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What we will cover....
1 Background

Data types
Correlation analysis
Linear regression and Biostatistical modelling

2 Simple Linear Regression
Introduction
SLR example
SLR model assumptions

3 Multi-variable Linear Regression
Motivating example
Additional issues: Contribution of Xs
Additional issues: Parsimony
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Conventions

Same as always:

Note:.....

Things to note will occur in a green box

Pitfalls:.....

Common mistakes and things to watch out for will occur in a
red box

R SYNTAX:....

Most (important) R syntax will be in purple boxes and be in
courier font. This will help you find it easily when you have
to refer back to these notes.
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Data types
Correlation analysis
Linear regression and Biostatistical modelling

Data for linear regression

Need our data to be
quantitative / numerical /
continuous

Basic test: If data can
meaningfully be portrayed on a
scatter plot and the form of the
relationship is (more or less)
linear
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Life, the universe and regression

Regression underpins most statistical methods in the discipline
of biostatistics
For example:

1 General (Normal) Linear Models: Linear regression and
ANOVA

2 Generalized linear models: Logistic regression, Poisson
Regression etc.

3 Survival analysis method: Proportional hazards (Cox)
regression

4 Methods for longitudinal/spatial data: Linear Mixed
Models, Generalized Estimating equations, Generalized
Linear Mixed Models...
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Pearson’s correlation analysis

Denoted by r (sample statistic), and ρ (population
parameter).

Won’t go into calculations for r (understand what it
means).

Takes values between -1 and +1 inclusive.

Measures the strength of linear association between two
continuous variables

I will only spend about 5 minutes on this very simple method
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Propoerties of Pearson’s correlation coeffcient, r

Values of r close to -1 or +1 indicate a strong (negative
or positive) linear relationship

Values of r close to zero indicate little linear relationship

Even if r close to zero, there still may be a strong
relationship in the form of a curve (a non-linear
relationship)
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Significance test: Pearson’s correlation coef., ρ

H0 : ρ = 0 (There is no linear relationship between x1 and X2)
HA : ρ 6= 0 (There is a linear relationship between x1 and X2

ρ (Greek ⇒ Population parameter)

Conclusion: Significant linear correlation (i.e. ρ 6= 0 ) if
p-value < 0.05
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Motivating example

Recent studies suggest that smoking during
pregnancy affects the birth weights of
newborn infants. A sample of 16 women
smokers recorded the average number of
cigarettes they smoked per day and the birth
weight of their child.
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Birthweight vs Cigarettes consumed

USING YOUR EYEBALLS: What do you think??
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Analysis

Correlation of cigs and weight = -0.884,
P-Value <0.001

R= -0.884 suggests WHAT type of
relationship????
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What if our variables have a non-linear

relationship?

Pearson correlation can only detect linear relationships
between variables.

Techniques are available for some non-linear relationships

One such method is Spearman’s correlation
coefficient which can detect relationships which are (at
least) monotonic
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Monotonic reltaionships: Linearity

We can think of a linear relationship as walking up (or down) a
hill with a constant slope. A linear relationship is ONE

example of a montotonic relationship
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Monotonic reltaionships

Still always walking uphill (or always
downhill), but slope can change
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Association Vs Causation

Only if substantive theory (i.e. the science) suggests a
causal relationship between variables do we have grounds
to use regression analysis

i.e. One or more independent variables [IVs] explain a
single outcome/dependant variable [DV]

Otherwise, correlation analysis is all we can use. i.e. We
are restricted to talking about associative relationships.

Cross-sectional studies???
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Regression analysis to modelling

To understand (linear) regression and to

understand how MOST other statistical

modelling techniques are variants of

regression we need to consider the

regression model

Models are the mathematical

representation (and simplification) of the

system under study
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Linear Regression Model

Simple Linear Regression: One explanatory variable
(X) related to outcome(Y)

Yi = β0 + β1Xi + εi

Multi-variable Linear Regression: Y is a linear
function of Xs

Yi = β0 + β1Xi ,1 + β2Xi ,2 + . . . + βk−1Xi ,k−1 + εi

17/76



Background
Simple Linear Regression

Multi-variable Linear Regression

Introduction
SLR example
SLR model assumptions

Simple Linear Regression

Simple Linear Regression: One explanatory
variable related to a response (dependant)
variable in a linear way.

