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Some motivational datasets

Before we start, I would like to introduce some datasets that
will set the scene for this session(correlated continuous
outcomes) and the next session (correlated categorical
outcomes). All three datasets come with libraries used for
longitudinal data modeling:

1 Sleep study (lme4)

2 Autism data (WWGbook)

3 Respiratory data (geepack)

The first two will be used to demonstrate linear mixed
models(LMMs), and the third dataset (which has a binary
outcome) will be used in the next session to consider
Generalized Linear Mixed Models(GLMMs) and Generalized
Esitmating Equations(GEEs).
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Sleep data

This study, conducted by Belensky(2003), investigates the effect of
sleep deprivation on reaction times. On day 0 subjects had normal
amounts of sleep, and starting that night, had 3 hours sleep per
night. Average reaction time was measured across a series of tests
administered each day, to each subject. Variables are:

Reaction: Average reaction time (continuous outcome)

Day: Number of days of sleep deprivation (day: 0,1,2,...,9)

Subject: Subject ID

Questions for later:

1 Which factors is FIXED and which is RANDOM?

2 Is the single fixed effect a WITHIN-subject, or
BETWEEN-subject effect?
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Autism data

This study (Oti et al, 2006) investigates the effect of the level of
communication development (as classified at age 2) on social
development in Autistic children. Cohort participants are initially
measured at 2 years old and then followed up until age of 13:

VSAE: parent-reported Vineland Socialization Age Equivalent

Age: Age in years (2, 3, 5, 9, 13)

Sicdegp: Expressive language score at 2yo:Low, Med, High

Childid: Unique child identifier

Now:

1 Of the three factors, which are Fixed and which is Random?

2 For each fixed factor: Within- or Between- subject?
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Respiratory data(for next session)

A multi-centre, placebo-controlled RCT to investigate the
efficacy of a ’drug’ on respiratory illness. A group of 111
patients (from two centres) were randomized to either the
placebo or treatment arm. Respiratory illness (y/n) was
observed at baseline, and then again on three subsequent
visits. Variables:

Respiratory illness present (y/n);

Visit: 1 (baseline) and three follow-up visits (2,3 and 4);

Treat: P=Placebo or A=Active

Patient.id: Unique patient identifier

Centre.id: Centre ID (1 or 2)

Possible confounding effects: The factor Gender and covariate
Age at baseline

5/64



Introduction
Methods for the analysis of (continuous) longitudinal data

Sample size calculations for LMMs

Respiratory data(for next session)

Now for respiratory data:

1 How does the outcome differ (compared to Sleep and
Autism studies)?

2 Of the many EFFECTS, which are FIXED and which
are RANDOM?

3 For each FIXED effect, which is WITHIN- and which is
BETWEEN-subject

BONUS POINTS: What is the name of the rather simplistic
’classical’ bivariate tests that has been traditional used for
binary outcomes for pre-post studies (similar to this)? Hint:
Only works for 2 x 2 data
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What we will cover....

1 Introduction
Longitudinal data
Fixed and Random effects

2 Methods for the analysis of (continuous) longitudinal data
’Classical’ approaches
Linear Mixed Models
Worked example of a Linear Mixed Model in R

3 Sample size calculations for LMMs
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Longitudinal data
Fixed and Random effects

Overview of linear models

How do the linear models relate??
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Longitudinal data
Fixed and Random effects

Repeated measures data

Most linear models we use in biostatistics are for the
analysis of cross-sectional (uncorrelated) data
What about if our sampling units are measured repeatedly
over time?
Data sets containing such repeated measurements are
called repeated measures, time-course, or
longitudinal datasets
Studies involving such data are often called longitudinal
studies, and represent a TYPE of cohort study

Warning: Terminology

Take care of the word ”cohort”. By definition it just means
exposure preceeds outcome, and such studies MAY, or MAY
NOT involve repeated measurements
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Longitudinal data
Fixed and Random effects

Repeated measures data
What difference does it make?

What’s the harm if we just use our standard
cross-sectional regression methods (general linear models,
generalized linear models etc.)?

What assumption do all these ’cross-sectional’ methods
share that would be violated?

ANS: Independence:

Each (X, Y) observation is independent of every
other (X, Y) observation
That is, (Xi , Yi) is independent of (Xj , Yj);
for all i, j where i 6= j
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Longitudinal data
Fixed and Random effects

Repeated measures data
Still....So what??

