is (surprisingly) not as
common in health and clinical research (especially as binary
logistic regression)

This is probably because researchers tend to prefer
dichotomous outcomes (even when it makes more sense to
model counts)
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Poisson regression: What I will cover

Counts, rates and the Poisson distribution

When the (standard) Poisson distribution
doesn?t fit

Counts vs rates: the idea of an offset.
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The Poisson distribution

Health outcomes that are counts (especially rare events) often
have a Poisson distribution

Number of road accidents per day
Number of lesions

These counts have to be represented by natural numbers (i.e.
Positive integers): 0, 1, 2,...

As the natural numbers are zero bound (negative values not
possible), and higher numbers are possible, but unlikely, the
Poisson distribution is often positively skewed
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Poisson vs. the Normal distribution

The normal distribution has a parameter that represents it?s
centre (µ, the Mean) and one that represents it?s spread (σ2,
the Variance or σ, the Standard deviation)

In contrast, the Poisson has a single parameter (λ, Lambda)
that represents both the mean and the variance

In other words level of mean of a Poisson distribution is the
same as the level of the variance

IN FACT, we can use this property to identify the Poisson
distribution.
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When do we use Poisoon regression?

ANS: When we have counts of rare events (counts)

BUT if counts are not so rare, we can often use general linear
model (i.e. Linear regression instead)

General linear models (linear regression) avoids the complexity
introduced by (log) link functions and Maxmimum likelihood
estimation

Generally, if the mean count (or λ = µ) > 15, we can use
standard linear regression (check data using histogram)

Note: Linear regression and Poisson regression

When the count outcome is ’not so rare’ (e.g. λ > 15), when can
use Linear regression instead of Poisson regression
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Rare vs common events

To illustrate this ”µ > 15” rule, let’s consider the daily number of
deaths (from a particular disease) in Bangkok and Khon Kaen.
BKK is large and has 32.1 deaths per day, on average (i.e.
λ = 32.1), whereas KK which is much smaller has (on average) 1.2
deaths per day (i.e. lambda = 1, 2)

Number of deaths for BKK appears normally distributed and we
note: λ = 32.1 > 15
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Poisson regression as a Generalized Linear Model

The link function most used for the Possion regression, that is the
Canonical or Natural link, is the Log function.

Fortunetly, unlike the Logit link used for Logistic regression, the
natural log function, is a little easier to undersatnd.

Let’s just quickly reconsider the definition of the Generalized Linear
model...
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The Generalized Linear Model

DEFINITION: A Generalized Linear Model is a model that can be
represented:

g(y) = Xβ + ε

Or equivalently,
y = g−1(Xβ + ε)

where g() monotonic and differentiable link function

For Poisson regression, y is often a count variable, so:

g(y) = ln(y) = Xβ + ε

or alternatively,
y = eXβ+ε
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R syntax for Poisson regression

You should be able to guess!!!!!

Poisson regression in R

my.poireg<-glm(my.y∼my.x1+my.x2, data=mydata.df,
family=poisson)
summary(my.poireg)

# Use print.RRCIsi to get RRs and their CIs

print.RRCIs(my.poireg)

THAT’S RIGHT!!!! EXACTLY THE SAME AS A BINARY
LOGISTIC REGRESSION EXCEPT family=poisson
RATHER THAN family=binomial
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Example: Death rate and temperature

We will considers the rates of deaths in different cities. We believe
that the minimum winter temperatures can help explain mortality

QUESTION: Why are we considering rates (and not just raw
counts????)
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Results

In this case, we can see that there is a significant temperature
effect (RR = 0.987, p < 0.001, 95%CI: 0.984, 0.989). As
temprature increases 1 degree, there is a (1-0.987)x100% =1.3%
decrease in the rate of deaths
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Overdispersion and Underdispersion

Overdispersion occurs when there is too much variance (for the
Poisson distribution).

Recall for a Poisson distribution, there is a single parameter, λ, and

λ = µ = σ2

Overdispersion is when
σ2 > µ

Underdispersion (rarer, but still possible) is when

σ2 < µ
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Dealing with Over- and Under-dispersion

There are a couple of methods of dealing with Over- and
Under-dispersion. Perhaps the best approach is to use the:

Negative Binomial Generalized Linear Model

This is a two parameter Generalized Linear Model (has both a
location and scale parameter). One of the problems is to estimate
what the dispersion (scale) parameter is first, and then fix this in
the model.

I won’t bother going through this model. If you get this problem,
hit the books (or come to see me)
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Offsets

If we consider two cities, Bangkok and Khon Kaen in our analysis.
We want to model the number of mortalities in both these cities
and see if there is a difference between the two cities.

You may recall that we observed about 32.1 deaths per day in
BKK, and 1.2 deaths per day in KK. Does this mean that the
risk of mortaility (from our disease) is lower in KK?
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Using an offset

We would expect, Khon Kaen to have a much lower number of
deaths (population = 200 000), simply because it is a smaller
city (even though the mortality rate might be higher in KK).

In order to deal with this we can include an offset variable in
the model.

For example, a sensible offset might be represented by the city
populations
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Poisson regression models with and without an offset

Where we don’t include an offset our model is:

ln(count) = Xβ + ε

To include an offset:

ln(count/population) = Xβ + ε

In the top model, we are modelling counts (number of events), in
the bottom model (with an offset) we are model rates (Incidence
rate, Mortaility rate etc.)
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Concluding remarks

Poisson regression is the best method to use for outcomes
represented by (rare) counts

If the mean number of counts is large (λ = µ > 15) then you
might be able to use standard general linear model instead
(can be simpler)

Use the Negative binomial GLM to account for response data
that doesn?t perfectly fit the Poisson restriction that the
mean is equal to the variance

Use the offset to account for different exposure sizes
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THANK-YOU

Questions?????
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