Yi = β0 + β1Xi + εi

Linear: No matter where on X axis, Y-X relationship the same.
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Linearity

Rate of change in Y , is constant over entire X domain
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Steps in regression analysis

1 Estimate regression equation (’model’) i.e. obtain
estimates of βs (Software)

2 Assess model adequacy and test hypothesis regarding
whether X explains Y

(a) Model significance (=significance of the single X term)
(b) Explanatory power (R2)
(c) Model Validity (assumptions)

3 Prediction: Sometimes model ’good’ enough to predict
response variable from values of explanatory variable
(rarely case in ’observational’ setting).
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Simple ’bare bones’ example

Considering Systolic blood pressure (SBP) in

adults (our sample ages range from 17 - 69

years)...

Can we explain (variation in) SBP based on
(variation in) Age?
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XY scatter plot

Eyeball data: Before anything look at relationship
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Using R for SLR: Data input

R syntax: Read in data and generate scatter plot

setwd("D:/myR")

SBP.df<-read.csv("Bloodpressure.csv")

plot(x=SBP.df$Age, y=SBP.df$SBP, main="Plot: SBP vs Age")

1 Set working directory

2 Read in data and dump to data frame
3 Plot SBP against age

Include title on plot
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Using R for SLR: Regression analysis

R syntax: Run a simple regression analysis

my.SLR<-lm(SBP∼Age, data=SBP.df)
summary(my.SLR)
anova(my.SLR)

1 Run regression

2 Show Betas and R-squared

3 Test significance of OVERALL model

Key point:

Note: the Y ∼ X for of the model Y = β0 + β1X1 + ε

You will see this time and time again in R
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Output 1:

> summary(my.SLR)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 98.7045 10.0142 9.856 1.32e-10 ***
Age 0.9697 0.2102 4.613 7.99e-05 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1

Residual standard error: 17.32 on 28 degrees of freedom
Multiple R-squared: 0.4318,Adjusted R-squared: 0.4115
F-statistic: 21.28 on 1 and 28 DF, p-value: 7.991e-05
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Ouput2:

> anova(my.SLR)
Analysis of Variance Table

Response: SBP
Df Sum Sq Mean Sq F value Pr(>F)

Age 1 6385.0 6385.0 21.277 7.991e-05 ***
Residuals 28 8402.4 300.1
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
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Step 1: Estimate linear of best fit

Remember the simple linear regression model

Yi = b0 + b1Xi

In this case (from Output 1),

SBPi = 98.7 + 0.97Agei

Note here that b (the sample estimates) rather than β (the
population parameters) are used
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Interpreting coefficients: β0, β1

β0 is y-intercept (b0 is the sample estimate)
Value of Y when X = 0
The SBP will be ??? if you are zero years old (newborn baby).

β1 is the slope (b1 is the sample estimate)
The change in Y for each unit change in X
As you age 1 year we would expect (i.e. on average) your SBP
to change by ???.
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Step2a: Significance Tests for Model = Test of

β1 = 0

TWO HYPOTHESES:
1. The p-values are for tests that the POPULATION intercept
is significantly different from zero.
For β0

H0 : β0 = 0
HA : β0 6= 0 (MOSTLY..who cares?)

In words:
H0 : The SBP of new born babies is zero
HA : The SBP of new born babies differs from zero

Relevant???
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Step2a: Significance Tests for Model = Test of

β1 = 0

2. The p-values are for tests that the POPULATION slope is
significantly different from zero.
For β1

H0 : β1 = 0
HA : β1 6= 0

In words:
H0 : Age does not explain variation in SBP
HA : Age DOES explain variation in SBP
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Step2b: Assessing the model: The Coefficient of

Determination, R2

Represented by R2 (measures goodness of model fit)
Do you think it’s related to Pearson’s corr coefficient: r?
(Literally represents the square of Pearson’s corr. coefficient)

R2 measures the percentage of variability in Y that is
explained by X

Interpret R2 for the Blood pressure data(Output 1):
R2 = 43.2% or R2 =0.432 (as proportion)
Hint: Write it down (by hand) ≫
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Other considerations

The p-value in the analysis of variance table is equivalent
to a test for the slope = 0 when using a single predictor
variable.