What’s the problem with ’correlated’ observations?

We can assume measurements taken for a single subject
(i.e. WITHIN-subject) are likely to be more similar then
observations among subjects (BETWEEN-subjects)

Lower variation for within-subject observations should be
considered the advantage it is (if modelled properly)

BUT problem with cross-sectional methods is that they
assume all variation is ’between-subject’ (so can
underestimate variation in the data)

SO, if we use a standard cross sectional approach,
variance estimates will be an under estimate ⇒ type I
errors

Think about this. WHY?
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Fixed and Random effects

Advantages of repeated measures data

Remember that we are trying to reduce error and
minimize bias (E.g. adjusting for other covariates)

In repeated measures, individuals are considered as
’blocks’ of observations

Assume within-subject variation lower than among
subjects

Advantage - can conduct complex designs with fewer
observational (or experimental) units
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Longitudinal data
Fixed and Random effects

Between vs Within subject variation

Between-subject variation is how we would
expect differences between subjects (or groups
thereof) to manifest itself (this is the type of
variation we are used to) - e.g. A standard
ANOVA (General Linear Model)

Within-subject variation is how a given
individual varies over time
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Longitudinal data
Fixed and Random effects

Between vs Within subject variation

Figure : Within Vs Between variation for two individuals

14/64



Introduction
Methods for the analysis of (continuous) longitudinal data

Sample size calculations for LMMs

Longitudinal data
Fixed and Random effects

Repeated measures data
Not accounting for repeated measurement
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Longitudinal data
Fixed and Random effects

Repeated measures data
Accounting for repeated measurement
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Longitudinal data
Fixed and Random effects

Other types of correlated data
Clustered data

We can think of longitudinal data as repeated measures
over time.
Clustered data is repeated measures over space

E.g. If we consider a multi-centre study involving a
number of clinics we would expect people attending
same clinics to be more similar (relative to those
attending other clinics).
We need to account for this in modelling

Good news is that methods used for clustered data are
identical to those used for longitudinal data
Clustered data turns up in health studies all the time.
E.G.

Ophthalmology: Right and left eyes of the same patient
Multi-center clinical trials
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Longitudinal data
Fixed and Random effects

Within-subject correlation

Between variable correlation considers the association
between two variables (e.g. Exercise and depression levels)
- this is the correlation we are used to thinking about

Within-subject correlation considers the correlations
between observations considered at two times (for each
subject)

For example, White blood cell count before and after a
treatment
Those with higher before-treatment WBC would be
expected to have higher WBC after treatment (relative
to other subjects)

As you would expect, within-subject correlation is
generally positive
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Longitudinal data
Fixed and Random effects

Random effects

Random effects are those where the particular ’groups’
(levels) are drawn randomly from a population of groups.

For example, if we have 10 patients drawn from a
population on which we take five (repeated)
measurements.

It doesn’t make sense to test:
H0 : µsubject1 = µsubject2 = · · · = µsubject10

If we rejected this hypothesis, we can’t make any
meaningful inference about the differences between the
specific patients (to the population)

If we were going to tests a hypothesis about this random
effect (Patient), which we rarely do, we would test:
H0 : σ2

patients = 0 (patients in popn. don’t vary)
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Longitudinal data
Fixed and Random effects

Your turn: do we understand differences between

fixed and random effects?

Fixed effects are the ones we know (and love), where we
would expect a differences between two groups to be FIXED
as we move from the sample to the population

Which (below) are Fixed- and which Random-effects??
AND for fixed effects (only), which are within-subject
and which between-subject?

1 New treatment vs Placebo controlc (an RCT)
2 Patient (A, B, C, D, E, F or G)
3 Visit (Baseline, 3 month, 6 month and 1 year)
4 Brand of toothpaste (A, B or C) → Tricky
5 Day of year (any possible day of the year)
6 Type of Cancer

What about datasets at beginning of lecture??
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Longitudinal data
Fixed and Random effects

Fixed and random effects

Generally only hypotheses about fixed effects interest us.

