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Time-to-event data

Often we are interested in an outcome involving time to an
event. For example in clinical research:

Time to death

Time to remission (after treatment)

Time to recidivism (after addiction treatment)

All of these endpoints come under the heading of survival data
(Even though not all involve death as an endpoint).
Most survival analysis are performed in the clinical setting
(Only other common application is to the survival of
products: time to failure of a computer → pricing warranties).

3/44



Introduction
Bivariate analysis of survival data

Modelling survival data

Issues with survival data
Survival distributions and some important functions

Issues with survival data

Analysing survival data presents a few problems not
encountered in other types of analysis:

Data truncation and censoring

Conditional probability: To consider the probability that a
subject might die at particular point in time, we have to
account for the fact that they have survived to that point
i.e. The probability of subject X dying on day 30 must
account for the fact that they were alive on all the
preceding days.
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Types of censoring and truncation
Examples of censoring and truncation

Subjects that do not experience event of interest (B,C,D,E)
Incomplete follow-up

Lost to follow-up (C)

Withdraws from study
(E)

Dies of something other
than clinical end point

Right censored (B,C,D and E)

B and D - study ends

C and E -
withdrew/LTFU

Left truncated (A,B)

A and B - time at risk
prior to study
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Distribution of survival times

First, consider the Probability Distribution (density function),
f (t), and Cumulative Probability Distribution, F (t) of survival
times, t:

f (t) represents the probability of dying on a particular day, t
F (t) represents the probability of any time up to a particular day, t

Example:
f (23) = probability of dying day 23; and
F (23) = probability of any time in the first 23 days

However, generally we are more interested in the probability
that someone will survive up to a particular point in time,
which brings us to the survival function, S(t)
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Some important functions
Survivor function, S(t) and the hazard function h(t)

Rather than f(t) and F(t), focus in survival analysis is on
the survival and hazard functions

Survival function, S(t), defines the probability of surviving
longer than time t. e.g. Prob(survival time > 1 yr)

S(t) = P(T > t) =

∫ ∞
t

f (u) du = 1− F (t)

Hazard function, h(t), instantaneous risk of event at time t

h(t) =
f (t)

S(t)

Hazard function: the probability that if you survive to t, you
will die in the next instant
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Analysis of survival data

Like all of the other types of analysis, survival analysis can be
used to generate:

1 Descriptive statistics

2 Bivariate methods (Specifically: Survival in terms of a
single categorical covariate)

3 Multivariable models (e.g. Proportional Hazards [cox]
regression)
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The Kaplan-Meier survival curve

Represents an estimator of the (true) survival curve

aka the product-limit formula (see next slide)

Purely empirical and non-parametric (makes no
’distributional’ assumption about survival times)

Accounts for censoring

Generates the characteristic ’stair step’ survival curves

Does not account for confounding or effect modification
by other covariates
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Simple example of a survival curve

Subject Survtime Censored

1 6 1
2 44 1
3 21 0
4 14 1
5 62 1

Subject calculation S(t)

0 ≤ t < 6 5
5 1.0

6 ≤ t < 14 1.0× 4
5 0.8

14 ≤ t < 21 1.0× 4
5 ×

3
4 0.6

21 ≤ t < 44 1.0× 4
5 ×

3
4 ×

3
3 0.6

44 ≤ t < 62 1.0× 4
5 ×

3
4 ×

3
3 ×

1
2 0.3

t > 62 1.0× 4
5 ×

3
4 ×

3
3 ×

1
2 ×

0
1 0
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KM curve for simple example

and the resulting Kaplan-Meier curve....
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Motivating example: Worcester Heart Attack Study
Background

Before going into more detail about survival analysis, let’s
consider a real data set.

Study considering factors and time trends associated with
long-term survival following a myocardial infarction
among residents of Worcester, Massachusetts

In the first instance we will consider a trimmed down
version of the dataset with several covariates (continuous
and categorical) and a subset (n=500) of the large
number of participants in this study.
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Motivating example: Worcester Heart Attack Study
Variables in dataset
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KM curve for Worcester data
All subjects
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Descriptive statistic: Median survival time
Using the KM curve

Often clinicians want to know
what is the survival time that
50% of individuals can expect
to survive (Median survival
time)?