That is, in Simple Linear Regression, the significance of
the overall model is always the same as the significance
of the (single) explanatory variable
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Step2c: Simple linear regression assumptions

Three main assumptions. First two are easy, the third requires
a little more thought.

1 Y (dep. var.) and X (expl. var.) are linearly related.

2 Ys are serially independent

3 The remaining part of Y (the residual) is normally
distributed around zero and with a constant variance:

ε ∼ N(0, σ2)
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Step2c: Simple linear regression assumptions

1 Y (dep. var.) and X (expl. var.) are

linearly related.
Why would we use a linear model otherwise?

2 Ys are serially independent

3 The remaining part of Y (the residual) is normally
distributed around zero and with a constant variance:

ε ∼ N(0, σ2)
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Linearity assumption: XY scatter plot

If we eyeball the data, and the data appear (approximately)
linearly related.....
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Step2c: Simple linear regression assumptions

1 Y (dep. var.) and X (expl. var.) are linearly related.

2 Ys are serially independent
3 The remaining part of Y (the residual) is normally

distributed around zero and with a constant variance:

ε ∼ N(0, σ2)
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Serial independence assumption

Usually we can answer this question by just thinking
about the study design

In most longitudinal studies the data are correlated
E.g. My SBP today will be correlated with my SBP yesterday

In many cross-sectionally designs, independence
assumption safe
One exception to this is in studies that contain a
clustering design effect

E.g.1 Physical activity behaviour of people living in the
same area: seeing other people jog may mean I am more
likely to jog myself
E.g.2 Sets of patients treated in groups(clusters) defined
by teams/clinics/hospitals

35/76



Background
Simple Linear Regression

Multi-variable Linear Regression

Introduction
SLR example
SLR model assumptions

Step2c: Simple linear regression assumptions

1 Y (dep. var.) and X (expl. var.) are linearly related.

2 Ys are serially independent

3 The remaining part of Y (the residual) is
normally distributed around zero and with
a constant variance:

ε ∼ N(0, σ2)
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Definition of residuals

The residual is the difference between our model prediction of
y, ŷi , and what we observe y to be, yi

That is, εi = yi − ŷi

Investigating the ε ∼ N(0, σ2) assumption and how it might
be violated can tell us a lot about what’s going on.

This investigation is called: RESIDUAL ANALYSIS
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Step2b: Residuals assumption

The mathematical statement:

ε ∼ N(0, σ2)

has a number of ’sub-statements’:

1 Residuals (errors) are normally distributed

2 Residuals have a mean of zero

3 Residuals have a constant variance(aka:homoscedacisity)
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Residuals are normally distributed + Residuals

have mean of zero
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Example of a Violation of ε ∼ N(0, σ2): Residuals

without constant variance (Heteroscedasticity)

What can we do? Transform? Weighted Least Squares
approach?
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Residuals for SBP data:
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Step 3: Prediction

Interpolation:

(a) Predict the SBP for somebody who is 50 years old

Extrapolation:

(a) Predict SBP for a five year old
(b) Predict SBP for a 85 year old

Finally, do you think the model is good enough (i.e. R2) to
make predictions?????

42/76



Background
Simple Linear Regression

Multi-variable Linear Regression

Introduction
SLR example
SLR model assumptions

Recap:

Three steps in simple linear regression analysis:

1 Estimate equation (find b0 and b1)
2 Assess adequacy of model

Hypothesis tests (significance)
Explanatory power (R-squared)
Assumptions (especially residuals)

3 (if appropriate) Use ’good’ model to make
predictions

43/76



Background
Simple Linear Regression

Multi-variable Linear Regression

Motivating example
Additional issues: Contribution of Xs
Additional issues: Parsimony
Additional issues: Multicollinearity
Confounding

Multi-variable Linear Regression

Now we will consider the case where we have More than one
explanatory variable

The Multivariable linear regression model is exactly the
same as the Simple linear regression model just with
additional explanatory variables.