We often just want to account for (deal with) the random
effect in the model (testing a hypothesis concerning this
variation doesn’t tell us anything useful)

Problem with random effects is we often need a lot of
model parameters (i.e. 40 subjects ≥ 40 parameters)

Now we understand the purpose of fixed and random
effects, we can start to consider the different methods
(models) for the analysis of repeated measure data
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Linear Mixed Models
Worked example of a Linear Mixed Model in R

Methods for longitudinal continuous outcomes

We will discuss four methods for the analysis of
continuous longitudinal outcomes:

1 Repeated measures ANOVA (RM-ANOVA)

2 Repeated measures multivariate ANOVA
(RM-MANOVA)

3 Linear mixed models (LMM)

4 Linear marginal models (Next session)
but we will only cover the last two of these in any
detail

22/64



Introduction
Methods for the analysis of (continuous) longitudinal data

Sample size calculations for LMMs

’Classical’ approaches
Linear Mixed Models
Worked example of a Linear Mixed Model in R

Classical approaches

The first two of these techniques have fallen out of favour
recently (as they make restrictive, and often, unrealistic
assumptions about the data, or they are not practical)

But I will cover them briefly

Why bother? They illustrate useful insights into repeated
measures data and its modelling

Also their models can be represented (very closely) in a
Linear marginal model anyway (so we can directly
compare and assess their adequacy) → More next session
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Assumptions of RM-ANOVA

Beyond those assumptions normally associated with an
ANOVA, the RM-ANOVA makes more:
Compound symmetry

1 Constant variance → σ2(Yij) = σ2
e + σ2

b

2 Constant covariance → Cov(Yij ,Yik)

The second of these states that regardless of how far apart two
repeated measures are, they will be just as correlated
e.g Corr(Day1, Day2) = Corr(Day1, Day20)

Compound symmetry is a type of residual covariance structure

(We cover covariance structures in MUCH more detail when we get

to Marginal Models).
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Worked example of a Linear Mixed Model in R

Why not RM-ANOVA?

The compound symmetry (covariance structure)
assumption associated with the Repeated measures
ANOVA renders it too unrealistic in many health-based
longitudinal studies.

Besides, many stats packages (esp. SPSS) tend to make
the use of RM-ANOVAs quite painful

We will only implement the RM-ANOVA by using the
much more flexible Linear Marginal Model (next session)

i.e. RM-ANOVA → Linear Marginal Model with
Compound symmetry residual covariance structure
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Repeated measure MANOVA

RM-MANOVA (Repeated Measures Multivariate
Analysis of variance) represents an alternative approach
to the analysis of repeated measures data

More computationally intensive than RM-ANOVA, but it
relaxes some of the (often unrealistic) assumptions of the
RM-ANOVA in regards to the residual covariance
structure.

In the standard MANOVA approach, no particular
structure is assumed in the residual covariance structure
(i.e. The covariance structure is called unstructured)
Again, we can implement the RM-MANOVA using the
Linear Marginal Model

i.e. RM-MANOVA ≈ Linear Marginal Model with
Unstructured residual covariance structure
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Why we won’t use classical approaches

Generally, RM-ANOVAs and RM-MANOVAs presents
major restrictions that make their use impractical.

RM-ANOVAs assumptions about a compound symmetric
covariance structure are too simplistic (i.e. often invalid)
in most health studies.

RM-MANOVA needs a large sample sizes in order to be
useful, also has a major problem with missing values

Both methods have major problems with missing values or
unbalanced data:

They can’t deal with different numbers of repeated
measures for different subjects
If even one value is missing for a subject, that subject
has to be excluded (list-wise deletion)
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Linear Mixed Models for longitudinal data

This leaves the last two methods we will talk about:
1 Linear MIXED models mix (consider) both fixed and

random effects (Hence the name ’Mixed’ models)
2 Linear MARGINAL models represent an alternative

approach accounting for correlation of observations
through the use of Residual covariance structures

Keeping it simple

When we cover the comparitively complex conditional and
marginal models, remember one thing: These models are a
way of dealing with correlated data so we can consider
it the same way as we consider independant data:
Within-subject effects can be treated as (standard)
between-subject effects
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Linear Mixed Model: A general representation

The Linear Mixed (Effects) model can be represented:

Yti = β0 + β1X
(1)
ti + β2X

(2)
ti + · · ·+ βk−1X

(k−1)
ti

+ u0i + u1iZ
(1)
ti + · · ·+ uqiZ

(q)
ti + εti (1)

The value of t (t = 1, 2, · · · , ni) indexes the longitudinal
observations for each subject i (i = 1, 2, · · · ,m) over time.
Using matrix notation:

Yi = Xiβ + Ziui + εi

The first part of the model, containing Xiβ, is the fixed
effect(s) component of the model (a standard general linear
model), whereas the Ziui , represents the random effect(s).
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LMMs: Defining the terms

In the model:
Yi = Xiβ + Ziui + εi

Yi is a vector of continuous responses for the i th subject
Xi is an ni × k design matrix for the corresponding fixed effect
covariate values for each of the ni observations collected on
the i th subject
β is a vector of regression coefficients for the fixed effects, X
Zi is the ni × q design matrix that represents the known values
of the q covariates, Z (1), · · · ,Z (q), for the i th subject
ui is a vector of q random effects (more later), with
ui ∼ N(0,D)
and εi is the residual, with εi ∼ N(0,R)
Next we will define the matrices, D an R
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The matrix D

Elements along the main diagonal of the D matrix
represent the variances of each random effect in ui , and
the off-diagonal elements represent the covariances
between two corresponding random effects

We will discuss the D matrix as we discuss different LMM
models

In particular, this matrix is used to define the random
intercept and random coefficient models

z and D

The elements of z and D really just specify the relationships of
the random effect (e.g. patients) to our outcome variable.
Although we need to get it ’right’, the coeffcients estimated in
D don’t interest us too much.

31/64



Introduction
Methods for the analysis of (continuous) longitudinal data

Sample size calculations for LMMs

’Classical’ approaches
Linear Mixed Models
Worked example of a Linear Mixed Model in R

The matrix R

The R matrix, called the residual (or error) covariance
structure is a key matrix in Marginal models

First, unlike standard linear models, it allows errors (and
therefore observations) to be correlated to each other

Second,there are several ways of specifying R to make our
model better fit the nature of our data

Later (when we discuss marginal models) we will consider
4 ways of specifying R:

1 Independent residual covariance structure
2 Compound symmetry residual covariance structure
3 Autoregressive(1) residual covariance structure
4 Unstructured residual covariance structure
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Keeping it simple: Linear models, Mixed Models

and Marginal models

A standard general linear model:

yij = β0 + β1X1 + β2X2 + · · ·+ εij

To deal with the correlated data, the linear mixed model and
linear marginal models...

yij = β0 + β1X1 + β2X2 + · · ·+ Put something here

The ’something’ is quite different between the mixed model
approach (which is a ’subject-specific’ or conditional model),
and the marginal model approach (a population-averaged
approach)
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Keeping it simple: Mixed vs Marginal models

For mixed (aka conditional, or subject-specific) models, the
correlated data is dealt with EXPLICITLY in the model (i.e.
terms are added to deal with random effects)

yij = β0 + β1X1 + β2X2 + · · ·+ random effects + εij

IN CONTRAST, for marginal (aka population averaged)
models, the correlated nature of the data is dealt with in the
residual term ε

yij = β0 + β1X1 + β2X2 + · · ·+ εij

where εij ∼ N(0,R) where R is the residual covariance
structure (and FULLY reflects correlations among observation).
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Our first LMM: Random intercept model

Let’s start with a quite simple LMM, the Random
intercept model

This model allows each subject(after accounting for the
fixed effects) to vary at baseline

But we should note that the effect of time, is assumed to
be the same for all individuals (all individuals share a
common slope over time)
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Random intercept model specification

Taking the (general) linear mixed model specified above:

Yi = Xiβ + Ziui + εi

In the random intercept model, the Z matrix (as there are only
intercepts) becomes a column of ones, so the model simplifies
down to:

yij = Xijβ + ui + εij

Now defining the terms.....
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Our first LMM: Random intercept model

The Random intercept model:

yij = Xijβ + ui + εij

Where
yij is the the j th repeated measure on the i th subject
Xij is the corresponding vector of fixed effect covariates/factors
β is the corresponding fixed-effect regression parameters (up to
this point, a standard general linear model)
ui is the (random) effect due to subject; The change (from
average) intercept is subject i
εij is the residual (error not explained by covariates); with
εij ∼ N(0, σ2

e )

ui ∼ N(0, σ2
u) is the variation among subjects not accounted for by

covariates in X
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Simplifying the random intercept model

If we do a little algebraic rearrangement (as we can do with a
general linear models):

yij = β0 + β1X1 + β2X2 + · · ·+ ui + εij

Can be rearranged to:

yij = (β0 + ui) + β1X1 + β2X2 + · · ·+ εij

So we can see ui is the difference from the average
intercept, β0, due to patient i
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Sleep data