Software can calculate the
median survival time, or we can
just read it off the KM-curve.

It is the time associated with
the 0.5 point in cumulative
survival
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Descriptive statistic
Mean vs. median survival time

As survival times are zero bound on the left (can’t have
survival < 0) we would expect survival times to be
positively skewed.

So, the median rather than mean survival time is the best
way to represent the ’typical’ survival time.

These values are routinely output with KM curves
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Descriptive statistic
All the Quartiles

We can also obtain all the quartiles

75% of individuals survived at least 295 days,

50% survived at least 1627 days (median survival time)

25% survived at least 2353 days
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Comparing groups
Methods

Visualizing the entire dataset well and good, but unless
our sample represents a single homogeneous population,
we need methods to compare groups of individuals

A number of tests exist able to compare the survival
curves arising from different groups (e.g. Survival time for
those on treatment A vs. those on treatment B).

The bivariate test we consider here is non-parametric
(makes no assumption about the distribution of survival
times from each group).

This method is called the log-rank test.
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Comparing groups: Heart attack data
Comparing KM curves

First, we can visualize group differences by generating
group-specific KM curves

On the face of it, Males (gender=0) have a more favourable survival experience
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Comparing groups: Heart attack data
Bivariate hypothesis testing

Now let’s look at the descriptive statistics (median survival
time) for each group

The median survival time for males (0) was 2160 days
and for females (1) 1317 days.
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Comparing groups: Heart attack data
Bivariate hypothesis testing

Now let’s see if there is a (statistically) significant difference in
the expected survival of males compared to females

Log-rank shows a difference in the survival experience
between the groups (χ2

LR=7.79, p<0.05)

Problem with Log-rank tests

Log-rank tests (and other classical bivariate tests) don’t tell us
much about the nature (or magnitude) of the association. We
need more informative methods.
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Comparing groups
A final word on KM curves

In order to conclude a difference
in the survival of two or more
groups, their survival curves
should not intersect (Regardless
of Log rank test’s results).

When we compare the KM curves
of those that had complete heart
block (1=yes), with those that
didn’t (0=no), we cannot
conclude a (definitive) difference
in the survival experience.
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Where to from here?
Modelling survival with Cox Proportional Hazards Regression

Now we will consider true modelling of survival times.

Specifically we will consider a multi-variable model that
can deal with both categorical and continuous covariates:
Cox proportional hazards regression

You will see that Cox regression is a MUCH more useful
method than those we have covered so far, but it makes
one or two assumptions too
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Cox proportional hazards regression

Most widely used methods for modelling time-to-event
(survival) data

Cox PH regression is semi-parametric; it makes no
assumptions about the form of the survival distribution
(or more specifically, the hazard distribution)

However, nor is PH regression fully nonparametric as it
makes assumptions about the functional form of the
covariates (i.e. it is model based), and the central
assumption of proportionality (more later)
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Is PH regression a generalized linear model?

No. As PH regression makes no assumptions about underlying
distribution of survival/hazards, it is not (technically) a
Generalized Linear Model (GLMs are fully parametric)

However, it does assume that all subjects share a common
baseline hazard function (albeit unspecified) and that any
differences between survival stem purely from the covariates.

A Maximum Likelihood Estimation ’related’ process is still
used to estimate parameters:partial MLE

For this reason, partial-MLEs from PH regression can be
interpreted in the same way as estimates from any GLM.

It is only in theory (not practice) that Cox regression is not a
GLM
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The proportional hazards model

hi(t) = h0(t)eβ1x1+β2x2+···+βkxk

hi(t) = h0(t)eXβ

where
hi(t) is hazard for subject i at time t
h0 is the baseline hazard (common to all subjects)
Xβ is the subject-specific component; and
and the exponential function, e, the inverse link function (i.e.
a log link) implying a log-linear relationship between the
hazard and the covariates
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The proportional hazards model

hi(t) = h0(t)eXβ

The covariates (in this form of the model) are
time-independent: sometimes called baseline covariates

Note that there is no t component in the Xβ.