Yi = β0 + β1Xi ,1 + β2Xi ,2 + . . . + βk−1Xi ,k−1 + εi

Each explanatory variable has a slope associated with it.
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Steps in MLR analysis

New steps are in bold (i.e. Specific to MLR)

1 Estimate regression equation (’model’)
2 Significance

(a) OVERALL Model significance (ANOVA F test)
(b) Consider significance of individual covariates (Xs)
(c) Explanatory power (adjusted R-sq)
(d) Model Validity (assumptions)

Residuals
Independence
Multicollinearity

(e) Parsimony

3 If model good enough, make predictions
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MLR: Motivating example

Dataset containing 3 variables: BMI (Body Mass Index) ,
Age and pf-QoL, a Physical functioning sub-scale of the
Functional Assessment of Cancer Therapy-General
questionnaire. A physical quality of life measure for
people undergoing treatment for cancer.

We suspect that Age and BMI can explain variation in
pf-QoL
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The data.....
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A quick word on model selection

A whole other (very important) topic is how we decide
which combination of variables should be considered in
our (final) model

Not within scope to discuss here

Also, we are only considering two (potential) predictors,
(BMI and Age) so not too complicated

We will just FORCE our predictors into the model

BUT you should be aware other ’Model selection’
strategies available (e.g. Stepwise, Best subset,
Purposeful selection of covariates etc.)
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Correlation

Let’s start by perusing the correlation matrix:
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From correlation matrix...

Age seems to be (somewhat) negatively correlated with
pf-QoL suggesting that the older people are (undergoing
cancer therapy), the less their physical quality of life

BMI also seems to be negatively correlated with pf-QoL

Note (for later) that BMI (an X variable) also seems to
correlate to Age (another X variable)
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Results of MLR: Explanatory power

The (unadjusted)R2 = 0.09
The adjusted-R2 = 0.088

The overall model explains 8.8% of the variation in physical
Quality of Life.

Why Adjusted-R2??
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Additional issues in MLR: Adjusted-R2

I Explanatory power(R2): Both SLR and MLR produce R2

values. However, we have to account (penalize) for the number
of variables used to explain Y. So in MLR we use Adjusted-R2

I Adjusted-R2 adjusts for the number of explanatory variables
used to explain Y

I Non-adjusted R2 becomes increasingly (upwardly) biased
with increased number of Xs. That is, it overestimates the
explanatory power of the model
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MLR significance: Overall model and individual

predictors
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Interpretation

ANOVA table: Overall model is significant (F = 65.7, p<0.05)

From ’coefficient’ table
H0 : β0 = 0 [WHO CARES]
H0 : βBMI = 0 ( t=-4.617, p<0.05)
Reject Ho. BMI explains variation in physical functioning in
this population. bBMI = −0.322⇒ As BMI goes up a single
unit, (on average) pf-QoL goes down 0.322 units
H0 : βAge = 0 ( t= -9.632, p<0.05)
Reject Ho. Age explains variation in physical functioning. In
this case, bAge = −0.225⇒ every year older the patient gets,
(on average) their pf-QoL decreases by 0.225 units
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Contribution of individuals predictors

I Since we have more than one explanatory variable, useful
knowing which (significant) variables contribute more in
explaining variation in the response variable.

I Standardized βs (denoted βZ ) help indicate the relative
contribution (of the variation explained in Y) of each
explanatory variable.

I In above example: it is clear that Age explains considerably
more than BMI (βZ for Age = -0.255 vs βZ for BMI = -0.122)
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β vs βZ

Why can’t we just use non-standardized β to gauge
the relative importance of individual covariates
(explanatory variables)????

Answer:
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Additional issues in MLR: Parsimony

In MLR we also need to consider model

parsimony

Parsimony (in MLR) is the principle of

explaining the most variation with the

least number of variables
REM: Occam’s razor: simplest answer is
often the best.
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Parsimony

Consider the three models below (all of which we can assume
to be ’valid’ and ’significant’)

Model 1: R2 = 0.5
Yi = β0 + β1Xi ,1

Model 2: Adj − R2 = 0.97
Yi = β0 + β1Xi ,1 + β2Xi ,2 + β3Xi ,3

Model 3: Adj − R2 = 0.975
Yi = β0 + β1Xi ,1 + β2Xi ,2 + β3Xi ,3 + β4Xi ,4 + β5Xi ,5

Which model would you select?
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Additional issues in MLR: Parsimony

A bunch of statistics that consider both parsimony and
explanatory power are the ’Information Criteria’ type
statistics.