Recall Belensky(2003) sleep study. We want to investigates the
effect of sleep deprivation on reaction times. On day 0 subjects
had the normal amount of sleep, and starting that night, had 3
hours sleep per night. Average reaction time was recorded each
day, for each subject. Variables are:

Reaction: Average reaction time (continuous outcome)

Day: Number of days of sleep deprivation (day: 0,1,2,...,9)

Subject: Subject ID

We will start by running a Random Intercept Linear Mixed Model
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Step 1: State hypotheses

Ho : βDays = 0
(Reaction time is independant of amount of sleep depreivation)

Ha: βDays 6= 0
(Amount of sleep deprivation does effect reaction time)

How does this differ from a standard linear regression
hypothesis??

ANS:????

40/64



Introduction
Methods for the analysis of (continuous) longitudinal data

Sample size calculations for LMMs

’Classical’ approaches
Linear Mixed Models
Worked example of a Linear Mixed Model in R

Step 2: Eyeball the data

Let’s start with a standard scatter plot (where there is no
linking of within-subject observations)

Helpful?? Not really.
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Step 2: Eyeball the data

Now let’s link the within-subject observations

Much better. Note for later. Do you think the subjects have
the same slope (i.e. the same response to sleep deprivation)?
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Step 3: Specify the model

Now let’s state the model in terms of our problem:

Reactionij = β0 + βDayDay + Subjecti + εij

Rearranging:

Reactionij = (β0 + Subjecti) + βDayDay + εij

Reactionij is the reaction time of the ith subject on the jth day
β0 is the overall (average) y-intercept
Subjecti is the CHANGE from β0 due to being subject i
βDay is the slope due to day (expected change in reaction time
due to an extra day of sleep deprivation)
εij is the random (unexplained) error associated with Reactionij
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Step 4: Run the model

Several libraries in R run LMMs. I prefer lme4 library

This doesn’t come with the base R (need to download)

Assume our data already read in and stored in sleep.df

R syntax: Random intercept LMM
library(lme4)

# Need a null (nothing in it) model first
null.mod<-lmer(Reaction ∼ 1 + (1|Subject), data=sleep.df)

# Now fit our model
rint.mod<-lmer(Reaction ∼ Days + (1|Subject), data=sleep.df)

# Does model represent an improvement over null
anova(null.mod, rint.mod)

summary(rint.mod)
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Output 1a) ANOVA
> rint.mod<-lmer(Reaction~Days + (1|Subject), data=sleep.df)
> anova(null.mod, rint.mod)
Data: sleep.df
Models:
null.mod: Reaction ~ 1 + (1 | Subject)
rint.mod: Reaction ~ Days + (1 | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
null.mod 3 1916.6 1926.2 -955.28
rint.mod 4 1802.1 1814.9 -897.05 116.47 1 < 2.2e-16 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
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Output 1b) Coefficients

> summary(rint.mod)
Linear mixed model fit by REML
Formula: Reaction ~ Days + (1 | Subject)

Data: sleep.df
AIC BIC logLik deviance REMLdev
1794 1807 -893.2 1794 1786

Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 1378.18 37.124
Residual 960.46 30.991

Number of obs: 180, groups: Subject, 18

Fixed effects:
Estimate Std. Error t value

(Intercept) 251.4051 9.7459 25.80
Days 10.4673 0.8042 13.02
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Random intercepts model: Interpretation

We can see from output 1a that when we compare the
model with the fixed effect Day to the null model, there
is a significant improvement (χ2

LR = 116.47, df = 1,
p < 0.001)
When we go to the coefficients table we see βDay = 10.46,
that is, for every extra day of sleep deprivation, we would
expect reaction time to increase by 10.46 ms
You will notice there is no R2 (this is not a linear
regression). Instead we are left with the MUCH LESS
friendly AIC = 1802.1
The AIC for the null model (see output 1a) is AIC =
1910, that our random intercept model is considerably
lower suggest our model is a considerably better fit
(remember lower AIC means better model)
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Random intercepts model: Interpretation

The average intercept was β0 = 251.4 (see Output 1b)

This implies the AVERAGE reaction time at baseline
(after no sleep deprivation) was 251.4 ms

Our Random intercept model allows individuals to vary
from this average intercept

Let’s look at how this intercept varied across subjects...
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Random intercept model: Adequacy

BUT does this model represent a realistic fit of the data?