Baseline covariates are typically represented by covariates
such as age, sex and BMI etc.

To consider time-varying covariates (e.g. SBP and DBP)
we need to extend the PH model to include β that are
dependant on t, i.e. β(t) (we won’t do this)
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Hazard ratios

The parameters estimated in Cox PH regression, β, can
be transformed to obtain are hazard ratios.
As with Logistic regression (ORs) and Poisson Regression
(RRs), β̂, can be exponentiated to get the hazard ratio
(HRs). That is, HR = eβ

HRs represent the risk of death (or the clinical endpoint)
for one group relative to that of another (categorical
covariates), or change in hazard as we increase a unit
(continuous covariates).

Example: consider a single categorical covariate with two
classes (Gender). If we dummy code Gender = 0 for males and
Gender = 1 for females. Then...

hi(t) = h0(t)eβGender
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Hazard ratios

If we performed a Cox PH regression and found:
βGender = 2

Then:
hmales(t) = h0(t)e2×(0) = h0(t)

hfemales(t) = h0(t)e2×(1) = h0(t)e2

HR =
h0(t)e2

h0(t)
= e2 = 7.4

This means: Females are 7.4 time more likely to die (assuming
death represents the hazard) than males

29/44



Introduction
Bivariate analysis of survival data

Modelling survival data

Introduction to Cox PH regression
Example: Cox PH regression
Assumptions of Cox PH regression
Extending Cox PH regression

Recall our Worcester Heart Attack Study (n=500)
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Modelling effect of MI type and BMI on survival

First we will consider each covariate separately (i.e. in
separate bivariate models).

This will give us crude estimates of the hazard ratio for both
risk factors

Then we will include them in the same model (a multivariable
model) to see:

Does taking both covariates into account
(simultaneously) improve the model?
Does one covariate represent a confounder?
The risk factors will then be mutually
adjusted→adjusted hazard ratios

We should note that:

MI (0:non-Qwave; 1:Qwave) is categorical binary.
BMI is continuous and in this case is considered as
time-independent
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Results:

Of the 500 participants,
215 had heart attacks
(so 285 were censored)

I used SPSS here and
(insanely) SPSS has
recoded our variables to
the opposite

So Q-wave has become
the referent
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Results: Model 1a: (MI type)

As we have only a single covariate, we can go straight to
the coefficient table (As with any single covariate model
e.g. Linear regression).

Significance test of β (Wald-test) gives p<0.05, implying
difference in the hazard between the two groups

Equivalently, the Hazard ratio, eβ, is significantly different
from 1 (HR=1.935, p<0.001, 95%CI: 1.39-2.69).

i.e. those with non-Qwave MI have 1.935 the chance of death
than those with Q-wave MI.

Equivalently, those with non-Q wave MI have a 93.5% higher
chance of dying (relative to those with Q-wave MIs)
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Results: Model 1b (BMI)

As in other linear models, a unit change in a continuous
covariate is usually quite small (UPSHOT: wouldn’t
expect HRs estimates to be as profound)

HR = eβ = 0.906 (p<0.001; CI:0.88-0.93)

Interpretation: As we go up one unit of BMI, the chance
of death reduces by (1-0.906)100% = 9.4%.
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Now a Multivariable model

Let’s try fitting both of our covariates. We will consider
MI type as the study effect (effect of interest) and BMI as
a potential confounder.

We might assume a change in a coefficient
(Crude→Adjusted in the effect of interest of 10%) implies
confounding.