Two well known IC stats are:

AIC (Akaike Info. Crit.)
BIC (Bayesian Info. Crit.)
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Information criterion

Basic idea:
IC = Lack of Fit(model) + penalty(num parameters)

Lack of Fit = residual = obs y - pred y
i.e. difference between model and reality (data)

Good model will have low lack of fit

60/76



Background
Simple Linear Regression

Multi-variable Linear Regression

Motivating example
Additional issues: Contribution of Xs
Additional issues: Parsimony
Additional issues: Multicollinearity
Confounding

AIC

Low value of IC better: Best model in this situation has 6
variables
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Information criteria

Information criteria statistics are absolute and tend not to
have much meaning across studies (they are a
comparative measure for a set of models predicting a
particular outcome, for a particular set of data)

However, the advantage of IC statistics is that they can
be used for a wide range of models (not just linear
regression) where a model can be compared to the data

For example they are often used in Generalized linear
models (e.g. Logistic regression) where there is no R2

value
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Additional issues: Multicollinearity

One of the trickier issues that arises in MLR, especially
for observational (e.g. cohort) studies

Multicollinearity occurs when our ’so-called’ independent
(explanatory) variables are not independent (i.e. they are
correlated)
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What are the implications of multicollinearity?

First, the reason explanatory variables need to be independent
is so we can attribute variation in an outcome variable
uniquely to each explanatory variables.

For example, consider vocabulary in children:
Vocabulary = β0 + β1Age + β2ShoeSize

Second, multicollinearity leads to unstable βs (Specifically,
inflated confidence intervals-see later)
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Multicollinearity vs Confounding

Multicollinearity can be the physical manifestation of
confounding in statistical modelling.

In the last example: We cannot physically separate the
variation in vocabulary due to age from that explained by
shoe size.

What about in pf-QoL = f(Age, BMI) example?
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How do we identify multicollinearity?

Initially keep it simple: The correlation matrix (of X
variables)

In this case, explanatory variables are (weakly) correlated
i.e. collinear
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When is multicollinearity a problem?

A number of multicollinearity diagnostic tools. Simplest is the
Variance Inflation Factor (VIF)

VIF indicates ↑ β Variances due to presence of other collinear
variables in model.

Hard and fast rule: VIF < 5
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Motivating example: physical QoL in cancer

patients

What about the correlation between Age and BMI. Does that
cause a substantial problem (risk of a type II error) in our

analysis?

VIF < 5
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Does multicollinearity always cause problems?

No. Sometimes parts of the Xs correlated

with each other don’t relate directly to

the Y variable.

In other words, two X variables can be

moderately correlated and yet the VIF

(and impact of multicollinearity) low.
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Is multicollinearity always a problems?
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Confounding

The definition of a confounder is a variable that interferes
with the relationship between two others.

A statistical definition of a confounder (in a linear
regression context) is one that changes the slope
(effect) of a particular explanatory variable when
the confounder is added to the model.

In our example, the effect of Age (on pf-QoL) may
change with the addition of BMI into the model (this
would make BMI a confounder)
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Confounding in linear regression

As we can see, the addition of (adjustment for) the potential
confounder, BMI, has altered the relationship between Age

and pf-QoL
So which model is more appropriate???
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What have I missed??

In the QoL example, I have not performed a
residual analysis (which should be conducted in
much the same way as for SLR).

Recall: Regression is not valid unless we can
demonstrate:

ε ∼ N(0, σ2)

73/76



Background
Simple Linear Regression

Multi-variable Linear Regression

Motivating example
Additional issues: Contribution of Xs
Additional issues: Parsimony
Additional issues: Multicollinearity
Confounding

Residual Analysis

OK????
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Almost there: MLR with R

Works very similarly as SLR. For this example:

R syntax: Running a multivariable linear regression

my.model<-lm(Qol∼Age+BMI, data=QoL.df)
summary(my.model)
anova(my.model)
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THANK-YOU

Watch this space!!!!
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