Real data Fit (Random intercepts)
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Linear Mixed Model: Random coefficients model

Perusing the graphs on the previous page suggests that
the model doesn’t fit the data well.

It appears the assumption that all subjects have the same
slope (the same response to progressive sleep deprivation)
is unrealistic

A better model may be the random coefficients model.
This allows subjects to have BOTH their own intercept,
and their own slope...
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Back to Step 3: Model (Re)specification

The random coefficients model (in our case), will be

Reactionij = β0 +βDayDay +Subjecti0 +SubjectDays,iDays + εij

Rearranging:

Reactionij = (β0 + Subject0i) + (βDay + SubjectDays,i)Day + εij

Let’s define each of the terms
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Back to Step 3: Model (Re)specification

Reactionij = (β0 + Subject0i) + (βDay + SubjectDays,i)Day + εij

Reactionij as before
β0 is the overall (average) y-intercept
Subject0i is the change in y-intercept due to subject i
βDay is overall (average) slope for day
SubjectDay ,i is change in slope due to subject i

So we can see SubjectDay ,i as the ’effect modification’ of days
of sleep deprivation associated with subject i ’
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Step 3 Model (re)specification: Random

coefficients model

R syntax: Random coefficient LMM
# Fit random coefficients model
rcoef.mod<-lmer(Reaction ∼ Days + (Days|Subject),
data=sleep.df)
# Is it an improvement on the random intercepts model)
anova(rint.mod, rcoef.mod)

summary(rcoef.mod)
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Output 2a) ANOVA
> rcoef.mod<-lmer(Reaction~Days + (Days|Subject), data=sleep.df)
> #Signicant improvment over random intercept?
> anova(ran.int, ran.coef)
Data: sleep.df
Models:
ran.int: Reaction ~ Days + (1 | Subject)
ran.coef: Reaction ~ Days + (Days | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)
ran.int 4 1802.1 1814.9 -897.05
ran.coef 6 1764.0 1783.1 -875.99 42.113 2 7.164e-10 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
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Output 2b) Coefficients

> summary(ran.coef)
Linear mixed model fit by REML
Formula: Reaction ~ Days + (Days | Subject)

Data: sleep.df
AIC BIC logLik deviance REMLdev
1756 1775 -871.8 1752 1744

Random effects:
Groups Name Variance Std.Dev. Corr
Subject (Intercept) 612.092 24.7405

Days 35.072 5.9221 0.066
Residual 654.941 25.5918

Number of obs: 180, groups: Subject, 18

Fixed effects:
Estimate Std. Error t value

(Intercept) 251.405 6.825 36.84
Days 10.467 1.546 6.77
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Step 5: Interpreting results

First we should note that the random coefficients model
represents a significant improvement over the random
intercept model (χ2

LR = 42.113, df = 2, p < 0.001)

BUT is the extra model complexity worth it. Remember
AIC is a parsimony measure which accounts for FIT and
COMPLEXITY

AICranint = 1802.1 and AICrancoef = 1764. As random
coefficient is lower ⇒ a better model (worth it)

Finally we should note that the fixed effect part of the
model is exactly the same (β0 = 251.4 and βDay = 10.46)
in both models (Note for βDay , t = 6.77, p < 0.05)

Finally, let’s visualize this model to see if it seems a
better fit to the data
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Random coefficients model: Adequacy

Still not perfect, but looks more realistic.

Real data Fit (Random coefficients)
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Sample size calculation for linear mixed model

Like other methods, we can calculate sample size for
Linear mixed models

In fact the same formula can be applied to other models
used for longitudinal continuous outcomes

BUT the calculation I am about to show you, only applies
when we have a single Between-subject effect and a
single Within-subject effect

For more complex models we have to go to the rule of
thumb methods used for Linear Regression (and General
Linear Models)

There is one additional quantity we need in a LMM sample size
calculation: The within-subject correlation, ρ. This can be
estimated from pilot data using the ICC, or ’guestimated’
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Within-subject correlation

Within-subject correlations is something we go into detail
about when we get to Linear Marginal Models, but in the
meantime, I will give a rather simple definition:

Within-subject correlation is the extent to
which measures taken from a single subject
are correlated

For example, if my White blood cell count (compared to you)
is high on day 1, it is likely to be high (compared to you) on
day 2, etc...
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Sample size formula for LMMs