Be careful though, we should really use the change in the
coefficient, not the change in the HR to gauge this (i.e.
Change in coefficient 6= Change in HR)

Note: In bivariate model (Model 1a) βMItype = 0.66
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Multivariable model: Model 2 (MI type and BMI)

We have >1 covariates → first test overall model (overall
model is significant p<0.05)

Both covariates are highly significant (p<0.05).
Compared to betaMItype = 0.66 from model 1, we now
have betaMItype = 0.589 (from Model 2)

⇒ 100% x 0.66−0.589
0.66

= 10.76% change (i.e. BMI represents a
confounder of the MI - survival relationship).
So what should we do? 36/44
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Cox regression assumptions

There are two main assumptions associated with Cox regression:

1 If continuous covariate are associated with the hazard than it
is log-linearly related i.e. Is the Log(Hazard) linearly related
to covariates

2 Hazards remain proportional over whole survival experience

This 2nd assumption central to Cox Proportional Hazards
regression

Required to use a Maximum Likelihood like estimator to get
the HR

Means HR remains constant (for all survival times).

If one group has twice the chance of dying at day 1
relative to the referent, than this holds for day 50, 100,
150 and so on 37/44
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Assessing the proportional hazard assumption

There are two main approaches to assessing the Proportional
hazards assumption:

1 The log minus log survival plot

2 Schoenfeld residuals

Method 1: Log minus log survival plot
This is essentially the ln(− ln(S(t)) for each level of the
covariate (where S(t) is the Kaplan-Meier estimate of the
survival curve).
Generally, if the log minus log survival curves are parallel for
each level of the covariate (e.g. 1997, 1999 and 2001) then
the proportional hazard assumption is met.
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Log minus log plots

As the ln(− ln(S(t))
curves seem to be
parallel, then the
proportional hazards
assumption seems to be
fine

Problem with Log minus log
plots:

1 Problem 1: What if we
have a continuous
covariate?

2 Problem 2: Subjective
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Assessing the PH assumption

The second way of assessing the PH assumption,
Schoenfeld residuals, can:

1 Consider the PH assumption for continuous covariates
2 Provides a (formal) test of the PH assumption

I am not a big fan of ’tests of assumptions’ because they
can inadvertently be under- or over-powered in studies
which are otherwise meticulously designed.

However, I consider Schoenfeld residuals an exception to
the rule since considering survival curves is complicated
(i.e. Not as simple as checking the histogram for
normality, for example)
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Disproportional hazards and difference in baseline

survival

The model we have been considering so far assumes that
all individuals have the same baseline hazard

That is, the only difference in the chance of survival
between individuals (and more importantly, the underlying
survival distribution) is assumed to be explained solely in
terms of the covariates, AND the relative hazards are
constant over the entire survival experience.

What about if we had different groups in our data who
had different underlying (baseline) distributions of
survival?
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Disproportional hazards and difference in baseline

survival

When might this occur?
1 If we are considering two populations that might differ in

many ways (specifically in ways that are difficult to
measure or articulate in a model)

For example, if we are considering both the Australian
and Thai populations, there are differences in cultural
practice, lifestyle, diet and genetics.

2 If our proportional hazard assumption isn’t met (for a
particular covariate).

For example, what about if the hazard ratio (of males
relative to females) was 2 at day 50 (twice the chance of
death), but this increased to 5 at 200 days. The hazard
ratio is clearly not constant over the entire survival
experience. 42/44
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Dealing with different baseline survival → hazards

If this occurs for a single covariate only (preferably
categorical), we can used Stratified Cox regression model
In this model, a different baseline hazard is allowed for each of
stratum, taking the form:

h(t|si) = h0i(t)eβ1x1+β2x2+···+βkxk

for stratum i = 1, 2, · · · ,m strata

Note: While the baseline hazards is allowed to differ for
each stratum; the effect of the covariates (on survival)
remains the same (i.e the βs do not vary across strata)

For that reason, the output from a stratified Cox
regression is no more complicated than a standard Cox
regression
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Example of a stratified Cox regression

The output looks exactly the same. The only difference is
that that ’populations’ are allowed to have different
baseline survival curves.

In this case, I have stratified by (cohort) year (1997,
1999, 2001)

Your turn: How would you interpret the hazard ratio?
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