The formula to calculate the sample size for an LMM (one
within- and one between-subject effect) is:

Npergroup =
2(Zα/2 + Zβ)2(1 + [T − 1]ρ)

T (MCD/σ)2

where:
T is the number of repeated measurements (for t = 1, 2, · · · ,T )
ρ is the level of within-subject correlation

Zα/2,Zβ , σ and MCD are defined as before
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Sample size for LMMs: Worked example

Let’s consider the Autism data. Recall:

The outcome is level of socialization (VSAE score)

The Within-subject effect is Age (2,3,5,9,13yo)

The Between-subject effect is Sicdegp at 2yo
(language score): Low, Med, High

Note that we have three ’between-subjects’ groups here (low
medium and high), but we are used to thinking about the two
group case. BUT all this means is that we have to multiply
Npergroup by 3 (rather than 2)
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Sample size for LMMs: Worked example
Ingredients

Now let’s start collecting our ingredients:
1 Type 1 error: α = 0.05
2 Type 2 error; β = 0.1⇒Power=90%
3 Standard deviation: Pilot data (backed by previous

studies) suggest that we would expect to see a standard
deviation (for a certian age, for a certain langauge group)
of 15units: σ = 15

4 Minimal clinical difference: CONSULATION WITH
EXPERTS suggests that a difference in socialization
score (VSAE) less than 10 would not represent a
scientifically important difference: MCD=10

Now, these are the quantities we are used to, what about the
quantities that are specific to repeated mesaures studies?
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Sample size for LMMs: Worked example
Ingredients

Continuing...

5 T: In this study we are considering 5 repreated
measurements (time points: 2, 3, 5, 9 and 13yo): T=5

6 ρ: Within-subject correlation. This can be a tricky one
(particularly if we don’t have pilot data). In the absence
of knowledge, I will assume there is a moderate level of
within subject correlation: ρ = 0.6

For a rough guide (when you don’t know)

ρ = 0.3⇒ Weak within-subject correlation

ρ = 0.6⇒ Moderate within-subject correlation

ρ = 0.9⇒ Strong within-subject correlation
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Sample size for LMMs: Worked example
Calculation

Now we have all of the ingredients, let’s preform the
calculation:

Npergroup =
2(Z0.05/2 + Z0.1)2(1 + [T − 1]ρ)

T (MCD/σ)2

Npergroup =
2(1.96 + 1.28)2(1 + [5− 1]0.6)

5(10/15)2

Npergroup =
21(1 + 2.4)

5(0.666)2
=

71.4

2.222
= 32.13

So we need 33 children per group ⇒ 3 (language group) * 33
= 99 children (observational units).
Now there are 5 times points so we will have N=5x99=495
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Sample size for LMMs vs cross-sectional

Just out of interest, let see what we would get if we were doing
this study cross sectionally (i.e.ρ = 0)

Npergroup =
2(Z0.05/2 + Z0.1)2(1 + [T − 1]ρ)

T (MCD/σ)2

Npergroup =
2(Z0.05/2 + Z0.1)2(1 + [T − 1]0)

T (MCD/σ)2

Npergroup =
2(Z0.05/2 + Z0.1)2(1)

1(MCD/σ)2

Npergroup =
2(Z0.05/2 + Z0.1)2

MCD2/σ2

Npergroup =
2(Z0.05/2 + Z0.1)2σ2

MCD2

Recognize this formula???
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Sample size for LMMs vs cross-sectional

Plugging in ingredients (1-4 only)

Npergroup =
2(Z0.05/2 + Z0.1)2σ2

MCD2

Npergroup =
2(10.5)152

102
=

21 ∗ 225

100
= 47.25

So for a cross-sectional study (comparing the three language
groups) we would need N = 3 * 48 = 144 individuals

In terms of obserational UNITS, which is more efficient?
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Where to from here

There is one more model I want to cover when it comes
to modelling continuous longitudinal data: The Linear
Marginal Model
BUT I am going to leave this for next session. This is for
two reasons:

1 Brain burn-out
2 Linear Marginal models are not used that often.

So why cover them?? Because understanding Linear
Marginal models gives a strong insight into how
Generalized Estimating Equations (GEEs) work. GEEs are
a generalized equivalent of the Linear Marginal model
used for categorical correlated outcomes
I hope in the next session, that we can practice using
these models for longitudinal data (LMMs, GEEs, GLMM)
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THANK-YOU

Questions
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